Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,234)

Search Parameters:
Keywords = land characterization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4874 KiB  
Article
Influence of Vegetation Cover and Soil Properties on Water Infiltration: A Study in High-Andean Ecosystems of Peru
by Azucena Chávez-Collantes, Danny Jarlis Vásquez Lozano, Leslie Diana Velarde-Apaza, Juan-Pablo Cuevas, Richard Solórzano and Ricardo Flores-Marquez
Water 2025, 17(15), 2280; https://doi.org/10.3390/w17152280 - 31 Jul 2025
Viewed by 81
Abstract
Water infiltration into soil is a key process in regulating the hydrological cycle and sustaining ecosystem services in high-Andean environments. However, limited information is available regarding its dynamics in these ecosystems. This study evaluated the influence of three types of vegetation cover and [...] Read more.
Water infiltration into soil is a key process in regulating the hydrological cycle and sustaining ecosystem services in high-Andean environments. However, limited information is available regarding its dynamics in these ecosystems. This study evaluated the influence of three types of vegetation cover and soil properties on water infiltration in a high-Andean environment. A double-ring infiltrometer, the Water Drop Penetration Time (WDPT, s) method, and laboratory physicochemical characterization were employed. Soils under forest cover exhibited significantly higher quasi-steady infiltration rates (is, 0.248 ± 0.028 cm·min−1) compared to grazing areas (0.051 ± 0.016 cm·min−1) and agricultural lands (0.032 ± 0.013 cm·min−1). Soil organic matter content was positively correlated with is. The modified Kostiakov infiltration model provided the best overall fit, while the Horton model better described infiltration rates approaching is. Sand and clay fractions, along with K+, Ca2+, and Mg2+, were particularly significant during the soil’s wet stages. In drier stages, increased Na+ concentrations and decreased silt content were associated with higher water repellency. Based on WDPT, agricultural soils exhibited persistent hydrophilic behavior even after drying (median [IQR] from 0.61 [0.38] s to 1.24 [0.46] s), whereas forest (from 2.84 [3.73] s to 3.53 [24.17] s) and grazing soils (from 4.37 [1.95] s to 19.83 [109.33] s) transitioned to weakly or moderately hydrophobic patterns. These findings demonstrate that native Andean forest soils exhibit a higher infiltration capacity than soils under anthropogenic management (agriculture and grazing), highlighting the need to conserve and restore native vegetation cover to strengthen water resilience and mitigate the impacts of land-use change. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

24 pages, 2013 KiB  
Article
Can Local Industrial Policy Enhance Urban Land Green Use Efficiency? Evidence from the “Made in China 2025” National Demonstration Zone Policy
by Shoupeng Wang, Haixin Huang and Fenghua Wu
Land 2025, 14(8), 1567; https://doi.org/10.3390/land14081567 - 31 Jul 2025
Viewed by 146
Abstract
As the fundamental physical carrier for human production and socio-economic endeavors, enhancing urban land green use efficiency (ULGUE) is crucial for realizing sustainable development. To effectively enhance urban land green use efficiency, this study systematically examines the intrinsic relationship between industrial policies and [...] Read more.
As the fundamental physical carrier for human production and socio-economic endeavors, enhancing urban land green use efficiency (ULGUE) is crucial for realizing sustainable development. To effectively enhance urban land green use efficiency, this study systematically examines the intrinsic relationship between industrial policies and ULGUE based on panel data from 286 Chinese cities (2010–2022), employing an integrated methodology that combines the Difference-in-Differences (DID) model, Super-Efficiency Slacks-Based Measure Data Envelopment Analysis model, and ArcGIS spatial analysis techniques. The findings clearly demonstrate that the establishment of the “Made in China 2025” pilot policy significantly improves urban land green use efficiency in pilot cities, a conclusion that endures following a succession of stringent evaluations. Moreover, studying its mechanisms suggests that the pilot policy primarily enhances urban land green use efficiency by promoting industrial upgrading, accelerating technological innovation, and strengthening environmental regulations. Heterogeneity analysis further indicates that the policy effects are more significant in urban areas characterized by high manufacturing agglomeration, non-provincial capital/non-municipal status, high industrial intelligence levels, and less sophisticated industrial structure. This research not only provides valuable policy insights for China to enhance urban land green use efficiency and promote high-quality regional sustainable development but also offers meaningful references for global efforts toward advancing urban sustainability. Full article
Show Figures

