Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (227)

Search Parameters:
Keywords = legacy soils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2093 KB  
Article
Post Drought Legacy of Experimentally Imposed Antecedent Precipitation on Four Mojave Desert Shrubs
by Tamara Wynne Sison, Dale A. Devitt, Stanley D. Smith and Marilin E. Lopez-Bermudez
Land 2026, 15(1), 27; https://doi.org/10.3390/land15010027 - 22 Dec 2025
Viewed by 67
Abstract
Extended droughts are predicted for southwestern North America, including the arid Mojave Desert, which has plant communities dominated by desert scrub vegetation. We conducted a multi-year study in which supplemental water was provided to four native shrub species: the evergreen Larrea tridentata and [...] Read more.
Extended droughts are predicted for southwestern North America, including the arid Mojave Desert, which has plant communities dominated by desert scrub vegetation. We conducted a multi-year study in which supplemental water was provided to four native shrub species: the evergreen Larrea tridentata and deciduous Ambrosia dumosa, Ambrosia salsola, and Encelia farinosa. Water treatments included −25% of precipitation (by temporarily deploying large tarps over wooden support structures), actual precipitation, and 100% and 200% of actual precipitation. Water applied occurred within 24 h of actual precipitation events. At the end of a two-year period, we allowed the plots to remain intact, receiving no supplemental water for 3.8 years, which was anomalously dry. During the initial two-year experiment, we examined growth and other physiological responses to the treatments. We also measured soil volumetric water content with depth and calculated a plant water stress index. After the 3.8-year dry period we measured stem elongation, canopy volume, leaf xylem water potential and harvested roots and shoots for biomass estimates. Supplemental water led to higher soil water content and water use, leading to increased aspects of growth which were species dependent, whereas the −25% treatment resulted in greater stress and reduced growth, but only in some species. After the 3.8-year dry period, survival in all treatments was between 97 and 100%. However, a distinct legacy effect was observed, as plants growing under the wetter treatments during the 2-year supplemental water period had more negative leaf xylem water potentials after the 3.8-year dry period than plants that were grown under the drier treatments. In addition, canopy volumes were shown to decrease if plants were grown under the wetter treatment imposed during the supplemental water period but increased if grown under the drier treatments. Our results would suggest that the impact of climate change on Mojave Desert shrubs will be linked to how they respond to wet/dry cycles, which will be linked to drought severity and the time between wet periods. The four shrub species studied have unique morphological and physiological characteristics that allow them to grow and not just survive under arid conditions, but if extended drought events occur on a more frequent basis, these shrub species may not be able to adapt and thus avoid higher mortality rates. Full article
21 pages, 24338 KB  
Article
Carbon-Water Coupling and Ecosystem Resilience to Drought in the Yili-Balkhash Basin, Central Asia
by Zezheng Liu, Dong Cui, Zhicheng Jiang, Jiangchao Yan, Yunhao Wu, Mengdie Wen, Junqi Liu and Luyao Liu
Water 2025, 17(24), 3535; https://doi.org/10.3390/w17243535 - 13 Dec 2025
Viewed by 240
Abstract
The resilience of arid ecosystems to climate change hinges on their carbon-water dynamics. This study investigates the spatiotemporal patterns of ecosystem water use efficiency (WUE) and its resilience in the ecologically vulnerable Yili-Balkhash Basin, a critical watershed in Central Asia. Contrary to a [...] Read more.
The resilience of arid ecosystems to climate change hinges on their carbon-water dynamics. This study investigates the spatiotemporal patterns of ecosystem water use efficiency (WUE) and its resilience in the ecologically vulnerable Yili-Balkhash Basin, a critical watershed in Central Asia. Contrary to a basin-wide trend of increasing WUE, we identify a significant decline in the WUE of high-productivity forest ecosystems. We demonstrate that this decline stems from a fundamental decoupling between the drivers of carbon (GPP) and water (ET) cycles during drought periods. While GPP shows a positive response to atmospheric aridity (vapor pressure deficit), likely driven by co-varying high radiation and temperature, ET remains primarily controlled by soil moisture and surface thermal conditions. This driver asynchrony results in ET-dominated control over WUE across 65.8% of the basin, rendering forests particularly vulnerable. Machine learning-based attribution reveals that ecosystem resilience is not determined by long-term drought legacy but by the combined effects of immediate thermal stress and a one-month ecological memory. Our findings highlight an emerging vulnerability of high-productivity forest ecosystems to atmospheric aridity and underscore the necessity of process-based frameworks for assessing ecosystem stability under a changing climate. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

