Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,808)

Search Parameters:
Keywords = land-surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4886 KB  
Article
Spatiotemporal Variation and Driving Mechanisms of Land Surface Temperature in the Urumqi Metropolitan Area Based on Land Use Change
by Buwajiaergu Shayiti and Alimujiang Kasimu
Land 2025, 14(11), 2252; https://doi.org/10.3390/land14112252 (registering DOI) - 13 Nov 2025
Abstract
Land use change is closely related to land surface temperature (LST). Based on remote sensing data from 2001 to 2020, this study analyzed the spatiotemporal variations and driving mechanisms of daytime and nighttime LST in the Urumqi Metropolitan Area (UMA) by combining traditional [...] Read more.
Land use change is closely related to land surface temperature (LST). Based on remote sensing data from 2001 to 2020, this study analyzed the spatiotemporal variations and driving mechanisms of daytime and nighttime LST in the Urumqi Metropolitan Area (UMA) by combining traditional methods with the eXtreme Gradient Boosting (XGBoost)–SHAP coupled model. Although the average LST trend in the region was one of warming, the pixel-level significance analysis indicated that statistically significant warming (p < 0.05) is concentrated mainly in the urban core (2.65% of the area), while the majority of the region (70%) showed a non-significant warming trend. LST displayed significant spatial clustering, with Moran’s I remaining above 0.990, indicating a positive spatial autocorrelation in spatial distribution. With the advancement of urbanization, the proportion of impervious surfaces increased from 0.87% to 1.14%, while wastelands consistently accounted for approximately 50% of the total area. Different land use types showed distinct effects on the urban heat island (UHI) phenomenon: water bodies, grasslands, and forests played cooling roles, whereas barren land and impervious areas were the main heat contributors. The XGBoost-SHAP analysis further revealed that the importance ranking of driving factors has evolved over time. Among these factors, Elevation dominates, while the influence of population-related factors increased significantly in 2020. This study provides a scientific basis for regulating the thermal environment of cities in arid regions from the perspective of land use. This study provides a scientific basis for regulating the thermal environment of arid-region cities from the perspective of land use. Full article
(This article belongs to the Section Land Innovations – Data and Machine Learning)
Show Figures

Figure 1

541 KB  
Proceeding Paper
The Study of the Urban Heat Island Effect in Cyprus for the Period 2013–2023 by Using Google Earth Engine
by Charalampos Soteriades, Silas Michaelides and Diofantos Hadjimitsis
Environ. Earth Sci. Proc. 2025, 35(1), 80; https://doi.org/10.3390/eesp2025035080 - 12 Nov 2025
Abstract
Urbanization in Cyprus has accelerated significantly over the past 35 years, driven by population growth, infrastructure development, and the expansion of urban centres. This rapid urban transformation has contributed to notable changes in the local climate, primarily through the intensification of the Urban [...] Read more.
Urbanization in Cyprus has accelerated significantly over the past 35 years, driven by population growth, infrastructure development, and the expansion of urban centres. This rapid urban transformation has contributed to notable changes in the local climate, primarily through the intensification of the Urban Heat Island (UHI) effect—a phenomenon where urban areas experience significantly higher temperatures than surrounding rural regions. As global climate change continues to influence regional weather patterns, understanding and mitigating local climatic variations such as UHI becomes increasingly critical for sustainable development and public health. In Cyprus, the cities of Nicosia, Limassol, Larnaca, and Paphos have witnessed considerable land use changes, with a growing contrast between densely built urban cores and less developed surrounding areas. This contrast results in uneven energy absorption, reduced vegetation cover, and altered surface temperatures, further exacerbating the effects of climate change at the local level. Full article
Show Figures