Figure 1

26 pages, 12136 KiB  
Article
Integrated Analysis of Satellite and Geological Data to Characterize Ground Deformation in the Area of Bologna (Northern Italy) Using a Cluster Analysis-Based Approach
by Alberto Manuel Garcia Navarro, Celine Eid, Vera Rocca, Christoforos Benetatos, Claudio De Luca, Giovanni Onorato and Riccardo Lanari
Remote Sens. 2025, 17(15), 2645; https://doi.org/10.3390/rs17152645 - 30 Jul 2025
Viewed by 220
Abstract
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human [...] Read more.
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human activities (e.g., ground water production and underground gas storage—UGS). We apply a multidisciplinary approach integrating subsurface geology, ground water production, advanced differential interferometry synthetic aperture radar—DInSAR, gas storage data, and land use information to characterize and analyze the spatial and temporal variations in vertical ground deformations. Seasonal and trend decomposition using loess (STL) and cluster analysis techniques are applied to historical DInSAR vertical time series, targeting three representatives areas close to the city of Bologna. The main contribution of the study is the attempt to correlate the lateral extension of ground water bodies with seasonal ground deformations and water production data; the results are validated via knowledge of the geological characteristics of the uppermost part of the Po Plain area. Distinct seasonal patterns are identified and correlated with ground water production withdrawal and UGS operations. The results highlight the influence of superficial aquifer characteristics—particularly the geometry, lateral extent, and hydraulic properties of sedimentary bodies—on the ground movements behavior. This case study outlines an effective multidisciplinary approach for subsidence characterization providing critical insights for risk assessment and mitigation strategies, relevant for the future development of CO2 and hydrogen storage in depleted reservoirs and saline aquifers. Full article
Show Figures

Figure 1

34 pages, 56730 KiB  
Article
Land Consolidation Potential Assessment by Using the Production–Living–Ecological Space Framework in the Guanzhong Plain, China
by Ziyi Xie, Siying Wu, Xin Liu, Hejia Shi, Mintong Hao, Weiwei Zhao, Xin Fu and Yepeng Liu
Sustainability 2025, 17(15), 6887; https://doi.org/10.3390/su17156887 - 29 Jul 2025
Viewed by 226
Abstract
Land consolidation (LC) is a sustainability-oriented policy tool designed to address land fragmentation, inefficient spatial organization, and ecological degradation in rural areas. This research proposes a Production–Living–Ecological (PLE) spatial utilization efficiency evaluation system, based on an integrated methodological framework combining Principal Component Analysis [...] Read more.
Land consolidation (LC) is a sustainability-oriented policy tool designed to address land fragmentation, inefficient spatial organization, and ecological degradation in rural areas. This research proposes a Production–Living–Ecological (PLE) spatial utilization efficiency evaluation system, based on an integrated methodological framework combining Principal Component Analysis (PCA), Entropy Weight Method (EWM), Attribute-Weighting Method (AWM), Linear Weighted Sum Method (LWSM), Threshold-Verification Coefficient Method (TVCM), Jenks Natural Breaks (JNB) classification, and the Obstacle Degree Model (ODM). The framework is applied to Qian County, located in the Guanzhong Plain in Shaanxi Province. The results reveal three key findings: (1) PLE efficiency exhibits significant spatial heterogeneity. Production efficiency shows a spatial pattern characterized by high values in the central region that gradually decrease toward the surrounding areas. In contrast, the living efficiency demonstrates higher values in the eastern and western regions, while remaining relatively low in the central area. Moreover, ecological efficiency shows a marked advantage in the northern region, indicating a distinct south–north gradient. (2) Integrated efficiency consolidation potential zones present distinct spatial distributions. Preliminary consolidation zones are primarily located in the western region; priority zones are concentrated in the south; and intensive consolidation zones are clustered in the central and southeastern areas, with sporadic distributions in the west and north. (3) Five primary obstacle factors hinder land use efficiency: intensive utilization of production land (PC1), agricultural land reutilization intensity (PC2), livability of living spaces (PC4), ecological space security (PC7), and ecological space fragmentation (PC8). These findings provide theoretical insights and practical guidance for formulating tar-gated LC strategies, optimizing rural spatial structures, and advancing sustainable development in similar regions. Full article
Show Figures

