Succession of Weed Community on Wheat Lands in the Past 25 Years: A Case Study in Eastern China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Period
2.2. Survey Methods
2.3. Historical Dataset Sources
2.4. Data Statistical Analysis
3. Results
3.1. Composition and Succession in Plant Families
3.2. Composition and Succession in Plant Genera
3.3. Composition and Succession in Plant Species
3.4. Composition and Succession in Weed Species Groups
3.5. Influence of Environmental Factors on Weed Communities
3.6. Diversity Index
3.7. Distribution and Succession of Survey Sites
4. Discussion
4.1. Large Increase in Wheat Weed Diversity Suggests New Challenges
4.2. Grassy Weeds Have Become Even More Dominant
4.3. Several Broadleaf Weeds Occasionally Cause Serious Challenges
4.4. Homogenization in Wheat Weed Communities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hannah Ritchie, P.R.; Roser, M. Agricultural Production. Available online: https://ourworldindata.org/agricultural-production#article-citation (accessed on 2 March 2025).
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Yao, R.; Ming, Z.; Yan, L.; Li, S.; Wang, F.; Ma, S.; Yu, C.; Yang, M.; Chen, L.; Chen, L.; et al. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 2016, 536, 469–473. [Google Scholar] [CrossRef]
- Huang, Z.; Lin, M.; Chen, G. Common agricultural weeds among alien invasive plants in China: Species lists and their practical managing strategies. Heliyon 2025, 11, e41772. [Google Scholar] [CrossRef]
- Chen, G.; An, K.; Chen, Y.; Lu, C.; Liu, Y. Double-spraying with different routes significantly improved the performance of both pre- and post-emergence wheat herbicides applied by unmanned aerial spraying systems. Crop Prot. 2024, 176, 106503. [Google Scholar] [CrossRef]
- Varanasi, A.; Prasad, P.V.V.; Jugulam, M. Impact of Climate Change Factors on Weeds and Herbicide Efficacy. Adv. Agron. 2016, 135, 107–146. [Google Scholar]
- Nakka, S.; Jugulam, M.; Peterson, D.; Asif, M. Herbicide resistance: Development of wheat production systems and current status of resistant weeds in wheat cropping systems. Crop J. 2019, 7, 750–760. [Google Scholar] [CrossRef]
- Parven, A.; Meftaul, I.M.; Venkateswarlu, K.; Megharaj, M. Herbicides in modern sustainable agriculture: Environmental fate, ecological implications, and human health concerns. Int. J. Environ. Sci. Technol. 2025, 22, 1181–1202. [Google Scholar] [CrossRef]
- Korres, N.E.; Burgos, N.R.; Travlos, I.; Vurro, M.; Gitsopoulos, T.K.; Varanasi, V.K.; Duke, S.O.; Kudsk, P.; Brabham, C.; Rouse, C.E.; et al. Chapter Six—New directions for integrated weed management: Modern technologies, tools and knowledge discovery. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 155, pp. 243–319. [Google Scholar]
- Rassam, G.; Latifi, N.; Soltani, A.; Kamkar, B. Impact of crop management on weed species diversity and community composition of winter wheat fields in Iran. Weed Biol. Manag. 2011, 11, 83–90. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, Y.; Wu, J.; Ma, Y.; He, J.; Zhou, D. Effects of Different Tillage Methods on Weed Community Diversity in Winter Wheat Fields. J. Ecol. Rural Environ. 2019, 35, 210–216. [Google Scholar] [CrossRef]
- Seipel, T.; Ishaq, S.L.; Larson, C.; Menalled, F.D. Weed Communities in Winter Wheat: Responses to Cropping Systems under Different Climatic Conditions. Sustainability 2022, 14, 6880. [Google Scholar] [CrossRef]
- Wang, K.; Qiang, S. Quantitative analysis of weed communities in wheat fields in Jiangsu. Acta Prataculturae Sin. 2007, 16, 118–126. [Google Scholar]
- Jiangsu Statistical Yearbook. Available online: https://tj.jiangsu.gov.cn/2023/index.htm (accessed on 2 March 2025).
