Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,363)

Search Parameters:
Keywords = layer charge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1027 KiB  
Article
Supramolecular Graphene Quantum Dots/Porphyrin Complex as Fluorescence Probe for Metal Ion Sensing
by Mariachiara Sarà, Andrea Romeo, Gabriele Lando, Maria Angela Castriciano, Roberto Zagami, Giovanni Neri and Luigi Monsù Scolaro
Int. J. Mol. Sci. 2025, 26(15), 7295; https://doi.org/10.3390/ijms26157295 - 28 Jul 2025
Abstract
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a [...] Read more.
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a supramolecular adduct, GQDs@TPPS4, that exhibits a double fluorescence emission from both the GQDs and the TPPS4 fluorophores. These supramolecular aggregates have an overall negative charge that is responsible for the condensation of cations in the nearby aqueous layer, and a three-fold acceleration of the metalation rates of Cu2+ ions has been observed with respect to the parent porphyrin. Addition of various metal ions leads to some changes in the UV/Vis spectra and has a different impact on the fluorescence emission of GQDs and TPPS4. The quenching efficiency of the TPPS4 emission follows the order Cu2+ > Hg2+ > Cd2+ > Pb2+ ~ Zn2+ ~ Co2+ ~ Ni2+ > Mn2+ ~ Cr3+ >> Mg2+ ~ Ca2+ ~ Ba2+, and it has been related to literature data and to the sitting-atop mechanism that large transition metal ions (e.g., Hg2+ and Cd2+) exhibit in their interaction with the macrocyclic nitrogen atoms of the porphyrin, inducing distortion and accelerating the insertion of smaller metal ions, such as Zn2+. For the most relevant metal ions, emission quenching of the porphyrin evidences a linear behavior in the micromolar range, with the emission of the GQDs being moderately affected through a filter effect. Deliberate pollution of the samples with Zn2+ reveals the ability of the GQDs@TPPS4 adduct to detect sensitively Cu2+, Hg2+, and Cd2+ ions. Full article
15 pages, 2921 KiB  
Article
Enhanced Photoelectrochemical Performance of BiVO4 Photoanodes Co-Modified with Borate and NiFeOx
by Siqiang Cheng, Yun Cheng, Taoyun Zhou, Shilin Li, Dong Xie and Xinyu Li
Micromachines 2025, 16(8), 866; https://doi.org/10.3390/mi16080866 - 27 Jul 2025
Abstract
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge [...] Read more.
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge transport, sluggish surface kinetics, and photocorrosion. In this study, porous monoclinic BiVO4 films are fabricated via a simplified successive ionic layer adsorption and reaction (SILAR) method, followed by borate treatment and PEC deposition of NiFeOx. The resulting B/BiVO4/NiFeOx photoanode exhibits a significantly enhanced photocurrent density of 2.45 mA cm−2 at 1.23 V vs. RHE—5.3 times higher than pristine BiVO4. It also achieves an ABPE of 0.77% and a charge transfer efficiency of 79.5%. These results demonstrate that dual surface modification via borate and NiFeOx is a cost-effective strategy to improve BiVO4-based PEC water splitting performance. This work provides a promising pathway for the scalable development of efficient and economically viable photoanodes for solar hydrogen production. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