Figure 1

20 pages, 11111 KB  
Article
Long-Term Trends and Seasonally Resolved Drivers of Surface Albedo Across China Using GTWR
by Jiqiang Niu, Ziming Wang, Hao Lin, Hongrui Li, Zijian Liu, Mengyang Li, Xiaodong Deng, Bohan Wang, Tong Wu and Junkuan Zhu
Atmosphere 2025, 16(11), 1287; https://doi.org/10.3390/atmos16111287 - 12 Nov 2025
Abstract
Amid accelerating global warming, surface albedo is a key indicator and regulator of how Earth’s surface reflects solar radiation, directly affecting the planetary radiation balance and climate. In this paper, we combined MODIS shortwave albedo (MCD43A3, 500 m), MODIS NDVI (MOD13A3, 1 km; [...] Read more.
Amid accelerating global warming, surface albedo is a key indicator and regulator of how Earth’s surface reflects solar radiation, directly affecting the planetary radiation balance and climate. In this paper, we combined MODIS shortwave albedo (MCD43A3, 500 m), MODIS NDVI (MOD13A3, 1 km; NDVI = normalized difference vegetation index) and 1-km gridded meteorological data to analyze the spatiotemporal variations of surface albedo across China during 2001–2020 at a gridded scale. Temporal trends were quantified with the Theil–Sen slope and the Mann–Kendall test, and the seasonal contributions of NDVI, air temperature, and precipitation were assessed with a geographically and temporally weighted regression (GTWR) model. China’s mean annual shortwave albedo was 0.186 and showed a significant decline. Attribution indicates NDVI is the dominant driver (~48% of total change), followed by temperature (~27%) and precipitation (~25%). Seasonally, NDVI explains ~43.94–52.02% of the variation, ~26.81–28.07% of the temperature, and ~21.17–28.57% of the precipitation. Clear spatial patterns emerge. In high-latitude and high-elevation snow-dominated regions, albedo tends to decrease with warmer conditions and increase with greater precipitation. In much of eastern China, albedo is generally positively associated with temperature and negatively with precipitation. NDVI—reflecting vegetation greenness and canopy structure—captures the effects of vegetation greening, canopy densification, and land-cover change that reduce surface reflectivity by enhancing shortwave absorption. Temperature and precipitation affect albedo primarily by regulating vegetation growth. This study goes beyond correlation mapping by combining robust trend detection (Theil–Sen + MK) with GTWR to resolve seasonally varying, non-stationary controls on albedo at 1-km over 20 years. By explicitly separating snow-covered and snow-free conditions, we quantify how NDVI, temperature, and precipitation contributions shift across climate zones and seasons, providing a reproducible, national-scale attribution that can inform ecosystem restoration and land-surface radiative management. Full article
Show Figures

Figure 1

30 pages, 9242 KB  
Article
Investigation of Water Storage Dynamics and Delayed Hydrological Responses Using GRACE, GLDAS, ERA5-Land and Meteorological Data in the Kızılırmak River Basin
by Erdem Kazancı, Serdar Erol and Bihter Erol
Sustainability 2025, 17(22), 10100; https://doi.org/10.3390/su172210100 - 12 Nov 2025
Abstract
Monitoring groundwater dynamics and basin-scale water budget closure is critical for sustainable water resource management, especially in regions facing climate stress and overexploitation. This study examines the temporal variability of total water storage and groundwater trends in Türkiye’s Kızılırmak River Basin by integrating [...] Read more.
Monitoring groundwater dynamics and basin-scale water budget closure is critical for sustainable water resource management, especially in regions facing climate stress and overexploitation. This study examines the temporal variability of total water storage and groundwater trends in Türkiye’s Kızılırmak River Basin by integrating GRACE/GRACE-FO satellite gravimetry, GLDAS-Noah land surface model outputs, ERA5-Land reanalysis products, and local meteorological observations. Groundwater storage anomalies (GWSAs) were derived from the difference between GRACE-based total water storage anomalies (TWSAs) and GLDAS-modeled surface storage components, revealing a long-term groundwater depletion trend of −9.55 ± 2.6 cm between 2002 and 2024. To investigate the hydrological drivers of these changes, lagged correlation analyses were performed between GRACE TWSA and ERA5-Land variables (precipitation, evapotranspiration, runoff, soil moisture, and temperature), showing time-shifted responses from −3 to +3 months. The strongest correlations were found with soil moisture (CC = 0.82 at lag −1), temperature (CC = −0.70 at lag −3), and runoff (CC = 0.71 at lag 0). A moderate correlation between GRACE TWSA and ERA5-based water storage closure (CC = 0.54) indicates partial alignment. These findings underscore the value of satellite gravimetry in tracking subsurface water changes and support its role in basin-scale hydrological assessments. Full article
Show Figures