15 pages, 829 KB  
Article
Organochlorine Pesticides and Salinity in Karakalpakstan, Uzbekistan: Environmental Health Risks Associated with the Aral Sea Crisis
by Casey Bartrem, Murad Ismaylovich Kurbanov, Brock Daniel Keller, Andrea Fiori, Ian von Lindern, Polat Zoldasbaevich Khajiev, Dilmurod Rustamov, Jerry Lee, Marina Steiner and Zamira Paluaniyazova
Int. J. Environ. Res. Public Health 2025, 22(11), 1751; https://doi.org/10.3390/ijerph22111751 - 19 Nov 2025
Viewed by 794
Abstract
The legacy of Soviet-era agricultural practices in Central Asia has contributed to severe environmental degradation through residual organochlorine pesticide contamination, dramatic reduction in surface water, and the near-total desiccation of the Aral Sea. Few studies have investigated hazards to human health, despite the [...] Read more.
The legacy of Soviet-era agricultural practices in Central Asia has contributed to severe environmental degradation through residual organochlorine pesticide contamination, dramatic reduction in surface water, and the near-total desiccation of the Aral Sea. Few studies have investigated hazards to human health, despite the region’s elevated burden of disease. This study aimed to characterize environmental hazards in the Republic of Karakalpakstan, one of the most environmentally and economically impacted regions. Environmental assessment included the collection of 140 soil, water, and sediment samples across 79 unique locations. Pesticide results showed organochlorine pesticides over US reference levels in 100% of water samples, with 30% also exceeding in hexavalent chromium. Water salinity is a primary concern: expressed as total dissolved solids, values ranged from 563 to 3852 mg/L. Over half of the 46 soil and sediment samples tested above reference levels for aldrin. Soil and sediment sample salt content reached up to 8.7%. Residual persistent organochlorine pesticides remain a significant health risk in Karakalpakstan, while water availability is decreasing, and water quality parameters, including salinity, dissolved oxygen, pH, dissolved metals, and nitrate levels, are degrading. Such challenges extend beyond the Aral Sea Basin: as salinization and desiccation of endorheic lakes continue on a global scale, similar situations may become commonplace. Research and interventions from this region can serve to support other similarly impacted areas. Full article
Show Figures

Figure 1

15 pages, 1310 KB  
Article
Effects of Ether Perfluoro Carboxyl Acids (PFECAs) on Innate Immunity in Earthworms (Eisenia fetida)
by Davide Gualandris, Davide Rotondo, Candida Lorusso, Valentina Audrito, Antonio Calisi and Francesco Dondero
Environments 2025, 12(11), 430; https://doi.org/10.3390/environments12110430 - 10 Nov 2025
Viewed by 594
Abstract
Per- and polyfluoroalkyl substances (PFAS) persist in soils, yet their effects on invertebrate immunity remain poorly understood. We compared a legacy congener, perfluorooctanoic acid (PFOA), with three short-chain ether acids GenX (C6), MOBA (C5), and MOPrA (C4) using a 72 h OECD-207 filter-paper [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) persist in soils, yet their effects on invertebrate immunity remain poorly understood. We compared a legacy congener, perfluorooctanoic acid (PFOA), with three short-chain ether acids GenX (C6), MOBA (C5), and MOPrA (C4) using a 72 h OECD-207 filter-paper assay in the earthworm Eisenia fetida. Endpoints spanned cellular and humoral defenses: amoebocyte morphometry, oxidative burst (ROS production), phenol oxidase (PO) activity, and the transcription of the lectin CCF-1 and the pore-forming protein lysenin. MOBA and MOPrA caused enlargement of amoebocytes, whereas PFOA and GenX had no morphometric impact. Oxidative burst fell significantly for all congeners. PO inhibition followed the same potency order (MOPrA > GenX > MOBA ≫ PFOA), with near-complete loss at 229 µM MOPrA. Gene expression assays for CCF-1 and lysenin showed shifts in relative fold change for each PFAS congener. The combined biomarker panel—amoebocyte size, ROS, CAT, PO, CCF-1, and lysenin—offers a concise framework for assessing terrestrial PFAS risk and guiding remediation monitoring. Full article
Show Figures

