Mapping and Characterization of Planosols in the Omo-Gibe Basin, Southwestern Ethiopia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey and Characterization
2.2.1. Auger Observation and Profile Pit Location
2.2.2. Profile Description and Sample Collection
2.3. Laboratory Analysis
2.4. Soil Mapping Procedures
3. Results
3.1. Spatial Extent of Planosols Along Other Major Soil Types in the Basin
3.2. Classification Error Matrix
3.3. Typical Characteristics of Planosols
3.3.1. Morphological Properties
3.3.2. Physical Properties
3.4. Selected Soil Chemical Characteristics
4. Discussion
4.1. Soil Distribution Across Landscapes
4.2. Relevance to the Sub-Humid Highlands
4.3. Morphological Features and Textural Differentiation in Planosols
4.4. Quantitative Comparison of Planosol Profiles for Eastern Africa
4.5. Fertility Limitations and Management Recommendations
4.5.1. Fertility Limitations of Planosols
4.5.2. Management Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dewitte, O.; Jones, A.; Spaargaren, O.; Breuning-Madsen, H.; Brossard, M.; Dampha, A.; Deckers, J.; Gallali, T.; Hallett, S.; Jones, R.; et al. Harmonisation of the soil map of Africa at the continental scale. Geoderma 2013, 2011–2012, 138–153. [Google Scholar] [CrossRef]
- Iticha, B.; Takele, C. Digital soil mapping for site-specific management of soils. Geoderma 2019, 351, 85–91. [Google Scholar] [CrossRef]
- Leenaarsa, J.G.B.; Elias, E.; Wösten, J.H.M.; Ruiperez-Gonzáleza, M.; Kempen, B. Mapping the major soil-landscape resources of the Ethiopian Highlands using random forest. Geoderma 2020, 361, 114067. [Google Scholar] [CrossRef]
- FAO. FAO-UNESCO Soil Map of the World, Revised Legend with Corrections; FAO: Rome, Italy, 1988. [Google Scholar]
- Dumon, M.; Tolossa, A.R.; Capon, B.; Detavernier, C.; Van Ranst, E. Quantitative clay mineralogy of a Vertic Planosol in southwestern Ethiopia: Impact on soil formation hypotheses. Geoderma 2014, 214, 184–196. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union for Soil Science: Vienna, Austria, 2022; Available online: https://obrl-soil.github.io/wrbsoil2022/#citation (accessed on 13 July 2025).
- Van Ranst, E.; Dumon, M.; Tolossa, A.R.; Cornelis, J.T.; Stoops, G.; Vandenberghe, R.E.; Deckers, J. Revisiting Ferrolysis Processes in the Formation of Planosols for Rationalizing the Soils with Stagnic Properties in WRB. Geoderma 2011, 163, 265–274. [Google Scholar] [CrossRef]
- Jones, A.; Breuning-Madsen, H.; Brossard, M.; Dampha, A.; Deckers, J.; Dewitte, O.; Gallali, T.; Hallett, S.; Jones, R.; Kilasara, M.; et al. Soil Atlas of Africa; European Commission, Publications Office of the European Union: Luxembourg, 2013; p. 176. [Google Scholar] [CrossRef]
- Driessen, P.; Deckers, J.; Spaargen, O.; Nachtergale, F. Lecture Notes on the Major Soils of the World; Food and Agriculture Organization (FAO): Rome, Italy, 2001; Available online: https://www.fao.org/3/Y1899E/Y1899E00.htm (accessed on 30 September 2024).
- Elias, E. Soils of the Ethiopian Highlands: Geomorphology and Properties; ALTERA, Wageingen University and Research Centre: Wageingen, The Netherlands, 2016; p. 385. Available online: https://www.researchgate.net/publication/321849961_Soils_of_the_Ethiopian_Highlands_Geomorphology_and_Properties (accessed on 20 May 2024).