- Qiu, B.; Jian, Z.; Yang, P.; Tang, Z.; Zhu, X.; Duan, M.; Yu, Q.; Chen, X.; Zhang, M.; Tu, P.; et al. Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification. Agric. Syst. 2024, 216, 103878. [Google Scholar] [CrossRef]
- Mao, W.; Yu, J.; Li, W.; Zuo, W.; Qiu, M.; Zhang, L.; Fan, X.; Chen, M.; Wang, X.; Bai, Y. Spatial and temporal variation of cropland pH and the driving factors in Jiangsu over the past 40 years. J. Plant Nutr. Fertil. 2023, 29, 264–272. [Google Scholar] [CrossRef]
- Chen, G.; He, Y.; Qiang, S. Increasing Seriousness of Plant Invasions in Croplands of Eastern China in Relation to Changing Farming Practices: A Case Study. PLoS ONE 2013, 8, e74136. [Google Scholar] [CrossRef]
- Qiang, S.; Li, Y. On the distribution pattern of weed communities of summer crop fields in river valley and hilly lands of Anhui province. Chin. J. Plant Ecol. 1990, 4, 212–219. [Google Scholar]
- FOC. Flora of China Website. Available online: https://www.iplant.cn/ (accessed on 13 March 2025).
- Sawicka, B.; Krochmal-Marczak, B.; Barbas, P.; Pszczolkowski, P.; Cwintal, M. Biodiversity of Weeds in Fields of Grain in South-Eastern Poland. Agriculture 2020, 10, 589. [Google Scholar] [CrossRef]
- Chen, G. Safe and Efficient Application of Herbicides in Wheat Fields and Aerial Spraying Technology; China Agriculture Press: Beijing, China, 2025. [Google Scholar]
- Jing, Q.; Liu, J.; Chen, A.; Chen, C.; Liu, J. The spatial–temporal chemical footprint of pesticides in China from 1999 to 2018. Environ. Sci. Pollut. Res. 2022, 29, 75539–75549. [Google Scholar] [CrossRef]
- Liu, B.; Wu, Q.; Wang, F.; Zhang, B. Is straw return-to-field always beneficial? Evidence from an integrated cost-benefit analysis. Energy 2019, 171, 393–402. [Google Scholar] [CrossRef]
- Hyväluoma, J.; Keskinen, R.; Hetmanenko, V.; Kinnunen, S.; Miettinen, A.; Niemi, P.; Kaseva, J.; Soinne, H. The legacy of deep ploughing and liming—A 1990s experimental site revisited. Soil Tillage Res. 2025, 245, 106323. [Google Scholar] [CrossRef]
- Li, W.; Wu, C.; Wang, M.; Jiang, M.; Zhang, J.; Liao, M.; Cao, H.; Zhao, N. Herbicide Resistance Status of Italian Ryegrass (Lolium multiflorum Lam.) and Alternative Herbicide Options for Its Effective Control in the Huang-Huai-Hai Plain of China. Agronomy 2022, 12, 2394. [Google Scholar] [CrossRef]
- Yu, H.; Yang, J.; Cui, H.; Abbas, A.; Wei, S.; Li, X. Distribution, Genetic Diversity and Population Structure of Aegilops tauschii Coss. in Major Wheat-Growing Regions in China. Agriculture 2021, 11, 311. [Google Scholar] [CrossRef]
- Lan, Y.; Li, W.; Wei, S.; Huang, H.; Liu, Z.; Huang, Z. Multiple resistance to ACCase- and ALS-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds.) in China. Pestic. Biochem. Physiol. 2022, 184, 105127. [Google Scholar] [CrossRef]
