Heavy Metal Mobilization in Urban Stormwater Runoff from Residential, Commercial, and Industrial Zones
Abstract
1. Introduction
2. Materials and Methods
2.1. Stormwater Collection and Processing
2.2. Heavy Metal Analysis
3. Results
3.1. Heavy Metal Concentrations in Camden Stormwater
3.2. Pb Isotope Distribution
4. Discussion
4.1. Heavy Metal Impacts
4.2. Pb Sources in Camden
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taghipour, H.; Mosaferi, M.; Armanfar, F.; Gaemmagami, S.J. Heavy Metals Pollution in the Soils of Suburban Areas in Big Cities: A Case Study. Int. J. Environ. Sci. Technol. 2013, 10, 243–250. [Google Scholar] [CrossRef]
- Dube, A.; Zbytniewski, R.; Kowalkowski, T.; Cukrowska, E.; Buszewski, B. Adsorption and Migration of Heavy Metals in Soil. Pol. J. Environ. Stud. 2001, 10, 1–10. [Google Scholar]
- Jeričević, A.; Ilyin, I.; Vidič, S. Modelling of Heavy Metals: Study of Impacts Due to Climate Change. In National Security and Human Health Implications of Climate Change; Fernando, H.J.S., Klaić, Z., McCulley, J.L., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 175–189. [Google Scholar]
- Noyes, P.D.; McElwee, M.K.; Miller, H.D.; Clark, B.W.; Van Tiem, L.A.; Walcott, K.C.; Erwin, K.N.; Levin, E.D. The Toxicology of Climate Change: Environmental Contaminants in a Warming World. Environ. Int. 2009, 35, 971–986. [Google Scholar] [CrossRef] [PubMed]
- Dai, A.; Zhao, T.; Chen, J. Climate Change and Drought: A Precipitation and Evaporation Perspective. Curr. Clim. Change Rep. 2018, 4, 301–312. [Google Scholar] [CrossRef]
- Francis, D.; Hengeveld, H.G. Extreme Weather and Climate Change; Climate Change Digest; Minister of Supply and Services Canada: Ottawa, ON, Canada, 1998; Volume 2, ISBN 0-662-26849-0. [Google Scholar]
- Ning, L.; Mann, M.E.; Crane, R.; Wagener, T.; Najjar, R.G.; Singh, R. Probabilistic Projections of Anthropogenic Climate Change Impacts on Precipitation for the Mid-Atlantic Region of the United States. J. Clim. 2012, 25, 5273–5291. [Google Scholar] [CrossRef]
- NCEI. NOAA Annual 2021 National Climate Report; National Centers for Environmental Information (NCEI): Asheville, NC, USA, 2022.
- Polsky, C.; Allard, J.; Currit, N.; Crane, R.; Yarnal, B. The Mid-Atlantic Region and Its Climate: Past, Present, and Future. Clim. Res. 2000, 14, 161–173. [Google Scholar] [CrossRef]
- Prat, O.P.; Nelson, B.R.; Nickl, E.; Leeper, R.D. Global Evaluation of Gridded Satellite Precipitation Products from the NOAA Climate Data Record Program. J. Hydrometeorol. 2021, 22, 2291–2310. [Google Scholar] [CrossRef]
- Bourg, A.C.M.; Loch, J.P.G. Mobilization of Heavy Metals as Affected by pH and Redox Conditions. In Biogeodynamics of Pollutants in Soils and Sediments: Risk Assessment of Delayed and Non-Linear Responses; Salomons, W., Stigliani, W.M., Eds.; Environmental Science; Springer: Berlin/Heidelberg, Germany, 1995; pp. 87–102. ISBN 978-3-642-79418-6. [Google Scholar]