Figure 1

19 pages, 8452 KiB  
Article
Mass Movements in Wetlands: An Analysis of a Typical Amazon Delta-Estuary Environment
by Aline M. Meiguins de Lima, Vitor Gabriel Queiroz do Nascimento, Saulo Siqueira Martins, Arthur Cesar Souza de Oliveira and Yuri Antonio da Silva Rocha
GeoHazards 2025, 6(3), 40; https://doi.org/10.3390/geohazards6030040 - 29 Jul 2025
Viewed by 220
Abstract
This study aims to investigate the processes associated with mass movements and their relationship with the behavior of the Amazon River delta-estuary (ADE) wetlands. The methodological approach involves using water spectral indices and ground-penetrating radar (GPR) to diagnose areas of soil water saturation [...] Read more.
This study aims to investigate the processes associated with mass movements and their relationship with the behavior of the Amazon River delta-estuary (ADE) wetlands. The methodological approach involves using water spectral indices and ground-penetrating radar (GPR) to diagnose areas of soil water saturation and characterize regions affected by mass movements in Amazonian cities. It also involves identifying areas of critical saturation content and consequent mass movements. Analysis of risk and land use data revealed that the affected areas coincide with zones of high susceptibility to mass movements induced by water. The results showed the following: the accumulated annual precipitation ranged from 70.07 ± 55.35 mm·month−1 to 413.34 ± 127.51 mm·month−1; the response similarity across different sensors obtained an accuracy greater than 90% for NDWI, MNDWI, and AWEI for the same targets; and a landfill layer with a thickness variation between 1 and 2 m defined the mass movement concentration in Abaetetuba city. The interaction between infiltration, water saturation, and human-induced land alteration suggests that these areas act as wetlands with unstable dynamics. The analysis methodology developed for this study aimed to address this scenario by systematically mapping areas with mass movement potential and high-water saturation. Due to the absence of geological and geotechnical data, remote sensing was employed as an alternative, and in situ ground-penetrating radar (GPR) evaluation was suggested as a means of investigating the causes of a previously observed movement. Full article
Show Figures

Graphical abstract

19 pages, 3137 KiB  
Article
Estimation of Footprint-Scale Across-Track Slopes Based on Elevation Frequency Histogram from Single-Track ICESat-2 Photon Data of Strong Beam
by Qianyin Zhang, Hui Zhou, Yue Ma, Song Li and Heng Wang
Remote Sens. 2025, 17(15), 2617; https://doi.org/10.3390/rs17152617 - 28 Jul 2025
Viewed by 207
Abstract
Topographic slope is a key parameter for characterizing landscape geomorphology. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) offers high-resolution along-track slopes based on the ground profiles generated by dense signal photons. However, the across-track slopes are typically derived using the ground photon [...] Read more.
Topographic slope is a key parameter for characterizing landscape geomorphology. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) offers high-resolution along-track slopes based on the ground profiles generated by dense signal photons. However, the across-track slopes are typically derived using the ground photon geolocations from the weak-beam and strong-beam pair, limiting the retrieval accuracy and losing valid results over rugged terrains. The goal of this study is to propose a new method to derive the across-track slope merely using single-track photon data of a strong beam based on the theoretical formula of the received signal pulse width. Based on the ICESat-2 photon data over the Walker Lake area, the specific purposes are to (1) extract the along-track slope and surface roughness from the signal photon data on the ground; (2) generate an elevation frequency histogram (EFH) and calculate its root mean square (RMS) width; and (3) derive the across-track slope from the RMS width of the EFH and evaluate the retrieval accuracy against the across-track slope from the ICESat-2 product and plane fitting method. The results show that the mean absolute error (MAE) obtained by our method is 11.45°, which is comparable to the ICESat-2 method (11.61°) and the plane fitting method (12.51°). Our method produces the least invalid data proportion of ~2.5%, significantly outperforming both the plane fitting method (10.29%) and the ICESat-2 method (32.32%). Specifically, when the reference across-track slope exceeds 30°, our method can consistently yield the optimal across-track slopes, where the absolute median, inter quartile range, and whisker range of the across-track slope residuals have reductions greater than 4.44°, 1.31°, and 0.10°, respectively. Overall, our method is well-suited for the across-track slope estimation over rugged terrains and can provide higher-precision, higher-resolution, and more valid across-track slopes. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