- He, B.; Hu, Y.; Wang, W.; Yan, W.; Ye, Y. The Progress towards Novel Herbicide Modes of Action and Targeted Herbicide Development. Agronomy 2022, 12, 2792. [Google Scholar] [CrossRef]
- Wei, H.; Li, J.; Peng, Z.; Lu, B.; Zhao, Z.; Yang, W. Relationships of Aegilops tauschii revealed by DNA fingerprints: The evidence for agriculture exchange between China and the West. Prog. Nat. Sci. 2008, 18, 1525–1531. [Google Scholar] [CrossRef]
- Lan, Y.; Sun, Y.; Liu, Z.; Wei, S.; Huang, H.; Cao, Y.; Li, W.; Huang, Z. Mechanism of Resistance to Pyroxsulam in Multiple-Resistant Alopecurus myosuroides from China. Plants 2022, 11, 1645. [Google Scholar] [CrossRef]
- Qin, X.; Yang, C.; Hu, M.; Duan, Y.; Zhang, N.; Wang, J.; Wang, H.; Liu, W. Molecular Basis of Resistance to Mesosulfuron-Methyl in a Black-Grass (Alopecurus myosuroides Huds.) Population from China. Agronomy 2022, 12, 2203. [Google Scholar] [CrossRef]
- Mao, H.; Wang, Y.; Wang, J.; Wang, J.; Liao, P.; Chen, G. Growth and fertility of Alopecurus japonicus plants survived from fenoxaprop-P-ethyl, mesosulfuron-methyl and prometryn. Plant Prot. 2022, 48, 305–311. [Google Scholar] [CrossRef]
- Chen, G.; Zhuang, X.; Masoom, A.; Chen, Y.; Gu, Y.; Zhang, J. Echinochloa crus-galli seedlings surviving florpyrauxifen-benzyl applications have a greater potential to produce resistant seeds. Weed Technol. 2023, 38, e12. [Google Scholar] [CrossRef]
- Chen, G.; Xue, J.; Yu, H.; Mao, H. Resistance and Hormetic Responses to Acetyl-Coenzyme A Carboxylase-Inhibitors Observed in a Population Holding the I1781L Target-Site Mutation. Weed Biol. Manag. 2025, 25, e70003. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Zhu, F.; Gao, T.; Chen, G. Proliferative capacity in relation to metamifop resistance in Echinochloa glabrescens: A case study. Chil. J. Agric. Res. 2023, 83, 408–417. [Google Scholar] [CrossRef]
- Jabran, K.; Mahmood, K.; Melander, B.; Bajwa, A.A.; Kudsk, P. Chapter Three—Weed Dynamics and Management in Wheat. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 145, pp. 97–166. [Google Scholar]
- Qu, X.; Liu, C.; Zhuang, J.; Qiang, S. Pollen-mediated flow of herbicide resistance genes in Beckmannia syzigachne. Pest Manag. Sci. 2022, 78, 2121–2128. [Google Scholar] [CrossRef]
- Takano, H.K.; Lopez Ovejero, R.F.; Belchior, G.G.; Maymone, G.P.L.; Dayan, F.E. ACCase-inhibiting herbicides: Mechanism of action, resistance evolution and stewardship. Sci. Agric. 2021, 78, e20190102. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; DiTommaso, A.; Zhang, C.; Zheng, G.; Liang, W.; Islam, F.; Yang, C.; Chen, X.; Zhou, W. Weed research status, challenges, and opportunities in China. Crop Prot. 2020, 134, 104449. [Google Scholar] [CrossRef]
- Bi, Y.; Liu, W.; Guo, W.; Li, L.; Yuan, G.; Du, L.; Wang, J. Molecular basis of multiple resistance to ACCase- and ALS-inhibiting herbicides in Alopecurus japonicus from China. Pestic. Biochem. Physiol. 2016, 126, 22–27. [Google Scholar] [CrossRef]