16 pages, 1859 KiB  
Article
Simulation of Effect on Charge Accumulation Distribution in Laminar Oil Flow with Bubbles in Oil Passage of Converter Transformer
by Wen Si, Haibo Li, Hongshun Liu and Xiaotian Gu
Energies 2025, 18(15), 3992; https://doi.org/10.3390/en18153992 - 26 Jul 2025
Viewed by 111
Abstract
The converter transformer is subjected to AC/DC composite voltage during operation, and the sealed and time-varying internal state makes its electric field distribution and charge accumulation unable to be monitored in real-time experiments. In this paper, aiming at the influence of bubbles in [...] Read more.
The converter transformer is subjected to AC/DC composite voltage during operation, and the sealed and time-varying internal state makes its electric field distribution and charge accumulation unable to be monitored in real-time experiments. In this paper, aiming at the influence of bubbles in the oil passage of the converter transformer on charge accumulation before discharge, a simulation model in a laminar flow environment is established, and four different calculation conditions are set to simulate the charge accumulation in 1 s. It is found that under laminar flow conditions, the trapped bubbles on the insulation paper wall play an obvious role in intensifying the charge accumulation in transformer oil, and the extreme range of charge density will increase by about 104 times. Bubbles aggravate the electric field distortion, and the insulation strength of bubbles is lower, which becomes the weak link of insulation. In the laminar flow environment, the oil flow will take away part of the accumulated charge in the oil, but in the case of trapped bubbles, the charge accumulation in the insulating paper will increase from the order of 10−2 to 10−1. In the case of no bubbles, the transformer oil layer flow will increase the charge accumulation in the insulation paper by 4–5 orders of magnitude. Therefore, it can be seen that the flow of transformer oil will increase the deterioration level of insulation paper. And when the transformer oil is already in the laminar flow state, the influence of laminar flow velocity on charge accumulation is not obvious. The research results in this paper provide a time-varying simulation reference state for the charge accumulation problem that cannot be measured experimentally under normal charged operation conditions, and we obtain quantitative numerical results, which can provide a valuable reference for the study of transformer operation and insulation discharge characteristics. Full article
Show Figures

Figure 1

13 pages, 5115 KiB  
Article
Study the Effect of Heat Treatment on the Corrosion Resistance of AISI 347H Stainless Steel
by Yunyan Peng, Bo Zhao, Jianhua Yang, Fan Bai, Hongchang Qian, Bingxiao Shi and Luntao Wang
Materials 2025, 18(15), 3486; https://doi.org/10.3390/ma18153486 - 25 Jul 2025
Viewed by 140
Abstract
AISI 347H stainless steel is widely used in high-temperature environments due to its excellent creep strength and oxidation resistance; however, its corrosion performance remains highly sensitive to thermal oxidation, and the effects of thermal history on its passive film stability are not yet [...] Read more.
AISI 347H stainless steel is widely used in high-temperature environments due to its excellent creep strength and oxidation resistance; however, its corrosion performance remains highly sensitive to thermal oxidation, and the effects of thermal history on its passive film stability are not yet fully understood. This study addresses this knowledge gap by systematically investigating the influence of solution treatment on the corrosion and oxidation resistance of AISI 347H stainless steel. The specimens were subjected to solution heat treatment at 1050 °C, followed by air cooling, and then evaluated through electrochemical testing, high-temperature oxidation experiments at 550 °C, and multiscale surface characterization techniques. The solution treatment refined the austenitic microstructure by dissolving coarse Nb-rich precipitates, as confirmed by SEM and EBSD, and improved passive film integrity. The stabilizing effect of Nb also played a critical role in suppressing sensitization, thereby enhancing resistance to intergranular attack. Electrochemical measurements and EIS analysis revealed a lower corrosion current density and higher charge transfer resistance in the treated samples, indicating enhanced passivation behavior. ToF-SIMS depth profiling and oxide thickness analysis confirmed a slower parabolic oxide growth rate and reduced oxidation rate constant in the solution-treated condition. At 550 °C, oxidation was suppressed by the formation of compact, Cr-rich scales with dual-distributed Nb oxides, effectively limiting diffusion pathways and stabilizing the protective layer. These findings demonstrate that solution treatment is an effective strategy to improve the long-term corrosion and oxidation performance of AISI 347H stainless steel in harsh service environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