- FAO. Geomorphology and Soils of Ethiopia. Assistance to Land Use Planning; Food and Agriculture Organization: Rome, Italy, 1984. [Google Scholar]
- Ali, A.; Erkossa, T.; Gudeta, K.; Abera, W.; Mesfin, E.; Mekete, T.; Haile, M.; Haile, W.; Abegaz, A.; Tafesse, D.; et al. Reference soil groups map of Ethiopia based on legacy data and machine learning technique: EthioSoilGrids 1.0. Soil 2024, 10, 189–209. [Google Scholar] [CrossRef]
- Williams, F. Understanding Ethiopia Geology and Scenery; Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- FAO-UNESCO. FAO-Unesco Soil Map of the World (1:5000,000 Scale). Volume I Legend; FAO: Paris, France, 1974. [Google Scholar]
- FAO. Guidelines for Soil Description, 4th ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2006; p. 110. [Google Scholar]
- Van Reeuwijk, L. Procedures for Soil Analysis, 6th ed.; International Soil Reference and Information Centre (ISRIC): Wageningen, The Netherlands, 2006; Available online: https://www.isric.org/documents/document-type/technical-paper-09-procedures-soil-analysis-6th-edition (accessed on 28 February 2025).
- USDA. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42; NRCS: Washington, DC, USA, 2004. Available online: https://nrcspad.sc.egov.usda.gov/DistributionCenter/pdf.aspx?productID=886 (accessed on 13 July 2025).
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Total Nitrogen. In Methods of Soil Analysis II. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–642. Available online: https://lccn.loc.gov/82022630 (accessed on 26 June 2022).
- Tan, K. Soil Smapling, Preparation, and Analysis; Marcel Dekker, Inc.: New York, NY, USA, 1996. [Google Scholar] [CrossRef]
- Hengl, T.; Miller, M.A.; Križan, J.; Shepherd, K.D.; Sila, A.; Kilibarda, M.; Antonijević, O.; Glušica, L.; Dobermann, A.; Haefele, S.M. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci. Rep. 2021, 11, 6130. [Google Scholar] [CrossRef] [PubMed]
- Hengl, T.; Leenaars, J.; Shepherd, K.; Walsh, M.; Heuvelink, G.B.; Mamo, T.; Tilahun, H.; Berkhout, E.; Cooper, M.; Fegraus, E.; et al. Soil nutrient maps of Sub-Saharan Africa: Assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutr. Cycl. Agroecosyst. 2017, 109, 77–102. [Google Scholar] [CrossRef] [PubMed]
- Heung, B.; Ho, H.C.; Zhang, J.; Knudby, A.; Bulmer, C.E.; Schmidt, M.G. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma 2016, 265, 62–77. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Rossiter, D.; Bouma, J. A new look at soil phenoforms—Definition, identification, mapping. Geoderma 2018, 314, 113–121. [Google Scholar] [CrossRef]
- Moorthy, N.S.H.; Kumar, S.; Poongavanam, V. Classification of carcinogenic and mutagenic properties using machine learning method. Comput. Toxicol. 2017, 3, 33–43. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hirmas, D.R.; Graham, R.C. Pedogenesis and Soil-Geomorphic Relationships in an Arid Mountain Range, Mojave Desert, California. Soil. Sci. Soc. Am. J. 2010, 75, 192–206. [Google Scholar] [CrossRef]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Team, R.C.; Benesty, M.; et al. Caret: Classification and Regression Training. R Package, version 6.0-41; Pfizer Global R&D: Pearl River, NY, USA, 2015; Available online: http://CRAN.R-project.org/package=caret (accessed on 12 June 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2014; Available online: https://www.R-project.org (accessed on 24 May 2023).
- ESRI. ArcGIS Desktop Version 10.5; Environmental Systems: Redlands, CA, USA, 2016. [Google Scholar]
- Sarkar, D. Lattice: Multivariate Data Visualization with R; Springer: New York, NY, USA, 2008; Available online: http://lmdvr.r-forge.r-project.org (accessed on 21 May 2025).
- World Reference Base for Soil Resources. 2014. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 25 May 2025).