- Chen, G.; Xu, H.; Zhang, T.; Bai, C.; Dong, L. Fenoxaprop-P-ethyl resistance conferred by cytochrome P450s and target site mutation in Alopecurus japonicus. Pest Manag. Sci. 2018, 74, 1694–1703. [Google Scholar] [CrossRef]
- Gao, X.; Li, J.; Zhang, Y.; Li, M.; Fang, F. Resistance Level, Mechanism of Alopecurus myosuroides and Control Efficacy in Wheat Field in Shandong Province. Sci. Agric. Sin. 2020, 53, 3518–3526. [Google Scholar] [CrossRef]
- Gao, X.; Li, M.; Fang, F.; Zhang, Y.; Sun, Z.; Qi, J. Species composition and characterization of weed communities in wheat fields in Shandong Province. Acta Prataculturae Sin. 2014, 23, 92–98. [Google Scholar]
- Tian, J.; Bai, D.; He, S.; Li, Z.; Bai, L.; Pan, L. Overexpression of cytochrome P450 CYP71AF43 contributing resistance to fenoxaprop-P-ethyl in Alopecurus myosuroides from China. Pestic. Biochem. Physiol. 2025, 209, 106355. [Google Scholar] [CrossRef]
- Wu, C.; Song, M.; Zhang, T.; Zhou, C.; Liu, W.; Jin, T.; Zhao, N. Target-site mutation and cytochrome P450s confer resistance to multiple herbicides in Italian ryegrass (Lolium multiflorum Lam.) from China. Crop Prot. 2022, 161, 106068. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, R.; Zhao, C.; Qiang, S. Reduction in weed infestation through integrated depletion of the weed seed bank in a rice-wheat cropping system. Agron. Sustain. Dev. 2021, 41, 10. [Google Scholar] [CrossRef]
- Si, Z.; Liu, J.; Wu, L.; Li, S.; Wang, G.; Yu, J.; Gao, Y.; Duan, A. A high-yield and high-efficiency cultivation pattern of winter wheat in North China Plain: High-low seedbed cultivation. Field Crops Res. 2023, 300, 109010. [Google Scholar] [CrossRef]
- Shirk, R.Y.; Hamrick, J.L.; Zhang, C.; Qiang, S. Patterns of genetic diversity reveal multiple introductions and recurrent founder effects during range expansion in invasive populations of Geranium carolinianum (Geraniaceae). Heredity 2014, 112, 497–507. [Google Scholar] [CrossRef]
- Ye, K. A Newly Recorded Naturalized Plant of Geranium L. (Geraniaceae) from China. J. Trop. Subtrop. Bot. 2015, 23, 34–36. [Google Scholar]
- Chen, C.; Wang, C. Geranium dissectum L. (Geraniaceae), a Newly Naturalized Plant in Taiwan. Collect. Res. 2019, 32, 57–61. [Google Scholar] [CrossRef]
- Dar, P.A.; Reshi, Z.A. Components, processes and consequences of biotic homogenization: A review. Contemp. Probl. Ecol. 2014, 7, 123–136. [Google Scholar] [CrossRef]
- Peters, K.; Breitsameter, L.; Gerowitt, B. Impact of climate change on weeds in agriculture: A review. Agron. Sustain. Dev. 2014, 34, 707–721. [Google Scholar] [CrossRef]