- Delpla, I.; Jung, A.-V.; Baures, E.; Clement, M.; Thomas, O. Impacts of Climate Change on Surface Water Quality in Relation to Drinking Water Production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef]
- Wang, P.; Sun, Z.; Hu, Y.; Cheng, H. Leaching of Heavy Metals from Abandoned Mine Tailings Brought by Precipitation and the Associated Environmental Impact. Sci. Total Environ. 2019, 695, 133893. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, C.; Panthi, S.; Allard, S.M.; Sapkota, A.R.; Sapkota, A. Impact of High Precipitation and Temperature Events on the Distribution of Emerging Contaminants in Surface Water in the Mid-Atlantic, United States. Sci. Total Environ. 2021, 755, 142552. [Google Scholar] [CrossRef]
- Crawford, S.E.; Brinkmann, M.; Ouellet, J.D.; Lehmkuhl, F.; Reicherter, K.; Schwarzbauer, J.; Bellanova, P.; Letmathe, P.; Blank, L.M.; Weber, R.; et al. Remobilization of Pollutants During Extreme Flood Events Poses Severe Risks to Human and Environmental Health. J. Hazard. Mater. 2022, 421, 126691. [Google Scholar] [CrossRef]
- Odigie, K.O.; Flegal, A.R. Pyrogenic Remobilization of Historic Industrial Lead Depositions. Environ. Sci. Technol. 2011, 45, 6290–6295. [Google Scholar] [CrossRef]
- Odigie, K.O.; Flegal, A.R. Trace Metal Inventories and Lead Isotopic Composition Chronicle a Forest Fire’s Remobilization of Industrial Contaminants Deposited in the Angeles National Forest. PLoS ONE 2014, 9, e107835. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The Composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. 3.01—Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Pergamon: Oxford, UK, 2003; Volume 3, pp. 1–64. ISBN 978-0-08-043751-4. [Google Scholar]
- Nriagu, J.O. Natural Versus Anthropogenic Emissions of Trace Metals to the Atmosphere. In Control and Fate of Atmospheric Trace Metals; Pacyna, J.M., Ottar, B., Eds.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1989; pp. 3–13. ISBN 978-94-009-2315-7. [Google Scholar]
- Pacyna, J.M.; Pacyna, E.G. An Assessment of Global and Regional Emissions of Trace Metals to the Atmosphere from Anthropogenic Sources Worldwide. Environ. Rev. 2001, 9, 269–298. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology; Luch, A., Ed.; Experientia Supplementum; Springer: Basel, Switzerland, 2012; pp. 133–164. ISBN 978-3-7643-8340-4. [Google Scholar]
- Barringer, J.L.; Walker, R.L.; Jacobsen, E.; Jankowski, P. Hydrostratigraphy, Soil/Sediment Chemistry, and Water Quality, Potomac-Raritan-Magothy Aquifer System, Puchack Well Field Superfund Site and Vicinity, Pennsauken Township, Camden County, New Jersey, 1997–2001; U.S. Geological Survey (USGS): Reston, VA, USA, 2011; p. 303.
- Barton, G.J.; Krebs, M. Hydrogeologic Reconnaissance of the Swope Oil Superfund Site and Vicinity, Camden and Burlington Counties, New Jersey; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1990.
- NJDEP. New Jersey Superfund Sites; New Jersey Department of Environmental Protection: Trenton, NJ, USA, 1999; pp. 1–4.