23 pages, 13580 KiB  
Article
Enabling Smart Grid Resilience with Deep Learning-Based Battery Health Prediction in EV Fleets
by Muhammed Cavus and Margaret Bell
Batteries 2025, 11(8), 283; https://doi.org/10.3390/batteries11080283 - 24 Jul 2025
Viewed by 160
Abstract
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful [...] Read more.
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful life (RUL) using machine and deep learning, most existing models fail to capture both short-term degradation trends and long-range contextual dependencies jointly. In this study, we introduce V2G-HealthNet, a novel hybrid deep learning framework that uniquely combines Long Short-Term Memory (LSTM) networks with Transformer-based attention mechanisms to model battery degradation under dynamic vehicle-to-grid (V2G) scenarios. Unlike prior approaches that treat SOH estimation in isolation, our method directly links health prediction to operational decisions by enabling SOH-informed adaptive load scheduling and predictive maintenance across EV fleets. Trained on over 3400 proxy charge-discharge cycles derived from 1 million telemetry samples, V2G-HealthNet achieved state-of-the-art performance (SOH RMSE: 0.015, MAE: 0.012, R2: 0.97), outperforming leading baselines including XGBoost and Random Forest. For RUL prediction, the model maintained an MAE of 0.42 cycles over a five-cycle horizon. Importantly, deployment simulations revealed that V2G-HealthNet triggered maintenance alerts at least three cycles ahead of critical degradation thresholds and redistributed high-load tasks away from ageing batteries—capabilities not demonstrated in previous works. These findings establish V2G-HealthNet as a deployable, health-aware control layer for smart city electrification strategies. Full article
Show Figures

Figure 1

11 pages, 935 KiB  
Article
Rescue Blankets in Direct Exposure to Lightning Strikes—An Experimental Study
by Markus Isser, Wolfgang Lederer, Daniel Schwaiger, Mathias Maurer, Sandra Bauchinger and Stephan Pack
Coatings 2025, 15(8), 868; https://doi.org/10.3390/coatings15080868 - 23 Jul 2025
Viewed by 629
Abstract
Lightning strikes pose a significant risk during outdoor activities. The connection between conventionally used rescue blankets in alpine emergencies and the risk of lightning injury is unclear. This experimental study investigated whether rescue blankets made of aluminum-coated polyethylene terephthalate increase the likelihood of [...] Read more.
Lightning strikes pose a significant risk during outdoor activities. The connection between conventionally used rescue blankets in alpine emergencies and the risk of lightning injury is unclear. This experimental study investigated whether rescue blankets made of aluminum-coated polyethylene terephthalate increase the likelihood of lightning injuries. High-voltage experiments of up to 2.5 MV were conducted in a controlled laboratory setting, exposing manikins to realistic lightning discharges. In a balanced test environment, two conventionally used brands were investigated. Upward leaders frequently formed on the edges along the fold lines of the foils and were significantly longer in crumpled rescue blankets (p = 0.004). When a lightning strike occurred, the thin metallic layer evaporated at the contact point without igniting the blanket or damaging the underlying plastic film. The blankets diverted surface currents and prevented current flow to the manikins, indicating potentially protective effects. The findings of this experimental study suggest that upward leaders rise from the edge areas of rescue blankets, although there is no increased risk for a direct strike. Rescue blankets may even provide partial protection against exposure to electrical charges. Full article
Show Figures

Figure 1

14 pages, 2646 KiB  
Article
Analog Resistive Switching Phenomena in Titanium Oxide Thin-Film Memristive Devices
by Karimul Islam, Rezwana Sultana and Robert Mroczyński
Materials 2025, 18(15), 3454; https://doi.org/10.3390/ma18153454 - 23 Jul 2025
Viewed by 269
Abstract
Memristors with resistive switching capabilities are vital for information storage and brain-inspired computing, making them a key focus in current research. This study demonstrates non-volatile analog resistive switching behavior in Al/TiOx/TiN/Si(n++)/Al memristive devices. Analog resistive switching offers gradual, controllable [...] Read more.
Memristors with resistive switching capabilities are vital for information storage and brain-inspired computing, making them a key focus in current research. This study demonstrates non-volatile analog resistive switching behavior in Al/TiOx/TiN/Si(n++)/Al memristive devices. Analog resistive switching offers gradual, controllable conductance changes, which are essential for mimicking brain-like synaptic behavior, unlike digital/abrupt switching. The amorphous titanium oxide (TiOx) active layer was deposited using the pulsed-DC reactive magnetron sputtering technique. The impact of increasing the oxide thickness on the electrical performance of the memristors was investigated. Electrical characterizations revealed stable, forming-free analog resistive switching, achieving endurance beyond 300 DC cycles. The charge conduction mechanisms underlying the current–voltage (I–V) characteristics are analyzed in detail, revealing the presence of ohmic behavior, Schottky emission, and space-charge-limited conduction (SCLC). Experimental results indicate that increasing the TiOx film thickness from 31 to 44 nm leads to a notable change in the current conduction mechanism. The results confirm that the memristors have good stability (>1500 s) and are capable of exhibiting excellent long-term potentiation (LTP) and long-term depression (LTD) properties. The analog switching driven by oxygen vacancy-induced barrier modulation in the TiOx/TiN interface is explained in detail, supported by a proposed model. The remarkable switching characteristics exhibited by the TiOx-based memristive devices make them highly suitable for artificial synapse applications in neuromorphic computing systems. Full article
Show Figures