22 pages, 3604 KiB  
Article
Succession of Weed Community on Wheat Lands in the Past 25 Years: A Case Study in Eastern China
by Guoqi Chen, Zeyue Huang, Jiahao Xue, Feng Zhu, Yang Chen and Yunfei Wu
Biology 2025, 14(8), 943; https://doi.org/10.3390/biology14080943 - 27 Jul 2025
Viewed by 217
Abstract
Weeds represent increasingly troublesome threats to modern wheat production. Jiangsu Province, China, is one of the largest wheat-planting areas, characterized by a high level of agricultural mechanization, in the country. In 2024, we surveyed weed communities of 924 wheat lands from 308 sites [...] Read more.
Weeds represent increasingly troublesome threats to modern wheat production. Jiangsu Province, China, is one of the largest wheat-planting areas, characterized by a high level of agricultural mechanization, in the country. In 2024, we surveyed weed communities of 924 wheat lands from 308 sites in Jiangsu and compared them with historical data surveyed in 1999–2000 in this province. A total of 156 weed species belonging to 103 genera and 39 families were recorded. Compositae and Poaceae showed the highest species richness, with 26 and 23 species, respectively. Poaceae weeds accounted for 54.3% of the overall weeds in dominance values. Beckmannia syzigachne showed the highest proportion of the overall weeds in dominance values (19.2%). Compared with the historical data, weed diversity increased by 33.3% in species, and by 62.5% in families; grassy weeds such as Beckmannia syzigachne, Alopecurus japonicus, and Alopecurus myosuroides became more dominant, while several low-growing grassy weeds became less dominant. The dominance of broadleaf weeds, such as Galium spp., Vicia spp., and Veronica spp., decreased greatly, and a clear trend of weed homogenization among different areas and types of wheat lands was observed. This is the first investigation of weed community succession against the background of agricultural modernization in China. Full article
Show Figures