Figure 1

45 pages, 827 KB  
Review
Global Evidence on Monitoring Human Pesticide Exposure
by Tatiane Renata Fagundes, Carolina Coradi, Beatriz Geovana Leite Vacario, Juliana Maria Bitencourt de Morais Valentim and Carolina Panis
J. Xenobiot. 2025, 15(6), 187; https://doi.org/10.3390/jox15060187 - 7 Nov 2025
Cited by 2 | Viewed by 2519
Abstract
This study analyzes global data on human exposure to pesticides, focusing on glyphosate, POPs, carbamates, and organophosphates, which are among the most widely used in agricultural and urban environments, providing an overview of global human contamination by these substances. Current research has increasingly [...] Read more.
This study analyzes global data on human exposure to pesticides, focusing on glyphosate, POPs, carbamates, and organophosphates, which are among the most widely used in agricultural and urban environments, providing an overview of global human contamination by these substances. Current research has increasingly focused on the unintended consequences of pesticide use, including food, water, and soil contamination, biodiversity loss (especially beneficial insects such as pollinators), and the growing evidence of adverse impacts on human health (neurological, reproductive, endocrine, and carcinogenic effects). Therefore, we compiled information from several existing studies that evaluated pesticide residues in human biological samples, specifically urine, blood, and breast milk, to assess the extent of exposure. The analysis takes a global perspective, highlighting the importance of monitoring exposure in countries that demonstrate exceptionally high pesticide use (in terms of absolute volume), such as Brazil, the United States, and China, which are among the largest global consumers. The data cover both contemporary pesticides, whose consumption is driven by intensive agriculture in these and other countries, and persistent legacy compounds (POPs) that continue to circulate in nature and accumulate in the human body decades after their ban in many countries. Globally, there is a wide disparity in global regulations, and many developing countries continue to use pesticides that have been banned or severely restricted in more developed nations. Finally, it provides a critical overview of global data on human pesticide contamination. The data reinforce the critical importance of establishing preventive initiatives and strengthening surveillance and monitoring systems to detect and control pesticide residues in human populations globally, ultimately aiming to mitigate the harms of chronic pesticide exposure to human health and well-being. Full article
Show Figures

Graphical abstract

17 pages, 1454 KB  
Article
Functional Trait Variability of Salicornia europaea L. Across Inland Saline Habitats: Integrating Shoot and Root Morphometrics with Soil Salinity and Trophic Status
by Agnieszka Piernik, Nour Elhouda Gargouri, Piotr Hulisz, Ahmad Rajabi Dehnavi and Stefany Cárdenas Pérez
Plants 2025, 14(21), 3383; https://doi.org/10.3390/plants14213383 - 5 Nov 2025
Viewed by 513
Abstract
Salicornia europaea is an extremely salt-tolerant annual halophyte. It occurs in coastal and inland saline habitats and is increasingly cultivated for food, nutraceuticals, and environmental remediation. This study examined whether inland populations from contrasting saline sites exhibit heritable differences in shoot and root [...] Read more.
Salicornia europaea is an extremely salt-tolerant annual halophyte. It occurs in coastal and inland saline habitats and is increasingly cultivated for food, nutraceuticals, and environmental remediation. This study examined whether inland populations from contrasting saline sites exhibit heritable differences in shoot and root morphology. Seeds from four isolated sites (Ciechocinek, Inowrocław, Salzgraben, and Soltauquelle) were grown at 0, 200, 400, and 1000 mM NaCl, and morphometric traits were quantified from digital images. Corresponding soil samples were also analyzed. A strong relationship was found between population origin and responses to salt stress. Optimal growth generally occurred at 200–400 mM NaCl. Shoot canopy area consistently best discriminated among populations. Inowrocław and Salzgraben performed best under extreme salinity (1000 mM), whereas Ciechocinek showed the weakest growth. Root analyses revealed a shift from radial expansion at moderate salinity to elongation at higher levels, with Salzgraben and Soltauquelle maintaining the longest roots. Soil analyses indicated substantial site differences: Ciechocinek had the highest salinity, resulting in the smallest trait development, Inowrocław was rich in Ca2+ and organic matter, while the German sites had lower salinity but higher pH and bicarbonates. These findings demonstrate population-specific adaptive strategies and soil-legacy effects, supporting targeted ecotype selection for saline agriculture and phytoremediation. Full article
(This article belongs to the Special Issue Chemical Properties of Soils and its Impact on Plant Growth)
Show Figures