- Pomar, O.D.; Cole, L.W. Camden, New Jersey, and the Struggle for Environmental Justice. Clgh. Rev. 2002, 36, 94. [Google Scholar]
- Wu, X.; Fan, Z.; Zhu, X.; Jung, K.H.; Ohman-Strickland, P.; Weisel, C.P.; Lioy, P.J. Exposures to Volatile Organic Compounds (VOCs) and Associated Health Risks of Socio-Economically Disadvantaged Population in a “Hot Spot” in Camden, New Jersey. Atmos. Environ. 2012, 57, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Praipipat, P.; Meng, Q.; Miskewitz, R.J.; Rodenburg, L.A. Source Apportionment of Atmospheric Polychlorinated Biphenyls in New Jersey 1997–2011. Environ. Sci. Technol. 2017, 51, 1195–1202. [Google Scholar] [CrossRef]
- Cook, Z. Assessment and Potential for Phyto-and-Mycorremediation of Soil Heavy Metal Pollution in Southern New Jersey (USA). Master’s Thesis, Rutgers University—Camden Graduate School, Camden, NJ, USA, 2019. [Google Scholar]
- Yu, C.H.; Fan, Z.; McCandlish, E.; Stern, A.H.; Lioy, P.J. Characterization of Spatial Impact of Particles Emitted from a Cement Material Production Facility on Outdoor Particle Deposition in the Surrounding Community. J. Air Waste Manag. Assoc. 2011, 61, 1015–1025. [Google Scholar] [CrossRef]
- Bradham, K.D.; Nelson, C.M.; Kelly, J.; Pomales, A.; Scruton, K.; Dignam, T.; Misenheimer, J.C.; Li, K.; Obenour, D.R.; Thomas, D.J. Relationship Between Total and Bioaccessible Lead on Children’s Blood Lead Levels in Urban Residential Philadelphia Soils. Environ. Sci. Technol. 2017, 51, 10005–10011. [Google Scholar] [CrossRef]
- Bryant, S.D. Lead-Contaminated Drinking Waters in the Public Schools of Philadelphia. J. Toxicol. Clin. Toxicol. 2004, 42, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Dignam, T.; Pomales, A.; Werner, L.; Newbern, E.C.; Hodge, J.; Nielsen, J.; Grober, A.; Scruton, K.; Young, R.; Kelly, J.; et al. Assessment of Child Lead Exposure in a Philadelphia Community, 2014. J. Public Health Manag. Pract. 2019, 25, 53–61. [Google Scholar] [CrossRef]
- Needleman, H.L.; Davidson, I.; Sewell, E.M.; Shapiro, I.M. Subclinical Lead Exposure in Philadelphia Schoolchildren. N. Engl. J. Med. 1974, 290, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Flora, S.J.S.; Flora, G.; Saxena, G. Chapter 4—Environmental Occurrence, Health Effects and Management of Lead Poisoning. In Lead; Casas, J.S., Sordo, J., Eds.; Elsevier Science BV: Amsterdam, The Netherlands, 2006; pp. 158–228. ISBN 978-0-444-52945-9. [Google Scholar]
- Wu, X.; Cobbina, S.J.; Mao, G.; Xu, H.; Zhang, Z.; Yang, L. A Review of Toxicity and Mechanisms of Individual and Mixtures of Heavy Metals in the Environment. Environ. Sci. Pollut. Res. 2016, 23, 8244–8259. [Google Scholar] [CrossRef]
- Mushak, P.; Michael Davis, J.; Crocetti, A.F.; Grant, L.D. Prenatal and Postnatal Effects of Low-Level Lead Exposure: Integrated Summary of a Report to the U.S. Congress on Childhood Lead Poisoning. Environ. Res. 1989, 50, 11–36. [Google Scholar] [CrossRef]
- Naranjo, V.I.; Hendricks, M.; Jones, K.S. Lead Toxicity in Children: An Unremitting Public Health Problem. Pediatr. Neurol. 2020, 113, 51–55. [Google Scholar] [CrossRef]
- Elinder, C.-G.; Järup, L. Cadmium Exposure and Health Risks: Recent Findings. Ambio 1996, 25, 370–373. [Google Scholar]
- Tchounwou, P.B.; Patlolla, A.K.; Centeno, J.A. Invited Reviews: Carcinogenic and Systemic Health Effects Associated with Arsenic Exposure—A Critical Review. Toxicol. Pathol. 2003, 31, 575–588. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Krudner, M.; Mittman, T.; Kloss, C. Green Infrastructure Barriers and Opportunities in Camden, New Jersey; U.S. Environmental Protection Agency: Washington, DC, USA, 2013; p. 22.