Figure 1

35 pages, 1524 KiB  
Article
Unveiling the Interplay of Climate Vulnerability and Social Capital: Insights from West Bengal, India
by Sayari Misra, Md Saidul Islam and Suchismita Roy
Climate 2025, 13(8), 160; https://doi.org/10.3390/cli13080160 - 26 Jul 2025
Viewed by 613
Abstract
This study explores the interplay of climate vulnerability and social capital in two rural communities: Brajaballavpur, a high-climate-prone village in the Indian Sundarbans characterized by high ecological fragility, recurrent cyclones, and saline water intrusion affecting water access, livelihoods, and infrastructure; and Jemua, a [...] Read more.
This study explores the interplay of climate vulnerability and social capital in two rural communities: Brajaballavpur, a high-climate-prone village in the Indian Sundarbans characterized by high ecological fragility, recurrent cyclones, and saline water intrusion affecting water access, livelihoods, and infrastructure; and Jemua, a low-climate-prone village in the land-locked district of Paschim Bardhaman, West Bengal, India, with no extreme climate events. A total of 85 participants (44 in Brajaballavpur, 41 in Jemua) were selected through purposive sampling. Using a comparative qualitative research design grounded in ethnographic fieldwork, data were collected through household interviews, Participatory Rural Appraisals (PRAs), Focus Group Discussions (FGDs), and Key Informant Interviews (KIIs), and analyzed manually using inductive thematic analysis. Findings reveal that bonding and bridging social capital were more prominent in Brajaballavpur, where dense horizontal ties supported collective action during extreme weather events. Conversely, linking social capital was more visible in Jemua, where participants more frequently accessed formal institutions such as the Gram Panchayat, local NGOs, and government functionaries that facilitated grievance redressal and information access, but these networks were concentrated among more politically connected individuals. The study concludes that climate vulnerability shapes the type, strength, and strategic use of social capital in village communities. While bonding and bridging ties are crucial in high-risk contexts, linking capital plays a critical role in enabling long-term social structures in lower-risk settings. The study contributes to both academic literature and policy design by offering a relational and place-based understanding of climate vulnerability and social capital. Full article
(This article belongs to the Special Issue Sustainable Development Pathways and Climate Actions)
Show Figures

Figure 1

9 pages, 299 KiB  
Article
The Problems of Sons of Gods, Daughters of Humans, and the Nephilim in Genesis 6:1–4: A Reassessment
by Ki-Eun Jang
Religions 2025, 16(8), 972; https://doi.org/10.3390/rel16080972 - 26 Jul 2025
Viewed by 329
Abstract
This article engages with earlier scholarly discussions on Genesis 6:1–4 and proposes that, contrary to the majority view, Genesis 6:1–4 does not presuppose knowledge of the flood narrative. Instead, its primary literary role is to introduce the Nephilim in anticipation of the forthcoming [...] Read more.
This article engages with earlier scholarly discussions on Genesis 6:1–4 and proposes that, contrary to the majority view, Genesis 6:1–4 does not presuppose knowledge of the flood narrative. Instead, its primary literary role is to introduce the Nephilim in anticipation of the forthcoming land promise and conquest narrative. I argue that the Nephilim are not necessarily read as divinely inspired beings but are instead associated with other pre-Israelite settlers characterized by their immense size. The inconsistent biblical depiction of the promised land—including the Transjordanian territory—and the conflation of various giant terms further suggest that the Nephilim in Genesis 6:4 are linked to the broader conquest narrative and associated traditions, particularly the eradication of giant groups such as the Rephaim. Full article
(This article belongs to the Special Issue The Hebrew Bible: A Journey Through History and Literature)
20 pages, 5070 KiB  
Article
Electrochemical Noise Analysis in Passivated Martensitic Precipitation-Hardening Stainless Steels in H2SO4 and NaCl Solutions
by Facundo Almeraya-Calderon, Miguel Villegas-Tovar, Erick Maldonado-Bandala, Demetrio Nieves-Mendoza, Ce Tochtli Méndez-Ramírez, Miguel Angel Baltazar-Zamora, Javier Olguín-Coca, Luis Daimir Lopez-Leon, Griselda Santiago-Hurtado, Verónica Almaguer-Cantu, Jesus Manuel Jaquez-Muñoz and Citlalli Gaona-Tiburcio
Metals 2025, 15(8), 837; https://doi.org/10.3390/met15080837 - 26 Jul 2025
Viewed by 289
Abstract
Precipitation-hardenable stainless steels (PHSS) are widely used in various applications in the aeronautical industry such in as landing gear supports, actuators, and fasteners, among others. This research aims to study the pitting corrosion behavior of passivated martensitic precipitation-hardening stainless steel, which underwent passivation [...] Read more.
Precipitation-hardenable stainless steels (PHSS) are widely used in various applications in the aeronautical industry such in as landing gear supports, actuators, and fasteners, among others. This research aims to study the pitting corrosion behavior of passivated martensitic precipitation-hardening stainless steel, which underwent passivation for 120 min at 25 °C and 50 °C in citric and nitric acid baths before being immersed in solutions containing 1 wt.% sulfuric acid (H2SO4) and 5 wt.% sodium chloride (NaCl). Electrochemical characterization was realized employing electrochemical noise (EN), while microstructural analysis employed scanning electron microscopy (SEM). The result indicates that EN reflects localized pitting corrosion mechanisms. Samples exposed to H2SO4 revealed activation–passivation behavior, whereas those immersed in NaCl exhibited pseudo-passivation, indicative of an unstable oxide film. Current densities in both solutions ranged from 10−3 to 10−5 mA/cm2, confirming susceptibility to localized pitting corrosion in all test conditions. The susceptibility to localized attack is associated with the generation of secondary oxides on the surface. Full article
(This article belongs to the Special Issue Recent Advances in High-Performance Steel)
Show Figures