Graphical abstract

29 pages, 19929 KB  
Article
Urban Heat Hotspots in Tarragona: LCZ-Based Remote Sensing Assessment During Heatwaves
by Caterina Cimolai and Enric Aguilar
Atmosphere 2025, 16(11), 1283; https://doi.org/10.3390/atmos16111283 - 11 Nov 2025
Abstract
Heatwaves are intensifying across Mediterranean cities, where the Urban Heat Island (UHI) effect amplifies thermal stress. This study updates the spatial characterization of the Surface Urban Heat Island (SUHI) in Tarragona using multi-sensor remote sensing data within a Local Climate Zone (LCZ) framework. [...] Read more.
Heatwaves are intensifying across Mediterranean cities, where the Urban Heat Island (UHI) effect amplifies thermal stress. This study updates the spatial characterization of the Surface Urban Heat Island (SUHI) in Tarragona using multi-sensor remote sensing data within a Local Climate Zone (LCZ) framework. Land surface temperature, albedo, and the Normalized Difference Vegetation Index (NDVI) were analyzed during heatwaves from 2015–2025 to assess spatial patterns and drivers of urban heating. Results reveal a daytime urban cool island associated with low albedo and scarce vegetation, and a nocturnal SUHI caused by heat retention in dense built-up areas. High-resolution mapping identifies industrial and commercial zones as hotspots, while vegetated and water-covered areas act as cooling sites. These findings clarify the spatial dynamics and key biophysical controls of SUHI and provide an actionable basis for prioritizing locally tailored adaptation strategies in Mediterranean coastal cities. Full article
(This article belongs to the Special Issue Climate Extremes in Europe: Causes, Impact, and Solutions)
Show Figures

Figure 1

20 pages, 4278 KB  
Article
City-Specific Drivers of Land Surface Temperature in Three Korean Megacities: XGBoost-SHAP and GWR Highlight Building Density
by Hogyeong Jeong, Yeeun Shin and Kyungjin An
Land 2025, 14(11), 2232; https://doi.org/10.3390/land14112232 - 11 Nov 2025
Abstract
Urban heat island (UHI), a significant environmental issue caused by urbanization, is a pressing challenge in modern society. To mitigate it, urban thermal policies have been implemented globally. However, despite differences in topographical and environmental characteristics between cities and within the same city, [...] Read more.
Urban heat island (UHI), a significant environmental issue caused by urbanization, is a pressing challenge in modern society. To mitigate it, urban thermal policies have been implemented globally. However, despite differences in topographical and environmental characteristics between cities and within the same city, these policies are largely uniform and fail to reflect contexts, creating notable drawbacks. This study analyzed three cities in Korea with high land surface temperatures (LSTs) to identify factors influencing LST by applying Extreme Gradient Boosting (XGBoost) with Shapley Additive explanations (SHAP) and Geographically Weighted Regression (GWR). Each variable was derived by calculating the average values from May to September 2020. LST was the dependent variable, and the independent variables were chosen based on previous studies: Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), ALBEDO, Population Density (POP_D), Digital Elevation Model (DEM), and SLOPE. XGBoost-SHAP was used to derive the relative importance of the variables, followed by GWR to assess spatial variation in effects. The results indicate that NDBI, reflecting building density, is the primary factor influencing the thermal environment in all three cities. However, the second most influential factor differed by city: SLOPE had a strong effect in Daegu, characterized by surrounding mountains; POP_D had greater influence in Incheon, where population distribution varies due to clustered islands; and DEM was more influential in Seoul, which contains a mix of plains, mountains, and river landscapes. Furthermore, while NDBI and ALBEDO consistently contributed to LST increases across all regions, the effects of the remaining variables were spatially heterogeneous. These findings highlight that urban areas are not homogeneous and that variations in land use, development patterns, and morphology significantly shape heat environments. Therefore, UHI mitigation strategies should prioritize improving urban form while incorporating localized planning tailored to each region’s physical and socio-environmental characteristics. The results can serve as a foundation for developing strategies and policy decisions to mitigate UHI effects. Full article
Show Figures