- Meenar, M.; Howell, J.P.; Moulton, D.; Walsh, S. Green Stormwater Infrastructure Planning in Urban Landscapes: Understanding Context, Appearance, Meaning, and Perception. Land 2020, 9, 534. [Google Scholar] [CrossRef]
- Zidar, K.; Belliveau-Nance, M.; Cucchi, A.; Denk, D.; Kricun, A.; O’Rourke, S.; Rahman, S.; Rangarajan, S.; Rothstein, E.; Shih, J.; et al. A Framework for Multifunctional Green Infrastructure Investment in Camden, NJ. Urban Plan. 2017, 2, 57–73. [Google Scholar] [CrossRef]
- Nolan, B.T.; Baehr, A.L.; Kauffman, L.J. Spatial Variability of Groundwater Recharge and Its Effect on Shallow Groundwater Quality in Southern New Jersey. Vadose Zone J. 2003, 2, 677–691. [Google Scholar] [CrossRef]
- Buchanan, M.K.; Kulp, S.; Cushing, L.; Morello-Frosch, R.; Nedwick, T.; Strauss, B. Sea Level Rise and Coastal Flooding Threaten Affordable Housing. Environ. Res. Lett. 2020, 15, 124020. [Google Scholar] [CrossRef]
- Lamber, M.; Leven, B.A.; Green, R.M. New Methods of Cleaning Up Heavy Metal in Soils and Water. Hazard. Subst. Res. Cent. Environ. Sci. Technol. Brief Citiz. 2000, 7, 133–163. [Google Scholar]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Egan, K.B.; Cornwell, C.R.; Courtney, J.G.; Ettinger, A.S. Blood Lead Levels in U.S. Children Ages 1–11 Years, 1976–2016. Environ. Health Perspect. 2021, 129, 37003. [Google Scholar] [CrossRef]
- Tsoi, M.-F.; Cheung, C.-L.; Cheung, T.T.; Cheung, B.M.Y. Continual Decrease in Blood Lead Level in Americans: United States National Health Nutrition and Examination Survey 1999–2014. Am. J. Med. 2016, 129, 1213–1218. [Google Scholar] [CrossRef]
- US EPA. Regional Screening Levels (RSLs)—Generic Tables. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 3 January 2024).
- Lanphear, B.P.; Roghmann, K.J. Pathways of Lead Exposure in Urban Children. Environ. Res. 1997, 74, 67–73. [Google Scholar] [CrossRef]
- Xue, J.; Zartarian, V.; Moya, J.; Freeman, N.; Beamer, P.; Black, K.; Tulve, N.; Shalat, S. A Meta-Analysis of Children’s Hand-to-Mouth Frequency Data for Estimating Nondietary Ingestion Exposure. Risk Anal. 2007, 27, 411–420. [Google Scholar] [CrossRef]
- Far, H.S.; Pin, N.T.; Kong, C.Y.; Fong, K.S.; Kian, C.W.; Yan, C.K. An Evaluation of the Significance of Mouth and Hand Contamination for Lead Absorption in Lead-Acid Battery Workers. Int. Arch. Occup. Environ. Heath 1993, 64, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Sahmel, J.; Hsu, E.I.; Avens, H.J.; Beckett, E.M.; Devlin, K.D. Estimation of Hand-to-Mouth Transfer Efficiency of Lead. Ann. Occup. Hyg. 2015, 59, 210–220. [Google Scholar] [CrossRef]
- Patrick, L. Lead Toxicity, A Review of the Literature. Part I: Exposure, Evaluation, and Treatment. Altern. Med. Rev. 2006, 11, 2–22. [Google Scholar]
- Papanikolaou, N.; Hatzidaki, E.; Belivanis, S.; Tzanakakis, G.; Tsatsakis, A. Lead Toxicity Update. A Brief Review. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2005, 11, RA329–RA336. [Google Scholar]
- Sahmel, J.; Arnold, S.; Ramachandran, G. Influence of Repeated Contacts on the Transfer of Elemental Metallic Lead between Compartments in an Integrated Conceptual Model for Dermal Exposure Assessment. J. Toxicol. Environ. Health Part A 2022, 85, 89–109. [Google Scholar] [CrossRef]
- Filon, F.L.; Boeniger, M.; Maina, G.; Adami, G.; Spinelli, P.; Damian, A. Skin Absorption of Inorganic Lead (PbO) and the Effect of Skin Cleansers. J. Occup. Environ. Med. 2006, 48, 692–699. [Google Scholar] [CrossRef]