Figure 1

27 pages, 10737 KiB  
Article
XT-SECA: An Efficient and Accurate XGBoost–Transformer Model for Urban Functional Zone Classification
by Xin Gao, Xianmin Wang, Li Cao, Haixiang Guo, Wenxue Chen and Xing Zhai
ISPRS Int. J. Geo-Inf. 2025, 14(8), 290; https://doi.org/10.3390/ijgi14080290 - 25 Jul 2025
Viewed by 207
Abstract
The remote sensing classification of urban functional zones provides scientific support for urban planning, land resource optimization, and ecological environment protection. However, urban functional zone classification encounters significant challenges in accuracy and efficiency due to complicated image structures, ambiguous critical features, and high [...] Read more.
The remote sensing classification of urban functional zones provides scientific support for urban planning, land resource optimization, and ecological environment protection. However, urban functional zone classification encounters significant challenges in accuracy and efficiency due to complicated image structures, ambiguous critical features, and high computational complexity. To tackle these challenges, this work proposes a novel XT-SECA algorithm employing a strengthened efficient channel attention mechanism (SECA) to integrate the feature-extraction XGBoost branch and the feature-enhancement Transformer feedforward branch. The SECA optimizes the feature-fusion process through dynamic pooling and adaptive convolution kernel strategies, reducing feature confusion between various functional zones. XT-SECA is characterized by sufficient learning of complex image structures, effective representation of significant features, and efficient computational performance. The Futian, Luohu, and Nanshan districts in Shenzhen City are selected to conduct urban functional zone classification by XT-SECA, and they feature administrative management, technological innovation, and commercial finance functions, respectively. XT-SECA can effectively distinguish diverse functional zones such as residential zones and public management and service zones, which are easily confused by current mainstream algorithms. Compared with the commonly adopted algorithms for urban functional zone classification, including Random Forest (RF), Long Short-Term Memory (LSTM) network, and Multi-Layer Perceptron (MLP), XT-SECA demonstrates significant advantages in terms of overall accuracy, precision, recall, F1-score, and Kappa coefficient, with an accuracy enhancement of 3.78%, 42.86%, and 44.17%, respectively. The Kappa coefficient is increased by 4.53%, 51.28%, and 52.73%, respectively. Full article
(This article belongs to the Topic Artificial Intelligence Models, Tools and Applications)
Show Figures