Figure 1

15 pages, 1224 KiB  
Article
Degradation-Aware Bi-Level Optimization of Second-Life Battery Energy Storage System Considering Demand Charge Reduction
by Ali Hassan, Guilherme Vieira Hollweg, Wencong Su, Xuan Zhou and Mengqi Wang
Energies 2025, 18(15), 3894; https://doi.org/10.3390/en18153894 - 22 Jul 2025
Viewed by 196
Abstract
Many electric vehicle (EV) batteries will retire in the next 5–10 years around the globe. These batteries are retired when no longer suitable for energy-intensive EV operations despite having 70–80% capacity left. The second-life use of these battery packs has the potential to [...] Read more.
Many electric vehicle (EV) batteries will retire in the next 5–10 years around the globe. These batteries are retired when no longer suitable for energy-intensive EV operations despite having 70–80% capacity left. The second-life use of these battery packs has the potential to address the increasing demand for battery energy storage systems (BESSs) for the electric grid, which will also create a robust circular economy for EV batteries. This article proposes a two-layered energy management algorithm (monthly layer and daily layer) for demand charge reduction for an industrial consumer using photovoltaic (PV) panels and BESSs made of retired EV batteries. In the proposed algorithm, the monthly layer (ML) calculates the optimal dispatch for the whole month and feeds the output to the daily layer (DL), which optimizes the BESS dispatch, BESSs’ degradation, and energy imported/exported from/to the grid. The effectiveness of the proposed algorithm is tested as a case study of an industrial load using a real-world demand charge and Real-Time Pricing (RTP) tariff. Compared with energy management with no consideration of degradation or demand charge reduction, this algorithm results in 71% less degradation of BESS and 57.3% demand charge reduction for the industrial consumer. Full article
Show Figures

Figure 1

15 pages, 3554 KiB  
Article
A Composite Substrate of Ag Nanoparticle-Decorated Inverse Opal Polydimethylsiloxane for Surface Raman Fluorescence Dual Enhancement
by Zilun Tang, Hongping Liang, Zhangyang Chen, Jianpeng Li, Jianyu Wu, Xianfeng Li and Dingshu Xiao
Polymers 2025, 17(14), 1995; https://doi.org/10.3390/polym17141995 - 21 Jul 2025
Viewed by 265
Abstract
It is difficult to simultaneously achieve surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) for noble metals. Herein, a composite substrate is demonstrated based on the rational construction of Ag nanoparticles (Ag NPs) and inverse opal polydimethylsiloxane (PDMS) for surface Raman fluorescence dual [...] Read more.
It is difficult to simultaneously achieve surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) for noble metals. Herein, a composite substrate is demonstrated based on the rational construction of Ag nanoparticles (Ag NPs) and inverse opal polydimethylsiloxane (PDMS) for surface Raman fluorescence dual enhancement. The well-designed Ag nanoparticle (Ag NP)-decorated inverse opal PDMS (AIOP) composite substrate is fabricated using the polystyrene (PS) photonic crystal method and the sensitization reduction technique. The inverse opal PDMS enhances the electromagnetic (EM) field by increasing the loading of Ag NPs and plasmonic coupling of Ag NPs, leading to SERS activity. The thin shell layer of polyvinyl pyrrolidone (PVP) in core–shell Ag NPs isolates the detected molecule from the Ag core to prevent the fluorescence resonance energy transfer and charge transfer to eliminate fluorescence quenching and enable SEF performance. Based on the blockage of the core–shell structure and the enhanced EM field originating from the inverse opal structure, the as-fabricated AIOP composite substrate shows dual enhancement in surface Raman fluorescence. The AIOP composite substrate in this work, which combines improved SERS activity and SEF performance, not only promotes the development of surface-enhanced spectroscopy but also shows promise for applications in flexible sensors. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