Figure 1

25 pages, 11153 KB  
Article
Analysis of Surface Deformation and Its Relationship with Land Use in the Reclaimed Land of Tianjin Based on Time Series InSAR
by Long Hu, Zhiheng Wang, Yichen Wang, Kangle Shao, Can Zhou, Ruiyi Li, Jianxue Song and Yiman Lu
Appl. Sci. 2025, 15(22), 11975; https://doi.org/10.3390/app152211975 - 11 Nov 2025
Abstract
Global coastal reclamation areas face significant land subsidence, threatening infrastructure and sustainable development. China’s large-scale projects show particularly severe subsidence. For example, Tianjin’s Binhai New Area contains 413.6 km2 of reclaimed land, and subsidence is driven by soft soil consolidation, industrial loads, [...] Read more.
Global coastal reclamation areas face significant land subsidence, threatening infrastructure and sustainable development. China’s large-scale projects show particularly severe subsidence. For example, Tianjin’s Binhai New Area contains 413.6 km2 of reclaimed land, and subsidence is driven by soft soil consolidation, industrial loads, and dynamic land use changes. This study addresses the unique geology of coastal reclamation zones: thick, soft clay layers; high porosity; and low soil strength. We employed optimized Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technology using 48 Sentinel-1A radar images (2019–2022), which generated high-resolution annual deformation rate maps revealing a north-high, south-low subsidence gradient. Crucially, validation against leveling data confirmed reliability. The systematically quantified results demonstrate built areas and the bare ground intensifies subsidence through structural loads and soil compression. Land use transitions also exacerbate differential settlement. For coastal cities and reclamation zones, key strategies emerge, including regulating structural loads in high-subsidence areas, managing soft soil consolidation, and implementing dynamic monitoring. Aligning development intensity with geological capacity is essential, and adopting adaptive spatial planning can mitigate subsidence hazards. This approach offers a scientific framework for enhancing global coastal resilience. Full article
Show Figures

Figure 1

19 pages, 10055 KB  
Article
An Integrated CA–Markov Modeling Framework for Forecasting Land Use and Land Cover Dynamics in Arkansas, USA
by Rasool Vahid and Mohamed H. Aly
Geomatics 2025, 5(4), 62; https://doi.org/10.3390/geomatics5040062 - 10 Nov 2025
Viewed by 157
Abstract
Land use and land cover (LULC) changes significantly shape urban environments and directly impact ecological and socioeconomic systems. This study aims to explore these interconnections by employing the Cellular Automata–Markov (CA–Markov) model to assess and predict LULC dynamics in Arkansas. Historical LULC datasets [...] Read more.
Land use and land cover (LULC) changes significantly shape urban environments and directly impact ecological and socioeconomic systems. This study aims to explore these interconnections by employing the Cellular Automata–Markov (CA–Markov) model to assess and predict LULC dynamics in Arkansas. Historical LULC datasets from 2001 to 2021, obtained from the National Land Cover Database, were simplified from 11 into 5 classes to facilitate analysis and effectively map transitions. The model was validated by predicting LULC for 2016 and 2021 and comparing the predictions with the real maps, achieving an overall accuracy of approximately 91.9%, using model validation metrics, including precision, recall, F1-score, and Kappa Coefficient, and highlighting the strength of the predictions. Predictions for 2026 and 2031 reveal a continuous increase in built-up areas at the expense of vegetation cover, underscoring ongoing urbanization trends. Specifically, built-up areas are projected to increase from 28.39% in 2021 to 30.15% in 2031, while vegetation cover is expected to decline from 49.30% to 47.48%. This research demonstrates the utility of the CA–Markov model in simulating urban growth patterns and provides actionable insights into sustainable urban planning and land management strategies. Full article
Show Figures