- Julander, A.; Midander, K.; Garcia-Garcia, S.; Vihlborg, P.; Graff, P. A Case Study of Brass Foundry Workers’ Estimated Lead (Pb) Body Burden from Different Exposure Routes. Ann. Work Expo. Health 2020, 64, 970–981. [Google Scholar] [CrossRef]
- Niemeier, R.T.; Maier, A.; Reichard, J.F. Rapid Review of Dermal Penetration and Absorption of Inorganic Lead Compounds for Occupational Risk Assessment. Ann. Work Expo. Health 2022, 66, 291–311. [Google Scholar] [CrossRef] [PubMed]
- Counter, S.A.; Buchanan, L.H. Mercury Exposure in Children: A Review. Toxicol. Appl. Pharmacol. 2004, 198, 209–230. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.-J.; Kim, B.-G.; Jeon, M.-J.; Kim, S.-Y.; Kim, H.-C.; Jang, T.-W.; Chae, H.-J.; Choi, W.-J.; Ha, M.-N.; Hong, Y.-S. Evaluation of Mercury Exposure Level, Clinical Diagnosis and Treatment for Mercury Intoxication. Ann. Occup. Environ. Med. 2016, 28, 5. [Google Scholar] [CrossRef]
- Rice, K.M.; Walker, E.M.; Wu, M.; Gillette, C.; Blough, E.R. Environmental Mercury and Its Toxic Effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Ayensu, W.K.; Ninashvili, N.; Sutton, D. Review: Environmental Exposure to Mercury and Its Toxicopathologic Implications for Public Health. Environ. Toxicol. 2003, 18, 149–175. [Google Scholar] [CrossRef]
- Saghazadeh, A.; Rezaei, N. Systematic Review and Meta-Analysis Links Autism and Toxic Metals and Highlights the Impact of Country Development Status: Higher Blood and Erythrocyte Levels for Mercury and Lead, and Higher Hair Antimony, Cadmium, Lead, and Mercury. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 79, 340–368. [Google Scholar] [CrossRef]
- Eckley, C.S.; Branfireun, B. Mercury Mobilization in Urban Stormwater Runoff. Sci. Total Environ. 2008, 403, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Strickman, J.R.; Mitchell, C.P.J. Mercury Methylation in Stormwater Retention Ponds at Different Stages in the Management Lifecycle. Environ. Sci. Process. Impacts 2018, 20, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ferreiro, J.; Lu, H.; Fu, S.; Méndez, A.; Gascó, G. Use of Phytoremediation and Biochar to Remediate Heavy Metal Polluted Soils: A Review. Solid Earth 2014, 5, 65–75. [Google Scholar] [CrossRef]
- Azhar, U.; Ahmad, H.; Shafqat, H.; Babar, M.; Shahzad Munir, H.M.; Sagir, M.; Arif, M.; Hassan, A.; Rachmadona, N.; Rajendran, S.; et al. Remediation Techniques for Elimination of Heavy Metal Pollutants from Soil: A Review. Environ. Res. 2022, 214, 113918. [Google Scholar] [CrossRef]
- Ilyas, M.Z.; Sa, K.J.; Ali, M.W.; Lee, J.K. Toxic Effects of Lead on Plants: Integrating Multi-Omics with Bioinformatics to Develop Pb-Tolerant Crops. Planta 2023, 259, 18. [Google Scholar] [CrossRef]
- Monib, A.W.; Niazi, P.; Azizi, A.; Sediqi, S.; Baseer, A.Q. Heavy Metal Contamination in Urban Soils: Health Impacts on Humans and Plants: A Review. Eur. J. Theor. Appl. Sci. 2024, 2, 546–565. [Google Scholar] [CrossRef]
- Sodhi, K.K.; Mishra, L.C.; Singh, C.K.; Kumar, M. Perspective on the Heavy Metal Pollution and Recent Remediation Strategies. Curr. Res. Microb. Sci. 2022, 3, 100166. [Google Scholar] [CrossRef]
- Larsen, M.M.; Blusztajn, J.S.; Andersen, O.; Dahllöf, I. Lead Isotopes in Marine Surface Sediments Reveal Historical Use of Leaded Fuel. J. Environ. Monit. 2012, 14, 2893–2901. [Google Scholar] [CrossRef]