13 pages, 2195 KiB  
Article
Electrical Characterization of a Novel Piezoelectric-Enhanced Supercapacitor with a PET/ITO/PVDF-Tr-FE/PEDOT:PSS:Graphene/LiTaO3/Al Structure
by Mariya Aleksandrova and Ivaylo Pandiev
Crystals 2025, 15(7), 660; https://doi.org/10.3390/cryst15070660 - 20 Jul 2025
Viewed by 255
Abstract
This paper presents the electrical characterization of a flexible supercapacitor with a unique architecture incorporating a piezoelectric PVDF-TrFE film sandwiched between PEDOT:PSS:Graphene and LiTaO3 as a charge-generating and charge-transferring layer. Impedance spectroscopy measurements reveal frequency-dependent capacitance behavior, reflecting the contributions of both [...] Read more.
This paper presents the electrical characterization of a flexible supercapacitor with a unique architecture incorporating a piezoelectric PVDF-TrFE film sandwiched between PEDOT:PSS:Graphene and LiTaO3 as a charge-generating and charge-transferring layer. Impedance spectroscopy measurements reveal frequency-dependent capacitance behavior, reflecting the contributions of both piezoelectric and supercapacitor capacitances. Charge–discharge cycling tests demonstrate the device’s energy storage capabilities and indicate a potential enhancement through the piezoelectric effect. Supercapacitor cycling tests demonstrate the device’s energy storage capabilities, with an estimated specific capacitance of 10.14 F/g, a power density of 16.3 W/g, an energy density of 5.63 Wh/kg, and a Coulombic efficiency of 96.1% from an active area of 1 cm2. The proposed structure can serve as an independent harvester and storage for low-power, wearable sensors. Full article
Show Figures

Figure 1

15 pages, 3342 KiB  
Article
Fault-Tolerant Control of the Electro-Mechanical Compound Transmission System of Tracked Vehicles Based on the Anti-Windup PID Algorithm
by Qingkun Xing, Ziao Zhang, Xueliang Li, Datong Qin and Zengxiong Peng
Machines 2025, 13(7), 622; https://doi.org/10.3390/machines13070622 - 18 Jul 2025
Viewed by 190
Abstract
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper [...] Read more.
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper proposes three fault-tolerant control methods for three typical fault scenarios of the electromechanical composite transmission system (ECTS) to ensure the normal operation of tracked vehicles. Firstly, an ECTS and the electromechanical coupling dynamics model of the tracked vehicle are established. Moreover, a double-layer anti-windup PID control for motors and an instantaneous optimal control strategy for the engine are proposed in the fault-free case. Secondly, an anti-windup PID control law for motors and an engine control strategy considering the state of charge (SOC) and driving demands are developed in the case of single-side drive motor failure. Thirdly, a B4 clutch control strategy during starting and a steering brake control strategy are proposed in the case of electric drive system failure. Finally, in the straight-driving condition of the tracked vehicle, the throttle opening is set as 0.6, and the motor failure is triggered at 15 s during the acceleration process. Numerical simulations verify the fault-tolerant control strategies’ feasibility, using the tracked vehicle’s maximum speed and acceleration at 30 s as indicators for dynamic performance evaluation. The simulation results show that under single-motor fault, its straight-line driving power drops by 33.37%; with electric drive failure, the drop reaches 43.86%. The vehicle can still maintain normal straight-line driving and steering under fault conditions. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