Figure 1

18 pages, 16502 KB  
Article
Settlement and Deformation Characteristics of Grouting-Filled Goaf Areas Using Integrated InSAR Technologies
by Xingli Li, Huayang Dai, Fengming Li, Haolei Zhang and Jun Fang
Sustainability 2025, 17(22), 10015; https://doi.org/10.3390/su172210015 - 10 Nov 2025
Viewed by 217
Abstract
Subsidence over abandoned goaves is a primary trigger for secondary geological hazards such as surface collapse, landslides, and cracking. This threatens safe mining operations, impairs regional economic progress, and endangers local inhabitants and their assets. At present, goaf areas are mainly treated through [...] Read more.
Subsidence over abandoned goaves is a primary trigger for secondary geological hazards such as surface collapse, landslides, and cracking. This threatens safe mining operations, impairs regional economic progress, and endangers local inhabitants and their assets. At present, goaf areas are mainly treated through grouting. However, owing to the deficiencies of traditional deformation monitoring methods (e.g., leveling and GPS), including their slow speed, high cost, and limited data accuracy influenced by the number of monitoring points, the surface deformation features of goaf zones treated with grouting cannot be obtained in a timely fashion. Therefore, this study proposes a method to analyze the spatio-temporal patterns of surface deformation in grout-filled goaves based on the fusion of Multi-temporal InSAR technologies, leveraging the complementary advantages of D-InSAR, PS-InSAR, and SBAS-InSAR techniques. An investigation was conducted in a coal mine located in Shandong Province, China, utilizing an integrated suite of C-band satellite data. This dataset included 39 scenes from the RadarSAT-2 and 40 scenes from the Sentinel missions, acquired between September 2019 and September 2022. Key results reveal a significant reduction in surface deformation rates following grouting operations: pre-grouting deformation reached up to −98 mm/a (subsidence) and +134 mm/a (uplift), which decreased to −11.2 mm/a and +18.7 mm/a during grouting, and further stabilized to −10.0 mm/a and +16.0 mm/a post-grouting. Time-series analysis of cumulative deformation and typical coherent points confirmed that grouting effectively mitigated residual subsidence and induced localized uplift due to soil compaction and fracture expansion. The comparison with the leveling measurement data shows that the accuracy of this method meets the requirements, confirming the method’s efficacy in capturing the actual ground dynamics during grouting. It provides a scientific basis for the safe expansion of mining cities and the safe reuse of land resources. Full article
Show Figures

Figure 1

23 pages, 20168 KB  
Article
Spatiotemporal Dynamics and Drivers of Agricultural Drought in the Huang-Huai-Hai Plain Based on Crop Water Stress Index and Spatial Machine Learning
by Xiao-Xia Hou, Yue Liu, Xia Zhang, Qingtao Ma and Guofei Shang
Remote Sens. 2025, 17(22), 3678; https://doi.org/10.3390/rs17223678 - 9 Nov 2025
Viewed by 295
Abstract
Agricultural drought poses a critical constraint to food security and regional sustainable development, particularly in the Huang-Huai-Hai Plain, a major grain-producing region characterized by high spatial heterogeneity in drought risk. Previous studies have demonstrated that the Crop Water Stress Index (CWSI) outperforms traditional [...] Read more.
Agricultural drought poses a critical constraint to food security and regional sustainable development, particularly in the Huang-Huai-Hai Plain, a major grain-producing region characterized by high spatial heterogeneity in drought risk. Previous studies have demonstrated that the Crop Water Stress Index (CWSI) outperforms traditional meteorological indices in detecting agricultural droughts in various regions. However, there is limited research specifically focusing on its spatiotemporal dynamics and the complex relationships with environmental factors, particularly in the Huang-Huai-Hai Plain. To fill this gap, this study first estimated CWSI using remote sensing evapotranspiration data and systematically assessed the spatiotemporal dynamics of agricultural drought in the Huang-Huai-Hai Plain from 2005 to 2020. Then, an integrated analytical framework that combines Local Indicators of Spatial Association (LISA) with Random Forest (RF) modeling has been proposed to identify primary environmental drivers. Results revealed a general downward trend in CWSI over the study period, with drought hotpots primarily concentrated in the central plains and along the eastern foothills of the Taihang Mountains. LISA identified four distinct spatial cluster types and revealed significant spatial associations between CWSI and six environmental variables. The major driving factors of CWSI included vegetation conditions (NDVI), land surface temperature (LST), rainfall, and temperature-related factors (SAT, DSR), with LST and SAT exhibiting the strongest correlations with CWSI in multiple regions. Among these, LST and SAT exhibited strong positive correlations with CWSI in multiple regions. By integrating spatial clustering and variable importance analysis, we found that agricultural drought patterns are shaped by interacting environmental factors, with region-specific dominant mechanisms. This study provides a novel analytical framework that bridges remote sensing, spatial statistics, and machine learning, offering valuable insights and tools for drought monitoring and attribution at regional scales. Full article
Show Figures