Figure 1

19 pages, 1334 KB  
Article
Spatial Decoupling of Biological and Geochemical Phosphorus Cycling in Podzolized Soils
by Daniel F. Petticord, Benjamin T. Uveges, Elizabeth H. Boughton, Brian D. Strahm and Jed P. Sparks
Soil Syst. 2025, 9(4), 115; https://doi.org/10.3390/soilsystems9040115 - 16 Oct 2025
Viewed by 637
Abstract
Phosphorus (P) is essential to life yet constrained by finite reserves, heterogeneous distribution, and strong chemical binding to soil minerals. Pedogenesis progressively alters the availability of P: in ‘young’ soils, P associated with Ca and Mg is relatively labile, while in ‘old’ soils, [...] Read more.
Phosphorus (P) is essential to life yet constrained by finite reserves, heterogeneous distribution, and strong chemical binding to soil minerals. Pedogenesis progressively alters the availability of P: in ‘young’ soils, P associated with Ca and Mg is relatively labile, while in ‘old’ soils, acidification and leaching deplete base cations, shifting P into organic matter and recalcitrant Al- and Fe-bound pools. Podzolized soils (Spodosols) provide a unique lens for studying this transition because podzolization vertically segregates these dynamics into distinct horizons. Organic cycling dominates the surface horizon, while downward translocation of Al, Fe, and humus creates a spodic horizon that immobilizes P through sorption and co-precipitation in amorphous organometal complexes. This spatial separation establishes two contrasting P pools—biologically dynamic surface P and mineral-stabilized deep P—that may be variably accessible to plants and microbes depending on depth, chemistry, and hydrology. We synthesize mechanisms of spodic P retention and liberation, including redox oscillations, ligand exchange, root exudation, and physical disturbance, and contrast these with strictly mineral-driven or biologically dominated systems. We further propose that podzols serve as natural experimental models for ecosystem aging, allowing researchers to explore how P cycling reorganizes as soils develop, how vertical stratification structures biotic strategies for nutrient acquisition, and how deep legacy P pools may be remobilized under environmental change. By framing podzols as a spatial analogue of long-term weathering, this paper identifies them as critical systems for advancing our understanding of nutrient limitation, biogeochemical cycling, and sustainable management of P in diverse ecosystems. Full article
Show Figures

Figure 1

19 pages, 6762 KB  
Article
Sponge Landscapes: Flood Adaptation Landscape Type Framework for Resilient Agriculture
by Elisa Palazzo
Land 2025, 14(10), 2023; https://doi.org/10.3390/land14102023 - 10 Oct 2025
Viewed by 760
Abstract
In the context of increasing climate variability and flood risk, this study explores how long-standing agricultural practices in the Hunter Valley, New South Wales, Australia, have fostered flood resilience through the integration of local agro-environmental knowledge and geomorphologic conditions. Employing a morpho-typological framework, [...] Read more.
In the context of increasing climate variability and flood risk, this study explores how long-standing agricultural practices in the Hunter Valley, New South Wales, Australia, have fostered flood resilience through the integration of local agro-environmental knowledge and geomorphologic conditions. Employing a morpho-typological framework, the research identifies three flood adaptation landscape types (FALTs)—rolling hills, foot slopes, and flood plains—each reflecting distinct interactions between landform, soil, biodiversity, hydrology, and viticultural management. Through geospatial analysis, field surveys, and interviews with local farmers, the study reveals how adaptive strategies—ranging from flood avoidance to attenuation and acceptance—have evolved in response to site-specific hydrological and ecologic dynamics. These strategies demonstrate a form of ‘sponge landscape’ design, where agricultural systems are co-shaped with natural processes to enhance systemic resilience and long-term productivity. The findings underscore the value of preserving biocultural legacies and suggest that spatially explicit, context-based approaches to flood adaptation can inform sustainable landscape planning and climate resilience strategies in other rural regions. The FALT framework offers a replicable methodology for identifying flood adaptation patterns across diverse agricultural systems in Australia, supporting proactive land use planning and nature-based solutions. This research contributes to the discourse on climate adaptation by bridging traditional environmental knowledge with contemporary planning frameworks, offering practical insights for policy, landscape management, and rural development. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