23 pages, 3721 KiB  
Article
Influence of Surface Isolation Layers on High-Voltage Tolerance of Small-Pitch 3D Pixel Sensors
by Jixing Ye and Gian-Franco Dalla Betta
Sensors 2025, 25(14), 4478; https://doi.org/10.3390/s25144478 - 18 Jul 2025
Viewed by 147
Abstract
In recent years, 3D pixel sensors have been a topic of increasing interest within the High Energy Physics community. Due to their inherent radiation hardness, demonstrated up to a fluence of 3×1016 1 MeV equivalent neutrons per square centimeter, 3D [...] Read more.
In recent years, 3D pixel sensors have been a topic of increasing interest within the High Energy Physics community. Due to their inherent radiation hardness, demonstrated up to a fluence of 3×1016 1 MeV equivalent neutrons per square centimeter, 3D pixel sensors have been used to equip the innermost tracking layers of the ATLAS and CMS detector upgrades at the High-Luminosity Large Hadron Collider. Additionally, the next generation of vertex detectors calls for precise measurement of charged particle timing at the pixel level. Owing to their fast response times, 3D sensors present themselves as a viable technology for these challenging applications. Nevertheless, both radiation hardness and fast timing require 3D sensors to be operated with high bias voltages on the order of ∼150 V and beyond. Special attention should therefore be devoted to avoiding problems that could cause premature electrical breakdown, which could limit sensor performance. In this paper, TCAD simulations are used to gain deep insight into the impact of surface isolation layers (i.e., p-stop and p-spray) used by different vendors on the high-voltage tolerance of small-pitch 3D sensors. Results relevant to different geometrical configurations and irradiation scenarios are presented. The advantages and disadvantages of the available technologies are discussed, offering guidance for design optimization. Experimentalmeasurements from existing samples based on both isolation techniques show good agreement with simulated breakdown voltages, thereby validating the simulation approach. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

22 pages, 10488 KiB  
Article
Morphological and Functional Evolution of Amorphous AlN Thin Films Deposited by RF-Magnetron Sputtering
by Maria-Iulia Zai, Ioana Lalau, Marina Manica, Lucia Chiriacescu, Vlad-Andrei Antohe, Cristina C. Gheorghiu, Sorina Iftimie, Ovidiu Toma, Mirela Petruta Suchea and Ștefan Antohe
Surfaces 2025, 8(3), 51; https://doi.org/10.3390/surfaces8030051 - 17 Jul 2025
Viewed by 267
Abstract
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron [...] Read more.
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical profilometry, spectroscopic ellipsometry (SE), and electrical measurements—was performed to explore the physical structure, morphology, and optical and electrical properties of the films. The analysis of the film structure by XRR revealed that increasing sputtering power resulted in thicker, denser AlN layers, while thermal treatment promoted densification by reducing density gradients but also induced surface roughening and the formation of island-like morphologies. Optical studies confirmed excellent transparency (>80% transmittance in the near-infrared region) and demonstrated the tunability of the refractive index with sputtering power, critical for optoelectronic applications. The electrical characterization of Au/AlN/Al sandwich structures revealed a transition from Ohmic to trap-controlled space charge limited current (SCLC) behavior under forward bias—a transport mechanism frequently present in a material with very low mobility, such as AlN—while Schottky conduction dominated under reverse bias. The systematic correlation between deposition parameters, thermal treatment, and the resulting physical properties offers valuable pathways to engineer AlN thin films for next-generation optoelectronic and high-frequency device applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