Figure 1

42 pages, 10484 KB  
Article
Edible Residential Balconies in the Mediterranean Climate: Architectural Design Guidelines
by Ehsan Daneshyar
Buildings 2025, 15(22), 4033; https://doi.org/10.3390/buildings15224033 - 8 Nov 2025
Viewed by 317
Abstract
In an era in which more than half of the world’s population resides in urban centers, cultivating food within cities, close to consumers, is increasingly crucial. Given the limited availability of arable land in urban centers, food can be cultivated on a large [...] Read more.
In an era in which more than half of the world’s population resides in urban centers, cultivating food within cities, close to consumers, is increasingly crucial. Given the limited availability of arable land in urban centers, food can be cultivated on a large scale within residential buildings equipped with balconies, in both current and future Mediterranean cities. This research defines the term “edible balconies” as a subtype of Zfarming and urban agriculture, indicating that the floors, walls, edges, and overhead spaces of edible balconies offer horizontal and vertical surfaces suitable for cultivating edible plants. The primary objective of this article is to propose a series of design guidelines for architects interested in designing edible balconies. It also highlights major obstacles that architects may encounter during the design process. To identify key design guidelines, determine significant obstacles, and develop design proposals, a comprehensive literature review was conducted on urban agriculture, horticulture, building-integrated agriculture, and Zfarming. By considering these suggested guidelines, architects can incorporate edible balconies into residential buildings. Such a design approach aims to develop a multifunctional housing typology that not only provides habitat but also promotes food cultivation. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

18 pages, 2762 KB  
Article
Performance Analysis and Optimization of a Bio-Inspired Spider-Web-Shaped Energy Absorbing Component for Legged Landers
by Xueao Liu, Hui Wang, Kai Yang, Bin Zhang, Xuecong Wang, Kaiting Liu and Shiming Zhou
Machines 2025, 13(11), 1035; https://doi.org/10.3390/machines13111035 - 8 Nov 2025
Viewed by 196
Abstract
Inspired by the structural characteristics of natural spider webs, a simplified configuration composed of multi-layer regular polygons was developed to design a novel energy absorbing component for legged landers. To investigate its compressive energy-absorption behavior, a parameterized finite element model (FEM) was established. [...] Read more.
Inspired by the structural characteristics of natural spider webs, a simplified configuration composed of multi-layer regular polygons was developed to design a novel energy absorbing component for legged landers. To investigate its compressive energy-absorption behavior, a parameterized finite element model (FEM) was established. By integrating optimized Latin hypercube experimental design with the FEM, the energy absorption characteristics under varying structural parameters were evaluated. Based on the FEM results, response surface methodology was employed to construct surrogate models that capture the mapping relationships between design parameters and performance indices. Using these surrogate models, the energy-absorbing component was optimized under three different ranges of average buffering force. Three optimized components with distinct average buffering forces were selected and connected in series, and their force–displacement responses during compression were computed through finite element simulations. The obtained response curves were incorporated into a multibody dynamics model of a Mars lander to verify performance, demonstrating that the lander can achieve effective soft landing. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