- Qi, T.; Degen, A.; Wang, W.; Qi, L.; Huang, M.; Luo, B.; Peng, Z.; Liu, P.; Shang, Z. Environmental factors and soil properties that drive the distribution and diversity patterns of weeds and ecosystem multifunctionality in alpine grassland. Biol. Conserv. 2025, 305, 111103. [Google Scholar] [CrossRef]
- Armengot, L.; Blanco-Moreno, J.M.; Bàrberi, P.; Bocci, G.; Carlesi, S.; Aendekerk, R.; Berner, A.; Celette, F.; Grosse, M.; Huiting, H.; et al. Tillage as a driver of change in weed communities: A functional perspective. Agric. Ecosyst. Environ. 2016, 222, 276–285. [Google Scholar] [CrossRef]
- Alarcón Víllora, R.; Hernández Plaza, E.; Navarrete, L.; Sánchez, M.J.; Sánchez, A.M. Climate and tillage system drive weed communities’ functional diversity in a Mediterranean cereal-legume rotation. Agric. Ecosyst. Environ. 2019, 283, 106574. [Google Scholar] [CrossRef]
- Lu, F.; Meng, J.; Cheng, B. How does improving agricultural mechanization affect the green development of agriculture? Evidence from China. J. Clean. Prod. 2024, 472, 143298. [Google Scholar] [CrossRef]
- Qu, X.; Zhang, Z.; Gao, P.; Chen, W.; Qiang, S. Intra- and cross-field dispersal of Beckmannia syzigachne seed by a combine harvester. Pest Manag. Sci. 2021, 77, 4109–4116. [Google Scholar] [CrossRef]
- Ikeda, M.; Nishi, T.; Asai, M.; Muranaka, T.; Konuma, A.; Tominaga, T.; Shimono, Y. The role of weed seed contamination in grain commodities as propagule pressure. Biol. Invasions 2022, 24, 1707–1723. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, Y.; Zhang, H.; Li, Q.; Zhao, X.; Guo, X.; Liu, W.; Wan, F. Asymmetric succession in soil microbial communities enhances the competitive advantage of invasive alien plants. Microbiome 2024, 12, 265. [Google Scholar] [CrossRef]
- Chen, G. Biotic Homogenization Caused by Alien Plant Invasions: Case Studies with Weed Communities in Summer Croplands in Anhui Province and the Invasion of Solidago Canadensis. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2013. [Google Scholar] [CrossRef]
- Daru, B.H.; Davies, T.J.; Willis, C.G.; Meineke, E.K.; Ronk, A.; Zobel, M.; Pärtel, M.; Antonelli, A.; Davis, C.C. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 2021, 12, 6983. [Google Scholar] [CrossRef]
- Li, J.; Xin, J.; Zhang, H.; Duan, J.; Ren, Y.; Sun, N.; Xu, M. Evolution characteristics of soil nutrients in the main rice productionregions, the middle-lower reach of Yangtze River of China. J. Plant Nutr. Fertil. 2015, 21, 92–103. [Google Scholar] [CrossRef]
Code | Average Height on Sampled Land | ||
---|---|---|---|
>80cm | 20–80cm | <20cm | |
0.1 | <0.1% | <1% | <2% |
0.5 | 0.2–0.9% | 1–2% | 3–5% |
1 | 1–2% | 3–5% | 6–10% |
2 | 3–5% | 6–10% | 11–25% |
3 | 6–10% | 11–25% | 25–50% |
4 | 11–25% | 25–50% | 50–90% |
5 | >25% | >50% | >90% |
Code | Family | Species | Fr-C (%) | Fr-H (%) | Dv-C (%) | Dv-H (%) |
---|---|---|---|---|---|---|
1 | Geraniaceae | Geranium carolinianum | 86.4 | 22.4 | 3 | 2 |