13 pages, 6157 KiB  
Article
Mechanistic Study of Oil Adsorption Behavior and CO2 Displacement Mechanism Under Different pH Conditions
by Xinwang Song, Yang Guo, Yanchang Chen and Shiling Yuan
Molecules 2025, 30(14), 2999; https://doi.org/10.3390/molecules30142999 - 17 Jul 2025
Viewed by 291
Abstract
Enhanced oil recovery (EOR) via CO2 flooding is a promising strategy for improving hydrocarbon recovery and carbon sequestration, yet the influence of pH on solid–liquid interfacial interactions in quartz-dominated reservoirs remains poorly understood. This study employs molecular dynamics (MD) simulations to investigate [...] Read more.
Enhanced oil recovery (EOR) via CO2 flooding is a promising strategy for improving hydrocarbon recovery and carbon sequestration, yet the influence of pH on solid–liquid interfacial interactions in quartz-dominated reservoirs remains poorly understood. This study employs molecular dynamics (MD) simulations to investigate the pH-dependent adsorption behavior of crude oil components on quartz surfaces and its impact on CO2 displacement mechanisms. Three quartz surface models with varying ionization degrees (0%, 9%, 18%, corresponding to pH 2–4, 5–7, and 7–9) were constructed to simulate different pH environments. The MD results reveal that aromatic hydrocarbons exhibit significantly stronger adsorption on quartz surfaces at high pH, with their maximum adsorption peak increasing from 398 kg/m3 (pH 2–4) to 778 kg/m3 (pH 7–9), while their alkane adsorption peaks decrease from 764 kg/m3 to 460 kg/m3. This pH-dependent behavior is attributed to enhanced cation–π interactions that are facilitated by Na+ ion aggregation on negatively charged quartz surfaces at high pH, which form stable tetrahedral configurations with aromatic molecules and surface oxygen ions. During CO2 displacement, an adsorption–stripping–displacement mechanism was observed: CO2 first forms an adsorption layer on the quartz surface, then penetrates the oil phase to induce the detachment of crude oil components, which are subsequently displaced by pressure. Although high pH enhances the Na+-mediated weakening of oil-surface interactions, which leads to a 37% higher diffusion coefficient (8.5 × 10−5 cm2/s vs. 6.2 × 10−5 cm2/s at low pH), the tighter packing of aromatic molecules at high pH slows down the displacement rate. This study provides molecular-level insights into pH-regulated adsorption and CO2 displacement processes, highlighting the critical role of the surface charge and cation–π interactions in optimizing CO2-EOR strategies for quartz-rich reservoirs. Full article
(This article belongs to the Special Issue Advances in Molecular Modeling in Chemistry, 2nd Edition)
Show Figures

Figure 1

24 pages, 2152 KiB  
Review
A Concise Overview of the Use of Low-Dimensional Molybdenum Disulfide as an Electrode Material for Li-Ion Batteries and Beyond
by Mattia Bartoli, Meltem Babayiğit Cinali, Özlem Duyar Coşkun, Silvia Porporato, Diego Pugliese, Erik Piatti, Francesco Geobaldo, Giuseppe A. Elia, Claudio Gerbaldi, Giuseppina Meligrana and Alessandro Piovano
Batteries 2025, 11(7), 269; https://doi.org/10.3390/batteries11070269 - 16 Jul 2025
Viewed by 391
Abstract
The urgent demand for sustainable energy solutions in the face of climate change and resource depletion has catalyzed a global shift toward cleaner energy production and more efficient storage technologies. Lithium-ion batteries (LIBs), as the cornerstone of modern portable electronics, electric vehicles, and [...] Read more.
The urgent demand for sustainable energy solutions in the face of climate change and resource depletion has catalyzed a global shift toward cleaner energy production and more efficient storage technologies. Lithium-ion batteries (LIBs), as the cornerstone of modern portable electronics, electric vehicles, and grid-scale storage systems, are continually evolving to meet the growing performance requirements. In this dynamic context, two-dimensional (2D) materials have emerged as highly promising candidates for use in electrodes due to their layered structure, tunable electronic properties, and high theoretical capacity. Among 2D materials, molybdenum disulfide (MoS2) has gained increasing attention as a promising low-dimensional candidate for LIB anode applications. This review provides a comprehensive yet concise overview of recent advances in the application of MoS2 in LIB electrodes, with particular attention to its unique electrochemical behavior at the nanoscale. We critically examine the interplay between structural features, charge-storage mechanisms, and performance metrics—chiefly the specific capacity, rate capability, and cycling stability. Furthermore, we discuss current challenges, primarily poor intrinsic conductivity and volume fluctuations, and highlight innovative strategies aimed at overcoming these limitations, such as through nanostructuring, composite formation, and surface engineering. By shedding light on the opportunities and hurdles in this rapidly progressing field, this work offers a forward-looking perspective on the role of MoS2 in the next generation of high-performance LIBs. Full article
(This article belongs to the Section Battery Mechanisms and Fundamental Electrochemistry Aspects)
Show Figures

Figure 1

Back to TopTop