35 pages, 2858 KB  
Article
Fatal Free Falls: A Clinical and Forensic Analysis of Skeletal Injury Patterns Using PMCT and Autopsy
by Filip Woliński, Jolanta Sado, Kacper Kraśnik, Justyna Sagan, Łukasz Bryliński, Katarzyna Brylińska, Grzegorz Teresiński, Tomasz Cywka, Marcin Prządka, Robert Karpiński and Jacek Baj
J. Clin. Med. 2025, 14(22), 7912; https://doi.org/10.3390/jcm14227912 - 7 Nov 2025
Viewed by 334
Abstract
Background: Free fatal falls (FFF) are a frequent occurrence in forensic medicine. Many variables, such as the victim’s sex, BMI, intoxication, height of the fall, and mental illness, can influence injury patterns. Previous studies identified fracture patterns and frequencies mostly with general anatomical [...] Read more.
Background: Free fatal falls (FFF) are a frequent occurrence in forensic medicine. Many variables, such as the victim’s sex, BMI, intoxication, height of the fall, and mental illness, can influence injury patterns. Previous studies identified fracture patterns and frequencies mostly with general anatomical detail, focusing on broad areas. As specific fractures might be roots for new statistical connections, this leaves a gap in our understanding. Using postmortem computed tomography, we aim to establish fracture frequencies and identify possible new statistical connections. Methods: In total, we retrospectively analyzed seventy-nine cases of confirmed deaths due to falls using the database of the Department and Institute of Forensic Medicine in Lublin. Our inclusion criteria were death due to free fall onto hard, non-deformable surfaces. We excluded cases of ground-level falls. All victims must have undergone postmortem computed tomography. Furthermore, each analyzed case documented individual intrinsic variables (sex, age, body mass, height, pre-existing mental conditions, and drug or alcohol use) and extrinsic variables (fall height, landing surface, time between the fall and death, and known cause of the fall). Results: Injuries in free fatal falls tend to focus on the axial skeleton. Suicides experience more severe, bilateral fractures, often involving the pelvis and limbs, while accidents tend to have unilateral injuries with rare limb involvement. We established new correlations with the height of the fall for the maxilla, mandible, anterior and posterior regions of the occipital bone, and the temporal bone. Moreover, our research confirmed previously noted correlations between the height of the fall and fractures of the limbs (and their individual bones), the lumbar vertebrae, and the chest. Conclusions: Our findings highlight that free fatal falls are characterized by distinct skeletal injury patterns that differ between accidents and suicides, with bilateral pelvic and limb fractures being particularly indicative of intentional falls. The integration of PMCT with autopsy improves the detection of these patterns. It provides valuable diagnostic and medico-legal insights, supporting a more precise determination of the cause and manner of death. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