- Ferreira, J.; Ribeiro Filho, M.; Ribeiro, M.; Souza Júnior, V.; Bittar, S.; Santos, R. Planosols Developed in Different Geoenvironmental Conditions in Northeastern Brazil. Rev. Bras. Cienc. Solo 2016, 40, e0150036. [Google Scholar] [CrossRef]
- Landon, J.R. Booker Tropical Soil Manual: A handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics (Reprint ed.); Longman Scientific & Technical: Harlow, UK, 1991. [Google Scholar] [CrossRef]
- Hazelton, P.; Murphy, B. Interpreting Soil Test Results: Whay Do All the Numbers Mean? 3rd ed.; CSIRO Publishing: Clayton, Australia, 2017. [Google Scholar] [CrossRef]
- Elias, E. Characteristics of Nitisol profiles as affected by land use type and slope class in some Ethiopian highlands. Environ. Syst. Res. 2017, 6, 20. [Google Scholar] [CrossRef]
- Benton, J. Agronomic Hand Book. Management of Crops, Soils and Their Fertility; CRC Press: Washington, DC, USA, 2003. [Google Scholar]
- De Wispelaere, L.; Marcelino, V.; Regassa, A.; De Grave, E.; Dumona, M.; Mees, F.; Van Ranst, E. Revisiting nitic horizon properties of Nitisols in SW Ethiopia. Geoderma 2015, 243, 69–79. [Google Scholar] [CrossRef]
- Hengl, T. GSIF: Global Soil Information Facilities. R Package Version 0.5-4. 2017. Available online: https://CRAN.R-project.org/package=GSIF (accessed on 1 July 2024).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006: A Framework for International Classification, Correlation and Communication; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; Available online: https://www.researchgate.net/publication/301337206_World_reference_base_for_soil_resources_2006_a_framework_for_international_classification_correlation_and_communication (accessed on 16 June 2025).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization (FAO): Rome, Italy, 2014; p. 145. [Google Scholar] [CrossRef]
- Mertens, K. Land Use Dynamics in the Planosol Belt of the Gilgel Gibe Catchment, South-West Ethiopia. Master’s Thesis, University of Gent, Gent, Belgium, 2013. Available online: https://libstore.ugent.be/fulltxt/RUG01/002/063/605/RUG01-002063605_2013_0001_AC.pdf (accessed on 23 December 2024).
- van Wambeke, A.; Nachtergaele, F. Tropical soils—properties and management for sustainable agriculture. Geoderma 2004, 123, 373–375. [Google Scholar] [CrossRef]
- Schaetzl, R.J.; Anderson, S. Soils: Genesis and Geomorphology; Cambridge University Press: New York, NY, USA, 2005; Available online: https://www.cambridge.org/ (accessed on 1 July 2025).
- Brinkman, R. Ferrolysis, a hydromorphic soil forming process. Geoderma 1970, 3, 199–206. [Google Scholar] [CrossRef]
- Leenaars, J. Africa Soil Profiles Database, Version 1.1: A Compilation of Georeferenced and Standardised Legacy Soil Profile Data for Sub-Saharan Africa (with Dataset); ISRIC—World Soil Information: Wageningen, The Netherlands, 2013; p. 160. Available online: https://www.isric.org/sites/default/files/isric_report_2012_03.pdf (accessed on 23 January 2025).
- Shabtai, I.; Shenker, M.; Edeto, W.; Warburg, A.; Ben-Hur, M. Effects of land use on structure and hydraulic properties of Vertisols containing a sodic horizon in northern Ethiopia. Soil Tillage Res. 2014, 136, 19–27. [Google Scholar] [CrossRef]
- da Silva, L.; Fruetta, T.; Zinn, Y.; Inda, A.; do Nascimento, P. Genesis, morphology and mineralogy of Planosols developed from different parent materials in southern Brazil. Geoderma 2019, 341, 46–58. [Google Scholar] [CrossRef]
- Raheb, A.; Heidari, A. Effects of clay mineralogy and physico-chemical properties on potassium availability under soil aquic conditions. J. Soil Sci. Plant Nutr. 2012, 12, 747–761. [Google Scholar] [CrossRef]
- Buol, S.W.; Southhard, R.; Grham, R.; Mcdaniel, P.A. Soil Genesis and Classification, 6th ed.; John Wiley & Sons: Pondicherry, India, 2011. [Google Scholar]
- Karltun, E.; Mamo, T.; Bekele, T.; Gameda, S.; Kidanu, S. Towards Improved Fertilizer Recommendations in Ethiopia—Nutrient Indices for Categorization of Fertilizer Blends from EthioSIS Woreda Soil Inventory Data; Agricultural Transformation Agency (ATA): Addis Ababa, Ethiopia, 2013. Available online: https://ati.gov.et/home-3/ (accessed on 4 September 2024).