Figure 1

28 pages, 8266 KiB  
Article
SpatioConvGRU-Net for Short-Term Traffic Crash Frequency Prediction in Bogotá: A Macroscopic Spatiotemporal Deep Learning Approach with Urban Factors
by Alejandro Sandoval-Pineda and Cesar Pedraza
Modelling 2025, 6(3), 71; https://doi.org/10.3390/modelling6030071 - 25 Jul 2025
Viewed by 315
Abstract
Traffic crashes represent a major challenge for road safety, public health, and mobility management in complex urban environments, particularly in metropolitan areas characterized by intense traffic flows, high population density, and strong commuter dynamics. The development of short-term traffic crash prediction models represents [...] Read more.
Traffic crashes represent a major challenge for road safety, public health, and mobility management in complex urban environments, particularly in metropolitan areas characterized by intense traffic flows, high population density, and strong commuter dynamics. The development of short-term traffic crash prediction models represents a fundamental line of analysis in road safety research within the scientific community. Among these efforts, macro-level modeling plays a key role by enabling the analysis of the spatiotemporal relationships between diverse factors at an aggregated zonal scale. However, in cities like Bogotá, predicting short-term traffic crashes remains challenging due to the complexity of these spatiotemporal dynamics, underscoring the need for models that more effectively integrate spatial and temporal data. This paper presents a strategy based on deep learning techniques to predict short-term spatiotemporal traffic crashes in Bogotá using 2019 data on socioeconomic, land use, mobility, weather, lighting, and crash records across TMAU and TAZ zones. The results showed that the strategy performed with a model called SpatioConvGru-Net with top performance at the TMAU level, achieving R2 = 0.983, MSE = 0.017, and MAPE = 5.5%. Its hybrid design captured spatiotemporal patterns better than CNN, LSTM, and others. Performance improved at the TAZ level using transfer learning. Full article
(This article belongs to the Special Issue Advanced Modelling Techniques in Transportation Engineering)
Show Figures

Figure 1

19 pages, 2278 KiB  
Article
Interplay Between Vegetation and Urban Climate in Morocco—Impact on Human Thermal Comfort
by Noura Ed-dahmany, Lahouari Bounoua, Mohamed Amine Lachkham, Mohammed Yacoubi Khebiza, Hicham Bahi and Mohammed Messouli
Urban Sci. 2025, 9(8), 289; https://doi.org/10.3390/urbansci9080289 - 25 Jul 2025
Viewed by 447
Abstract
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as [...] Read more.
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as a function of the surface urban heat island (SUHI) intensity. The analysis is based on outputs from a land surface model (LSM) for the year 2010, integrating high-resolution Landsat and MODIS data to characterize land cover and biophysical parameters across twelve land cover types. Our findings reveal moderate urban–vegetation temperature differences in coastal cities like Tangier (1.8 °C) and Rabat (1.0 °C), where winter vegetation remains active. In inland areas, urban morphology plays a more dominant role: Fes, with a 20% impervious surface area (ISA), exhibits a smaller SUHI than Meknes (5% ISA), due to higher urban heating in the latter. The Atlantic desert city of Dakhla shows a distinct pattern, with a nighttime SUHI of 2.1 °C and a daytime urban cooling of −0.7 °C, driven by irrigated parks and lawns enhancing evapotranspiration and shading. At the regional scale, summer UTIR values remain below one in Tangier-Tetouan-Al Hoceima, Rabat-Sale-Kenitra, and Casablanca-Settat, suggesting that urban conditions generally stay within thermal comfort thresholds. In contrast, higher UTIR values in Marrakech-Safi, Beni Mellal-Khénifra, and Guelmim-Oued Noun indicate elevated heat discomfort. At the city scale, the UTIR in Tangier, Rabat, and Casablanca demonstrates a clear diurnal pattern: it emerges around 11:00 a.m., peaks at 1:00 p.m., and fades by 3:00 p.m. This study highlights the critical role of vegetation in regulating urban surface temperatures and modulating urban–rural thermal contrasts. The UTIR provides a practical, scalable indicator of urban heat stress, particularly valuable in data-scarce settings. These findings carry significant implications for climate-resilient urban planning, optimized energy use, and the design of public health early warning systems in the context of climate change. Full article
Show Figures