15 pages, 1519 KB  
Article
Heavy Metal Mobilization in Urban Stormwater Runoff from Residential, Commercial, and Industrial Zones
by Amber Hatter, Daniel P. Heintzelman, Megan Heminghaus, Jonathan Foglein, Mahbubur Meenar and Eli K. Moore
Pollutants 2025, 5(4), 32; https://doi.org/10.3390/pollutants5040032 - 30 Sep 2025
Viewed by 1127
Abstract
Increased precipitation and extreme weather due to climate change can remobilize recent and legacy environmental contaminants from soil, sediment, and sewage overflows. Heavy metals are naturally distributed in Earth’s crust, but anthropogenic activity has resulted in concentrated emissions of toxic heavy metals and [...] Read more.
Increased precipitation and extreme weather due to climate change can remobilize recent and legacy environmental contaminants from soil, sediment, and sewage overflows. Heavy metals are naturally distributed in Earth’s crust, but anthropogenic activity has resulted in concentrated emissions of toxic heavy metals and deposition in surrounding communities. Cities around the world are burdened with heavy metal pollution from past and present industrial activity. The city of Camden, NJ, represents a valuable case study of climate impacts on heavy metal mobilization in stormwater runoff due to similar legacy and present-day industrial pollution that has taken place in Camden and in many other cities. Various studies have shown that lead (Pb) and other toxic heavy metals have been emitted in Camden due to historic and recent industrial activity, and deposited in nearby soils and on impervious surfaces. However, it is not known if these heavy metals can be mobilized in urban stormwater, particularly after periods of high precipitation. In this study, Camden, NJ stormwater was collected from streets and parks after heavy rain events in the winter and spring for analysis with inductively coupled plasma-mass spectrometry (ICP-MS) to identify lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As). Lead was by far the most abundant of the four target elements in stormwater samples followed by Hg, Cd, and As. The locations with the highest Pb concentrations, up to 686.5 ppb, were flooded allies and streets between commercial and residential areas. The highest concentrations of Hg (up to 11.53 ppb, orders of magnitude lower than Pb) were found in partially flooded streets and ditches. Lead stormwater concentrations exceed EPA safe drinking levels at the majority of analyzed locations, and Hg stormwater concentrations exceed EPA safe drinking levels at all analyzed locations. While stormwater is not generally ingested, dermal contact and hand-to-mouth behavior by children are potential routes of exposure. Heavy metal concentrations were lower in stormwater collected from parks and restored areas of Camden, indicating that these areas have a lower heavy metal exposure risk. This study shows that heavy metal pollution can be mobilized in stormwater runoff, resulting in elevated exposure risk in industrial cities. Full article
(This article belongs to the Section Water Pollution)
Show Figures

Figure 1

17 pages, 1398 KB  
Article
Phosphorus Dynamics in High-Legacy Soils: Acid Phosphatase Activity, Extraction Techniques and Isotherm in Florida Potato Fields
by Thioro Fall, Kanika Inglett, Andrew V. Ogram, Patrick Inglett, Bruce Schaffer, Yuncong Li, Kelly Morgan and Guodong Liu
Agriculture 2025, 15(19), 2048; https://doi.org/10.3390/agriculture15192048 - 29 Sep 2025
Viewed by 597
Abstract
In Florida, many agricultural soils contain up to 600 mg/kg of Mehlich-3 extractable phosphorus (P), yet potato growers continue to apply P fertilizers, indicating complex P dynamics that remain underexplored. Previous studies have mainly focused on P fertilizer trials, overlooking crucial factors like [...] Read more.
In Florida, many agricultural soils contain up to 600 mg/kg of Mehlich-3 extractable phosphorus (P), yet potato growers continue to apply P fertilizers, indicating complex P dynamics that remain underexplored. Previous studies have mainly focused on P fertilizer trials, overlooking crucial factors like phosphatase activity and P sorption isotherms in high-legacy P systems. This study aimed to address this gap by examining acid phosphatase activity (AcPA) and P sorption dynamics in a potato field in northeastern Florida. Utilizing a split-block design, 24 plots were subjected to two P application rates (0 and 49 kg/ha) and three management treatments: a multispecies cover crop (MSCC), MSCC with Telone-C35 (a nematicide), and an untreated control. Significant increases in AcPA were observed during the tuber bulking stage, suggesting that applied P was insufficient for plant needs. P sorption isotherms indicated that the soil had reached maximum P sorption capacity, with applied P primarily fixed through chemical processes. These findings underscore the need for revised P fertilizer strategies in high-legacy P soils and highlight the importance of monitoring AcPA and sorption phases for effective nutrient management. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