- Jabbar, M.A.; Tekalign Mamo, T.M.; Saleem, M.M. From plot to watershed management: Experience in farmer participatory Vertisol technology generation and adoption in highland Ethiopia. In The Sustainable Management of Vertisols; CABI: Wallingford, UK, 2001; pp. 173–186. [Google Scholar] [CrossRef]
AL | AN | CM | LP | LV | NT | PL | RG | VR | Total | ER | |
---|---|---|---|---|---|---|---|---|---|---|---|
AL | 11 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 14 | 0.21 |
AN | 0 | 54 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 57 | 0.053 |
CM | 0 | 0 | 22 | 0 | 5 | 1 | 3 | 0 | 0 | 31 | 0.290 |
LP | 0 | 0 | 0 | 27 | 4 | 10 | 0 | 0 | 1 | 42 | 0.357 |
LV | 0 | 2 | 0 | 0 | 76 | 22 | 7 | 2 | 2 | 111 | 0.315 |
NT | 1 | 0 | 2 | 2 | 16 | 313 | 10 | 1 | 0 | 345 | 0.093 |
PL | 0 | 2 | 1 | 0 | 3 | 2 | 160 | 1 | 19 | 188 | 0.149 |
RG | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 14 | 0 | 16 | 0.125 |
Horizon/Depth (cm) | Profile Code | Color (Moist) | Structure Type/Size/Grade | Consistence Moist/Wet | Roots Abundance/Size |
---|---|---|---|---|---|
Ap (0–10) | 1 | 10YR 4/2 | CO, ME, WE | FR, NST, NPL | A, F |
2 | 7YR 4/1 | GR, ME, WE | FR, NST, NPL | M, Me | |
3 | 7YR 4/1 | CO, ME, WE | FR, NST, NPL | C, F | |
4 | 10YR 3/2 | CO, ME, WE | FR, NST, NPL | M, Me | |
5 | 10YR 4/2 | CO, FM, WE | FR, NST, NPL | M, Me | |
6 | 10YR 4/2 | CO, ME, WE | FR, NST, NPL | C, F | |
Eg (10–40) | 1 | 10YR 5/1 | CO, ME, MO | FR, SST, SPL | A, F |
2 | 7.5YR 4/2 | GR, ME, WE | FR, VST, VPL | F, F | |
3 | 7.5YR 4/2 | GR, ME, MO | SHA, NST, NPL | C, F | |
4 | 10YR 6/1 | GR, CO, WE | SHA, NST, NPL | C, VF | |
5 | 10YR 5/2 | CO, FM, WE | SHA, NST, NPL | F, F | |
6 | 10YR 5/2 | GR, ME, WE | SHA, VST, VPL | C, M | |
Bssg (40–80) | 1 | 10YR 2/1 | AB, ME, ST | SHA, VST, VPL | VF, F |
2 | 10YRY 3/1 | SAB, ME, ST | FR, VST, VPL | VF, F | |
3 | 10YR 2/1 | AB, FI, ST | FI, SST, SPL | F, VF | |
4 | 10YR 3/2 | AB, FI, ST | SHA, ST, PL | F, VF | |
5 | 10 YR 3/2 | AB, ME, ST | HA, ST, PL | VF, F | |
6 | 10YR 3/2 | AB, FI, ST | SHA, VST, VPL | VF, F | |
Bt (80–120) | 1 | 10 YR 2/1 | AB, FI, ST | FI, ST, PL | None |