19 pages, 12357 KB  
Article
Ecological Wisdom Study of the Han Dynasty Settlement Site in Sanyangzhuang Based on Landscape Archaeology
by Yingming Cao, He Jiang, MD Abdul Mueed Choudhury, Hangzhe Liu, Guohang Tian, Xiang Wu and Ernesto Marcheggiani
Heritage 2025, 8(11), 466; https://doi.org/10.3390/heritage8110466 - 6 Nov 2025
Viewed by 237
Abstract
This study systematically investigates settlement sites that record living patterns of ancient humans, aiming to reveal the interactive mechanisms of human–environment relationships. The core issues of landscape archeology research are the surface spatial structure, human spatial cognition, and social practice activities. This article [...] Read more.
This study systematically investigates settlement sites that record living patterns of ancient humans, aiming to reveal the interactive mechanisms of human–environment relationships. The core issues of landscape archeology research are the surface spatial structure, human spatial cognition, and social practice activities. This article takes the Han Dynasty settlement site in Sanyangzhuang, Neihuang County, Anyang City, Henan Province, as a typical case. It comprehensively uses ArcGIS 10.8 spatial analysis and remote sensing image interpretation techniques to construct spatial distribution models of elevation, slope, and aspect in the study area, and analyzes the process of the Yellow River’s ancient course changes. A regional historical geographic information system was constructed by integrating multiple data sources, including archeological excavation reports, excavated artifacts, and historical documents. At the same time, the sequences of temperature and dry–wet index changes in the study area during the Qin and Han dynasties were quantitatively reconstructed, and a climate evolution map for this period was created based on ancient climate proxy indicators. Drawing on three dimensions of settlement morphology, architectural spatial organization, and agricultural technology systems, this paper provides a deep analysis of the site’s spatial cognitive logic and the ecological wisdom it embodies. The results show the following: (1) The Sanyangzhuang Han Dynasty settlement site reflects the efficient utilization strategy and environmental adaptation mechanism of ancient settlements for land resources, presenting typical scattered characteristics. Its formation mechanism is closely related to the evolution of social systems in the Western Han Dynasty. (2) In terms of site selection, settlements consider practicality and ceremony, which can not only meet basic living needs, but also divide internal functional zones based on the meaning implied by the orientation of the constellations. (3) The widespread use of iron farming tools has promoted the innovation of cultivation techniques, and the implementation of the substitution method has formed an ecological regulation system to cope with seasonal climate change while ensuring agricultural yield. The above results comprehensively reflect three types of ecological wisdom: “ecological adaptation wisdom of integrating homestead and farmland”, “spatial cognitive wisdom of analogy, heaven, law, and earth”, and “agricultural technology wisdom adapted to the times”. This study not only deepens our understanding of the cultural value of the Han Dynasty settlement site in Sanyangzhuang, but also provides a new theoretical perspective, an important paradigm reference, and a methodological reference for the study of ancient settlement ecological wisdom. Full article
Show Figures

Figure 1

22 pages, 4905 KB  
Article
Spatiotemporal Evolution and Driving Factors of Surface Temperature Changes Before and After Ecological Restoration of Mines in the Plateau Alpine Permafrost Regions Based on Landsat Images
by Lei Chen, Linxue Ju, Junxing Liu, Sen Jiao, Yi Zhang, Xianyang Yin and Caiya Yue
Earth 2025, 6(4), 141; https://doi.org/10.3390/earth6040141 - 6 Nov 2025
Viewed by 182
Abstract
Land surface temperature (LST) is a key indicator reflecting the ecological environmental disturbance caused by open-pit coal mining activities and determining the ecological status in alpine permafrost regions. Thus, it is crucial to study the spatiotemporal variations and influencing mechanisms of LST throughout [...] Read more.
Land surface temperature (LST) is a key indicator reflecting the ecological environmental disturbance caused by open-pit coal mining activities and determining the ecological status in alpine permafrost regions. Thus, it is crucial to study the spatiotemporal variations and influencing mechanisms of LST throughout all stages of small-scale mining–large-scale land surface damage–ecological restoration. Landsat imagery over nine periods was extracted from the growing seasons between 1990 and 2024. This study retrieved LST while simultaneously calculating albedo, soil moisture, and normalized difference vegetation index (NDVI) for each time phase. By integrating land use/cover (LUCC) data, the spatiotemporal evolution patterns of LST in the mining area throughout all stages were revealed. Based on the Geodetector method, an identification approach for factors influencing LST spatial differentiation was established. This approach was applicable to the entire process characterized by significant land type transitions. The results indicate that the spatiotemporal variations in LST were significantly correlated with land surface damage and restoration caused by human activities in the mining area. With the implementation of ecological restoration, high and ultra-high temperatures decreased by about 25.98% compared to the period when the surface damage was the most severe. The main influencing factors of LST differentiation were identified for different land use types, i.e., natural and restored meadows (soil wetness, albedo, and NDVI), mine pits (albedo, aspect, and elevation), and mining waste dumps (aspect and albedo before restoration; aspect and NDVI after restoration). This study can provide a reference for monitoring the ecological environment changes and ecological restoration of global coalfields with the same climatic characteristics. Full article
Show Figures

Figure 1

Back to TopTop