15 pages, 1047 KB  
Article
Sustainable Soybean Production Using Residual Vermicompost Inputs in Corn-Soybean Rotation
by Ivan Oyege and Maruthi Sridhar Balaji Bhaskar
Environments 2025, 12(9), 333; https://doi.org/10.3390/environments12090333 - 18 Sep 2025
Viewed by 922
Abstract
Soybeans (Glycine max L.), a globally significant crop, play a critical role in economic, nutritional, and ecological systems, particularly in rotational farming due to their nitrogen-fixing capacity. This study investigated the residual effects of vermicompost (VC) and vermicompost tea (VCT) applied during [...] Read more.
Soybeans (Glycine max L.), a globally significant crop, play a critical role in economic, nutritional, and ecological systems, particularly in rotational farming due to their nitrogen-fixing capacity. This study investigated the residual effects of vermicompost (VC) and vermicompost tea (VCT) applied during a preceding corn cycle on subsequent soybean growth and productivity in an organic corn–soybean rotation. Soybeans were grown in raised beds previously treated with different VCT concentrations and combinations of VC+VCT, without additional fertilization during the soybean phase. Physiological traits, including leaf chlorophyll content (SPAD values) and stomatal conductance, were measured alongside biomass, yield, and plant leaves nutrient concentrations. VC+VCT treatments significantly increased biomass and yield, with VC1+VCT20 achieving the highest biomass (3.02 tons/ha) and yield (1.68 tons/ha). Leaf nutrient analysis revealed increased uptake of both macro- and micronutrients in amended treatments, while SPAD and stomatal conductance values remained consistently higher than in the control. Soil analyses confirmed improved nutrient retention and cation exchange capacity in amended plots, demonstrating the legacy benefits of organic inputs. Therefore, residual VCT and VC+VCT applications improved soybean productivity, nutrient acquisition, and physiological performance in rotational systems. By reducing reliance on synthetic fertilizers and enhancing soil fertility, this strategy supports climate-smart agriculture principles and contributes to SDG 2 (Zero Hunger), SDG 12 (Responsible Consumption and Production), and SDG 13 (Climate Action). Full article
Show Figures

Graphical abstract

19 pages, 2231 KB  
Article
Mapping and Characterization of Planosols in the Omo-Gibe Basin, Southwestern Ethiopia
by Eyasu Elias, Alemayehu Regassa, Gudina Legesse Feyisa and Abreham Berta Aneseyee
Sustainability 2025, 17(18), 8341; https://doi.org/10.3390/su17188341 - 17 Sep 2025
Viewed by 750
Abstract
Planosols are seasonally waterlogged soils characterized by an abrupt transition from coarse-textured surface horizons to dense, clay-enriched subsoils. Despite the increased agricultural expansion in the Planosol landscapes, these soils have been largely overlooked in Ethiopia. The FAO soil map of Ethiopia (1:200,000 scale) [...] Read more.
Planosols are seasonally waterlogged soils characterized by an abrupt transition from coarse-textured surface horizons to dense, clay-enriched subsoils. Despite the increased agricultural expansion in the Planosol landscapes, these soils have been largely overlooked in Ethiopia. The FAO soil map of Ethiopia (1:200,000 scale) does not recognize the presence of Planosols. In contrast, the more recent digital soil map of Ethiopia, EthoSoilGrids v1.0, at a 250 spatial resolution, was not detailed enough to capture Planosol landscapes, reflecting their historical undersampling in the legacy data. To address this gap, we conducted a thorough mapping and characterization of Planosols in the Omo-Gibe basin, southwestern Ethiopian highlands. Using over 200 auger observations, 74 georeferenced soil profiles, 296 laboratory analyses, and Random Forest modeling, we produced a 30 m-resolution soil-landscape map. Our results show that Planosols cover about 18% of the basin, a substantial extent previously unrecognized in national exploratory maps. Morphologically, these soils exhibit abrupt textural change from the coarse-textured, light grey Ap/Eg horizon (about 30–40 cm thick) to a very clayey, grey–black Bssg/Bt horizon occurring below 40 cm depth. Analytical data on selected parameters show the following pattern: low clay contents (20–29%) and acidic pH (5.2–5.8) with relatively low CEC values (11–26 cmol/kg) in the surface horizons (Ap/Eg), but pronounced clay increase (37–74%), higher bulk density (1.3 g/cm3), higher pH (up to 6.5), and substantially higher CEC (37–47 cmol/kg) in the sub-surface horizons (Bss/Bt). In terms of soil fertility, Planosols are low in SOC, TN, and exchangeable K contents, but micronutrient levels are variable—high in Fe-Mn-Zn and low in B and Cu. The findings confirm the diagnostic features of WRB Planosols and align with regional East African averages, underscoring the reproducibility of our approach. By rectifying long-standing misclassifications and generating fine-scale, field-validated evidence on soil fertility constraints and management options, this study establishes a strong foundation for targeted soil management in Ethiopia. It offers transferable insights for Planosol-dominated agroecosystems across Eastern Africa. Globally, the dataset contributes to enriching the global scientific knowledge and evidence base on Planosols, thereby supporting their improved characterization and management. Full article
(This article belongs to the Special Issue The Sustainability of Agricultural Soils)
Show Figures