2 | 10YR 2/1 | SAB, ME, ST | SHA, VST, VPL | None | |
3 | 10YR 2/1 | AB, ME, MO | FI, ST, PL | None | |
4 | 10 YR 2/1 | AB, FI, ST | VHA, VST, VPL | None | |
5 | 10 YR 2/1 | AB, FI, MO | SHA, VST, VPL | None | |
6 | 10YR 2/1 | AB, ME, ST | SHA, VST, VPL | None |
Horizon/Depth | Profile Code | Sand (%) | Silt (%) | Clay (%) | Silt/Clay | BD (g/cm3) | Texture Class |
---|---|---|---|---|---|---|---|
Ap (0–10 cm) | 1 | 42 | 38 | 20 | 1.90 | 1.01 | SL |
2 | 45 | 18 | 36 | 0.50 | 1.03 | SCL | |
3 | 46 | 30 | 24 | 1.25 | 1.05 | SL | |
4 | 38 | 32 | 30 | 1.07 | 1.19 | SCL | |
5 | 40 | 34 | 26 | 1.31 | 1.34 | SL | |
6 | 40 | 21 | 39 | 0.54 | 1.06 | SCL | |
Mean | 42 | 29 | 29 | 1.00 | 1.11 | SCL | |
Eg (10–40) | 1 | 29 | 49 | 22 | 2.23 | 1.05 | SL |
2 | 63 | 16 | 21 | 0.76 | 1.10 | SL | |
3 | 36 | 42 | 22 | 1.91 | 1.16 | SL | |
4 | 28 | 36 | 36 | 1.00 | 1.32 | SCL | |
5 | 30 | 34 | 36 | 0.94 | 1.24 | SCL | |
6 | 31 | 36 | 33 | 1.09 | 1.20 | SCL | |
Mean | 36 | 36 | 28 | 1.29 | 1.17 | SCL | |
Bssg (40–80) | 1 | 25 | 23 | 52 | 0.44 | 1.16 | C |
2 | 20 | 13 | 66 | 0.20 | 1.28 | C | |
3 | 16 | 18 | 66 | 0.27 | 1.29 | C | |
4 | 22 | 20 | 58 | 0.08 | 1.33 | C | |
5 | 26 | 20 | 54 | 0.14 | 1.28 | C | |
6 | 20 | 14 | 66 | 0.21 | 1.39 | C | |
Mean | 21 | 14 | 60 | 0.22 | 1.29 | C | |
1 | 29 | 14 | 57 | 0.25 | 1.25 | C | |
Bt (80–120) | 2 | 31 | 10 | 59 | 0.17 | 1.32 | C |
3 | 30 | 14 | 56 | 0.25 | 1.39 | C | |
4 | 18 | 10 | 72 | 0.34 | 1.33 | C | |
5 | 16 | 14 | 70 | 0.25 | 1.39 | C | |
6 | 21 | 14 | 64 | 0.22 | 1.35 | C | |
Mean | 27 | 15 | 63 | 0.26 | 1.34 | C |
Horizon/ Depth (cm) | Profile Code | pH (H2O) | OC (%) | TN (%) | AP (mg/kg) | CEC, Exchangeable Basis (Cmol(+)/kg) | BS (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
CEC | Ca | Mg | Na | K | |||||||
Ap (0–10) | 1 | 5.00 | 1.75 | 0.16 | 8 | 35 | 14 | 5 | 1.8 | 0.4 | 60 |
2 | 5.40 | 1.53 | 0.03 | 8 | 25 | 9 | 3 | 2.4 | 0.5 | 60 | |
3 | 5.41 | 2.47 | 0.35 | 10 | 20 | 5 | 1 | 0.8 | 2.4 | 49 | |
4 | 5.99 | 3.36 | 0.28 | 5 | 22 | 10 | 3 | 0.2 | 0.6 | 63 | |
5 | 6.18 | 1.90 | 0.14 | 7 | 22 | 12 | 5 | 0.6 | 0.5 | 82 | |