- Zohar, I.; Teutsch, N.; Levin, N.; Mackin, G.; de Stigter, H.; Bookman, R. Urbanization Effects on Sediment and Trace Metals Distribution in an Urban Winter Pond (Netanya, Israel). J. Soils Sediments 2017, 17, 2165–2176. [Google Scholar] [CrossRef]
- Wang, Z.; Dwyer, G.S.; Coleman, D.S.; Vengosh, A. Lead Isotopes as a New Tracer for Detecting Coal Fly Ash in the Environment. Environ. Sci. Technol. Lett. 2019, 6, 714–719. [Google Scholar] [CrossRef]
- Sherrell, R.M.; Boyle, E.A.; Falkner, K.K.; Harris, N.R. Temporal Variability of Cd, Pb, and Pb Isotope Deposition in Central Greenland Snow. Geochem. Geophys. Geosystems 2000, 1, 1002. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Li, B.; Shen, Z.; Stenstrom, M.K. Metal Enrichment and Lead Isotope Analysis for Source Apportionment in the URBAN dust and Rural Surface Soil. Environ. Pollut. 2016, 216, 764–772. [Google Scholar] [CrossRef]
- Dietrich, M.; Krekeler, M.P.S.; Kousehlar, M.; Widom, E. Quantification of Pb Pollution Sources in Complex urban Environments through a Multi-Source Isotope Mixing Model Based on Pb Isotopes in Lichens and Road Sediment. Environ. Pollut. 2021, 288, 117815. [Google Scholar] [CrossRef] [PubMed]
- Schifman, L.A.; Shuster, W.D. Comparison of Measured and Simulated Urban Soil Hydrologic Properties. J. Hydrol. Eng. 2019, 24, 04018056. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.E.; Fernandes, J.N.; David, L.M. Key Issues for Sustainable Urban Stormwater Management. Water Res. 2012, 46, 6787–6798. [Google Scholar] [CrossRef]
- Meenar, M.R. Integrating Placemaking Concepts into Green Stormwater Infrastructure Design in the City of Philadelphia. Environ. Pract. 2019, 21, 4–19. [Google Scholar] [CrossRef]
- Meenar, M.; Heckert, M.; Adlakha, D. “Green Enough Ain’t Good Enough:” Public Perceptions and Emotions Related to Green Infrastructure in Environmental Justice Communities. Int. J. Environ. Res. Public Health 2022, 19, 1448. [Google Scholar] [CrossRef]
Total Average Heavy Metal Concentrations (ppb) | ||||
---|---|---|---|---|
Date | Pb | Hg | Cd | As |
4 February 2022 | 17.37 | 6.28 | 1.27 | 0.95 |
8 April 2022 | 98.11 | 6.97 | 2.19 | 1.91 |
9 June 2022 | 39.32 | 7.00 | 2.08 | 2.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatter, A.; Heintzelman, D.P.; Heminghaus, M.; Foglein, J.; Meenar, M.; Moore, E.K. Heavy Metal Mobilization in Urban Stormwater Runoff from Residential, Commercial, and Industrial Zones. Pollutants 2025, 5, 32. https://doi.org/10.3390/pollutants5040032
Hatter A, Heintzelman DP, Heminghaus M, Foglein J, Meenar M, Moore EK. Heavy Metal Mobilization in Urban Stormwater Runoff from Residential, Commercial, and Industrial Zones. Pollutants. 2025; 5(4):32. https://doi.org/10.3390/pollutants5040032
Chicago/Turabian StyleHatter, Amber, Daniel P. Heintzelman, Megan Heminghaus, Jonathan Foglein, Mahbubur Meenar, and Eli K. Moore. 2025. "Heavy Metal Mobilization in Urban Stormwater Runoff from Residential, Commercial, and Industrial Zones" Pollutants 5, no. 4: 32. https://doi.org/10.3390/pollutants5040032
APA StyleHatter, A., Heintzelman, D. P., Heminghaus, M., Foglein, J., Meenar, M., & Moore, E. K. (2025). Heavy Metal Mobilization in Urban Stormwater Runoff from Residential, Commercial, and Industrial Zones. Pollutants, 5(4), 32. https://doi.org/10.3390/pollutants5040032