Figure 1

21 pages, 1893 KB  
Article
Spatial Differentiation of Heavy Metals/Metalloids, Microbial Risk Genes and Soil Microbiota in a Sulfur-Contaminated Landscape
by Lina Li, Jiayin Zhao, Chang Liu, Yiyan Deng, Yunpeng Du, Yu Liu, Yuncheng Wu, Wenwei Wu and Xuejun Pan
Microorganisms 2025, 13(9), 2010; https://doi.org/10.3390/microorganisms13092010 - 28 Aug 2025
Viewed by 976
Abstract
Legacy sulfur smelting has left behind complex contamination landscapes, yet the spatial structuring of microbial risks and adaptation strategies across soil profiles remains insufficiently understood. Microbial risk genes, including those conferring resistance to antibiotic resistance (ARGs), biocide and metal resistance (BRGs/MRGs), and virulence [...] Read more.
Legacy sulfur smelting has left behind complex contamination landscapes, yet the spatial structuring of microbial risks and adaptation strategies across soil profiles remains insufficiently understood. Microbial risk genes, including those conferring resistance to antibiotic resistance (ARGs), biocide and metal resistance (BRGs/MRGs), and virulence (VFGs), are increasingly recognized as co-selected under heavy metal stress, posing both ecological and public health concerns. In this study, we integrated geochemical analyses with metagenomic sequencing and functional annotation to jointly characterize the vertical (0–7 m) and horizontal (~2 km) distribution of heavy metals/metalloids, microbial communities, and functional risk genes at a historic smelting site in Zhenxiong, Yunnan. Heavy metals and metalloids such as arsenic (As), chromium (Cr), copper (Cu), and lead (Pb) showed clear accumulation with depth, while significantly lower concentrations were observed in both upstream and downstream locations, revealing persistent vertical and horizontal pollution gradients. Correspondingly, resistance and virulence genes were co-enriched at contaminated sites, suggesting potential co-selection under prolonged stress. LEfSe analysis revealed distinct ecological patterns: vertically, upper layers were dominated by nutrient-cycling and mildly stress-tolerant taxa, while deeper layers favored metal-resistant, oligotrophic, and potentially pathogenic microorganisms; horizontally, beneficial and diverse microbes characterized low-contamination zones, whereas heavily polluted areas were dominated by resistant and stress-adapted genera. These findings provide new insights into microbial resilience and ecological risk under long-term smelting stress. Full article
(This article belongs to the Special Issue Soil Environment and Microorganisms)
Show Figures