6 | 5.88 | 3.33 | 0.26 | 6 | 30 | 13 | 2 | 0.7 | 0.1 | 52 | |
mean | 5.64 | 2.39 | 0.20 | 7 | 26 | 11 | 3 | 1.08 | 0.75 | 61 | |
Eg (10–40) | 1 | 5.40 | 0.83 | 0.10 | 6 | 27 | 7 | 3 | 0.7 | 0.2 | 40 |
2 | 5.20 | 1.07 | 0.02 | 4 | 22 | 6 | 2 | 1.1 | 0.5 | 44 | |
3 | 5.67 | 1.19 | 0.23 | 4 | 11 | 4 | 0 | 0.9 | 1.2 | 55 | |
4 | 6.35 | 1.88 | 0.16 | 3 | 18 | 7 | 2 | 0.3 | 0.4 | 54 | |
5 | 6.39 | 1.47 | 0.12 | 4 | 18 | 6 | 4 | 0.9 | 0.4 | 63 | |
6 | 6.16 | 2.16 | 0.17 | 4 | 22 | 7 | 2 | 0.7 | 0.1 | 45 | |
mean | 5.86 | 1.43 | 0.13 | 4 | 20 | 6 | 2 | 0.77 | 0.47 | 50 | |
Bssg (40–80) | 1 | 5.40 | 0.67 | 0.08 | 4 | 49 | 26 | 9 | 2.7 | 1.2 | 80 |
2 | 5.30 | 0.91 | 0.02 | 4 | 35 | 13 | 7 | 3.2 | 2.0 | 72 | |
3 | 6.85 | 0.68 | 0.05 | 6 | 60 | 43 | 12 | 1.8 | 2.4 | 98 | |
4 | 6.90 | 1.92 | 0.11 | 3 | 43 | 25 | 8 | 1.3 | 0.8 | 81 | |
5 | 6.63 | 1.09 | 0.11 | 4 | 36 | 25 | 6 | 1.9 | 0.9 | 92 | |
6 | 6.63 | 1.06 | 0.13 | 4 | 25 | 15 | 5 | 0.1 | 1.2 | 85 | |
mean | 6.29 | 1.06 | 0.08 | 4 | 41 | 25 | 8 | 1.8 | 1.4 | 85 | |
Bt (80–120) | 1 | 7.30 | 0.32 | 0.03 | 2 | 64 | 43 | 5 | 2.3 | 1.4 | 81 |
2 | 7.62 | 0.30 | 0.01 | 4 | 43 | 22 | 9 | 2.9 | 2.0 | 84 | |
3 | 7.60 | 0.75 | 0.03 | 3 | 58 | 45 | 8 | 1.5 | 2.3 | 98 | |
4 | 7.50 | 0.68 | 0.09 | 4 | 53 | 32 | 10 | 1.6 | 0.9 | 84 | |
5 | 7.22 | 1.03 | 0.11 | 4 | 43 | 30 | 9 | 2.3 | 1.2 | 99 | |
6 | 7.58 | 0.69 | 0.10 | 2 | 42 | 28 | 7 | 3.6 | 2.5 | 98 | |
mean | 7.47 | 0.63 | 0.06 | 3 | 51 | 33 | 8 | 2.4 | 1.7 | 91 |
Horizon/Depth (cm) | Profile Code | Available Micronutrients (mg/kg) | ||||
---|---|---|---|---|---|---|
Fe | Mn | Zn | Cu | B | ||
Ap (0–10) | 1 | 244 | 30 | 7.1 | 3.0 | 0.62 |
2 | 164 | 85 | 4.1 | 3.0 | 0.61 | |
3 | 190 | 19 | 1.22 | 0.75 | 0.57 | |
4 | 277 | 163 | 4.04 | 2.36 | 0.57 | |
5 | 198 | 169 | 1.13 | 2.23 | 0.50 | |
6 | 208 | 67 | 2.25 | 1.63 | 0.38 | |
mean | 214 | 89 | 3.00 | 2.16 | 0.54 | |
Eg (10–40) | 1 | 147 | 23 | 3.0 | 2.0 | 0.61 |
2 | 160 | 80 | 2.0 | 3.0 | 0.57 | |
3 | 120 | 14 | 1.17 | 0.67 | 0.57 | |
4 | 170 | 13 | 1.02 | 2.10 | 0.47 | |
5 | 189 | 161 | 0.84 | 2.14 | 0.46 | |
6 | 169 | 42 | 1.96 | 1.97 | 0.16 | |