Figure 1

18 pages, 816 KiB  
Article
Comprehensive Characterization of the Algarve Octopus, Octopus vulgaris: Nutritional Aspects and Quality Indexes of Lipids
by Ana G. Cabado, Celina Costas, David Baptista de Sousa, João Pontes and Mafalda Rangel
Appl. Sci. 2025, 15(15), 8235; https://doi.org/10.3390/app15158235 - 24 Jul 2025
Viewed by 181
Abstract
The common octopus (Octopus vulgaris) supports one of the most valuable small-scale fisheries in Portugal, particularly in the Algarve region, with substantial socioeconomic implications. This species holds significant potential for human consumption due to its low lipid content, favorable fatty acid [...] Read more.
The common octopus (Octopus vulgaris) supports one of the most valuable small-scale fisheries in Portugal, particularly in the Algarve region, with substantial socioeconomic implications. This species holds significant potential for human consumption due to its low lipid content, favorable fatty acid profile, high-quality protein, and essential microelements. This study aimed to provide a comprehensive characterization of octopus specimens landed in two key Algarve fishing areas—Barlavento/Windward (Alvor Harbour) and Sotavento/Leeward (Fuzeta Harbour). We assessed their nutritional value, focusing on protein quality, lipid indexes, trace minerals, and essential vitamins, as well as overall safety and quality. All regulated contaminants and additional potential risks were also evaluated, yielding fully satisfactory safety results. The research was conducted within the framework of the European Sea2See project, which aims to enhance consumer trust and acceptance of sustainably harvested or farmed seafood in Europe. Our findings demonstrate that Algarve octopus is a nutritionally rich seafood product, promoting cardiovascular health and general well-being. Full article
Show Figures

Figure 1

49 pages, 21554 KiB  
Article
A Disappearing Cultural Landscape: The Heritage of German-Style Land Use and Pug-And-Pine Architecture in Australia
by Dirk H. R. Spennemann
Land 2025, 14(8), 1517; https://doi.org/10.3390/land14081517 - 23 Jul 2025
Viewed by 245
Abstract
This paper investigates the cultural landscapes established by nineteenth-century German immigrants in South Australia and the southern Riverina of New South Wales, with particular attention to settlement patterns, architectural traditions and toponymic transformation. German immigration to Australia, though numerically modest compared to the [...] Read more.
This paper investigates the cultural landscapes established by nineteenth-century German immigrants in South Australia and the southern Riverina of New South Wales, with particular attention to settlement patterns, architectural traditions and toponymic transformation. German immigration to Australia, though numerically modest compared to the Americas, significantly shaped local communities, especially due to religious cohesion among Lutheran migrants. These settlers established distinct, enduring rural enclaves characterized by linguistic, religious and architectural continuity. The paper examines three manifestations of these cultural landscapes. A rich toponymic landscape was created by imposing on natural landscape features and newly founded settlements the names of the communities from which the German settlers originated. It discusses the erosion of German toponyms under wartime nationalist pressures, the subsequent partial reinstatement and the implications for cultural memory. The study traces the second manifestation of a cultural landscapes in the form of nucleated villages such as Hahndorf, Bethanien and Lobethal, which often followed the Hufendorf or Straßendorf layout, integrating Silesian land-use principles into the Australian context. Intensification of land use through housing subdivisions in two communities as well as agricultural intensification through broad acre farming has led to the fragmentation (town) and obliteration (rural) of the uniquely German form of land use. The final focus is the material expression of cultural identity through architecture, particularly the use of traditional Fachwerk (half-timbered) construction and adaptations such as pug-and-pine walling suited to local materials and climate. The paper examines domestic forms, including the distinctive black kitchen, and highlights how environmental and functional adaptation reshaped German building traditions in the antipodes. Despite a conservation movement and despite considerable documentation research in the late twentieth century, the paper shows that most German rural structures remain unlisted and vulnerable. Heritage neglect, rural depopulation, economic rationalization, lack of commercial relevance and local government policy have accelerated the decline of many of these vernacular buildings. The study concludes by problematizing the sustainability of conserving German Australian rural heritage in the face of regulatory, economic and demographic pressures. With its layering of intangible (toponymic), structural (buildings) and land use (cadastral) features, the examination of the cultural landscape established by nineteenth-century German immigrants adds to the body of literature on immigrant communities, settler colonialism and landscape research. Full article
Show Figures

Figure 1

Back to TopTop