Figure 1

17 pages, 779 KB  
Review
Multi-Scale Drought Resilience in Terrestrial Plants: From Molecular Mechanisms to Ecosystem Sustainability
by Weiwei Lu, Bo Wu, Lili Wang and Ying Gao
Water 2025, 17(17), 2516; https://doi.org/10.3390/w17172516 - 23 Aug 2025
Viewed by 1402
Abstract
Global climate change has intensified the frequency, intensity, and spatial heterogeneity of drought events, posing severe threats to the stability of terrestrial ecosystems. Plant drought resilience, which encompasses a plant’s capacity for drought resistance, post-stress recovery, and long-term adaptation and transformation to sustain [...] Read more.
Global climate change has intensified the frequency, intensity, and spatial heterogeneity of drought events, posing severe threats to the stability of terrestrial ecosystems. Plant drought resilience, which encompasses a plant’s capacity for drought resistance, post-stress recovery, and long-term adaptation and transformation to sustain ecosystem functionality, has emerged as a central focus in botanical and ecological research. This review synthesizes the conceptual evolution of plant drought resilience, from early emphasis on resistance and recovery to the current multi-dimensional framework integrating adaptation and transformation, and synthesizes advances in understanding multi-scale drought resilience in terrestrial plants—spanning molecular, physiological, individual, community, and ecosystem levels. Key mechanisms include molecular/physiological adaptations (osmotic adjustment, antioxidant defense, hydraulic regulation, carbon–water reallocation via gene networks and aquaporins), morpho-anatomical traits (root architectural plasticity, leaf structural modifications, and hydraulic vulnerability segmentation), community/ecosystem drivers (biodiversity effects, microbial symbioses, and soil–plant–feedback dynamics). We critically evaluate quantitative metrics and expose critical gaps, including neglect of stress legacy effects, oversimplified spatiotemporal heterogeneity, and limited integration of concurrent stressors. Future research should prioritize multi-scale and multi-dimensional integrated analysis, long-term multi-scenario simulations with field validation, and harnessing plant–microbe interactions to enhance drought resilience, providing a theoretical basis for ecosystem sustainability and agricultural production under climate change. Full article
(This article belongs to the Special Issue Wetland Conservation and Ecological Restoration)
Show Figures

Figure 1

18 pages, 10896 KB  
Article
Effects of Nitrogen and Water Addition on Ecosystem Carbon Fluxes in a Grazing Desert Steppe
by Chao Wen, Jianhui Huang, Yumei Shan, Ding Yang, Lan Mu, Pujin Zhang, Xinchao Liu, Hong Chang and Ruhan Ye
Agronomy 2025, 15(8), 2016; https://doi.org/10.3390/agronomy15082016 - 21 Aug 2025
Viewed by 1088
Abstract
Desert steppe ecosystems, characterized by water limitation and high sensitivity to global climate change and anthropogenic disturbance drivers, experience profound alterations in carbon (C) cycling processes driven by the multiplicative interactions among grassland grazing, altered precipitation regimes, and elevated atmospheric nitrogen deposition. However, [...] Read more.
Desert steppe ecosystems, characterized by water limitation and high sensitivity to global climate change and anthropogenic disturbance drivers, experience profound alterations in carbon (C) cycling processes driven by the multiplicative interactions among grassland grazing, altered precipitation regimes, and elevated atmospheric nitrogen deposition. However, how historical grazing legacies modulate ecosystem responses to concurrent changes in nitrogen deposition and precipitation regimes remains poorly resolved. To address this, we conducted a field experiment manipulating water and nitrogen addition across grazing intensities (no grazing, light grazing, moderate grazing, heavy grazing) in a Stipa breviflora desert steppe. Over three consecutive growing seasons (2015–2017), we continuously monitored net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), and gross ecosystem production (GEP) to quantify ecosystem CO2 fluxes under these interacting global change drivers. Results revealed that water and nitrogen addition did not alter seasonal CO2 flux dynamics across grazing intensities. Light grazing enhanced ecosystem C sink capacity, whereas heavy grazing reduced NEE and GEP, diminishing C sink strength. Water addition significantly increased CO2 fluxes, strongly correlated with soil moisture. Nitrogen addition exerted a weak C source effect in a water-deficient year but enhanced the C sink in a water-rich year. Nitrogen plus water addition significantly boosted C sink potential, though this effect diminished along the grazing pressure gradient. Our findings demonstrate that the impacts of climate change on soil C fluxes in desert steppes are mediated by historical grazing intensity. Future manipulative experiments should explicitly incorporate grazing legacy effects, and integrate this factor into C models to generate reliable predictions of grassland C dynamics under global change scenarios. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

Back to TopTop