mean | 159 | 56 | 1.67 | 1.98 | 0.47 | |
Bssg (40–80) | 1 | 138 | 14 | 2.0 | 2.0 | 0.59 |
2 | 144 | 49 | 1.0 | 3.0 | 0.24 | |
3 | 140 | 30 | 0.29 | 0.47 | 0.45 | |
4 | 152 | 127 | 1.72 | 1.89 | 0.46 | |
5 | 184 | 146 | 1.07 | 1.85 | 0.38 | |
6 | 120 | 150 | 3.28 | 1.48 | 0.21 | |
mean | 146 | 86 | 1.56 | 1.78 | 0.39 | |
Bt (80–120) | 1 | 133 | 10 | 1.0 | 1.0 | 0.46 |
2 | 115 | 44 | 1.0 | 2.0 | 0.32 | |
3 | 130 | 20 | 0.24 | 0.27 | 0.42 | |
4 | 129 | 99 | 1.59 | 1.71 | 0.38 | |
5 | 149 | 78 | 0.95 | 1.59 | 0.30 | |
6 | 66 | 46 | 0.82 | 1.51 | 0.23 | |
mean | 120 | 50 | 0.93 | 1.35 | 0.35 |
Property | Horizon | Ethiopia (Current Study) | Ethiopia (Previous) | Kenya (Mean) | East Africa (Mean) |
---|---|---|---|---|---|
Clay (%) | Ap | 29 | 27 | 20 | 23 |
Eg | 28 | 23 | 28 | 27 | |
Bs/Bt | 60 | 63 | 70 | 74 | |
Bulk density (g/cm3) | Ap | 1.10 | NA | 1.30 | 1.40 |
Eg | 1.20 | NA | 1.50 | 1.60 | |
Bs/Bt | 1.29 | NA | 1.80 | 1.70 | |
pH (H2O) | Ap | 5.6 | 5.2 | 5.4 | 5.5 |
Eg | 5.8 | 5.3 | 5.8 | 5.7 | |
Bs/Bt | 6.2 | 5.9 | 5.9 | 6.5 | |
CEC (Cmol/kg) | Ap | 26 | 21 | 21 | 18 |
Eg | 20 | 16 | 11 | 13 | |
Bs/Bt | 41 | 46 | 47 | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elias, E.; Regassa, A.; Feyisa, G.L.; Aneseyee, A.B. Mapping and Characterization of Planosols in the Omo-Gibe Basin, Southwestern Ethiopia. Sustainability 2025, 17, 8341. https://doi.org/10.3390/su17188341
Elias E, Regassa A, Feyisa GL, Aneseyee AB. Mapping and Characterization of Planosols in the Omo-Gibe Basin, Southwestern Ethiopia. Sustainability. 2025; 17(18):8341. https://doi.org/10.3390/su17188341
Chicago/Turabian StyleElias, Eyasu, Alemayehu Regassa, Gudina Legesse Feyisa, and Abreham Berta Aneseyee. 2025. "Mapping and Characterization of Planosols in the Omo-Gibe Basin, Southwestern Ethiopia" Sustainability 17, no. 18: 8341. https://doi.org/10.3390/su17188341
APA StyleElias, E., Regassa, A., Feyisa, G. L., & Aneseyee, A. B. (2025). Mapping and Characterization of Planosols in the Omo-Gibe Basin, Southwestern Ethiopia. Sustainability, 17(18), 8341. https://doi.org/10.3390/su17188341