2 | Rubiaceae | Galium spurium | 76 | 57.1 | 7.4 | 14.7 |
3 | Poaceae | Beckmannia syzigachne | 74.7 | 22.4 | 19.2 | 6.6 |
4 | Plantaginaceae | Veronica persica | 64.6 | 50.9 | 3.3 | 11.7 |
5 | Cannabaceae | Humulus scandens | 53.6 | \ | 2.8 | \ |
6 | Poaceae | Elymus kamoji | 52.9 | \ | 1.6 | \ |
7 | Brassicaceae | Capsella bursa-pastoris | 52.3 | 11.1 | 1.9 | 1 |
8 | Compositae | Erigeron canadensis | 51.3 | \ | 1 | \ |
9 | Convolvulaceae | Calystegia hederacea | 51 | 11.8 | 1.8 | 0.8 |
10 | Amaranthaceae | Alternanthera philoxeroides | 49.4 | 3 | 2 | 0 |
11 | Poaceae | Alopecurus japonicus | 49.4 | 31.8 | 9.4 | 8.6 |
12 | Fabaceae | Vicia sativa | 47.7 | 46.4 | 1.3 | 5.7 |
13 | Compositae | Hemisteptia lyrata | 44.8 | 8.5 | 1.3 | 0.3 |
14 | Mazaceae | Mazus pumilus | 43.2 | 5.4 | 1 | 0.2 |
15 | Amaranthaceae | Chenopodium ficifolium | 41.6 | \ | 1.6 | \ |
16 | Poaceae | Polypogon fugax | 41.6 | 26.1 | 1.8 | 3.9 |
17 | Caryophyllaceae | Stellaria aquatica | 39.3 | 10.6 | 1.9 | 1.4 |
18 | Apiaceae | Cnidium monnieri | 38.6 | \ | 1.1 | \ |
19 | Poaceae | Alopecurus aequalis | 38.3 | 27.5 | 5 | 6.7 |
20 | Polygonaceae | Persicaria lapathifolia | 36.4 | \ | 1.4 | \ |
21 | Poaceae | Lolium multiflorum | 34.1 | \ | 6.5 | \ |
22 | Apocynaceae | Cynanchum rostellatum | 31.5 | \ | 0.8 | \ |
23 | Euphorbiaceae | Acalypha australis | 31.2 | \ | 0.5 | \ |
24 | Poaceae | Poa annua | 29.2 | 8.6 | 0.9 | 0.9 |
25 | Compositae | Cirsium arvense | 28.6 | 20.5 | 0.7 | 1.9 |
26 | Polygonaceae | Rumex dentatus | 27.3 | 4.3 | 0.5 | 0.2 |
27 | Euphorbiaceae | Euphorbia helioscopia | 26.9 | 11 | 0.3 | 1 |
28 | Poaceae | Bromus japonicus | 26 | \ | 1.2 | \ |
29 | Polygonaceae | Polygonum aviculare | 22.7 | 9.5 | 0.8 | 0.5 |
30 | Plantaginaceae | Veronica anagallis-aquatica | 22.4 | 3.5 | 0.5 | 0.1 |
31 | Poaceae | Phragmites australis | 22.4 | \ | 1 | \ |
32 | Poaceae | Digitaria sanguinalis | 22.1 | \ | 0.4 | \ |
33 | Compositae | Sonchus oleraceus | 21.8 | \ | 0.5 | \ |
34 | Poaceae | Avena fatua | 21.1 | 28.6 | 1.5 | 5.8 |
35 | Compositae | Lactuca indica | 20.1 | \ | 0.3 | \ |
36 | Compositae | Sonchus asper | 19.5 | \ | 0.3 | \ |
37 | Poaceae | Cynodon dactylon | 19.2 | \ | 0.3 | \ |
38 | Fabaceae | Medicago polymorpha | 16.9 | \ | 0.4 | \ |
39 | Fabaceae | Vicia hirsuta | 14.9 | \ | 0.7 | \ |
40 | Poaceae | Eleusine indica | 14.6 | \ | 0.3 | \ |
41 | Poaceae | Echinochloa crus-galli | 14.3 | \ | 0.4 | \ |
42 | Brassicaceae | Rorippa indica | 13.6 | 4 | 0.6 | 0.3 |
43 | Compositae | Erigeron annuus | 13 | \ | 0.3 | \ |
44 | Compositae | Solidago canadensis | 12.7 | \ | 0.4 | \ |
45 | Brassicaceae | Descurainia sophia | 11.7 | 19.8 | 0.2 | 3.6 |
46 | Amaranthaceae | Chenopodium album | 11.4 | 7.7 | 0.4 | 0.7 |
47 | Poaceae | Aegilops tauschii | 10.7 | \ | 0.5 | \ |
48 | Vitaceae | Causonis japonica | 10.7 | \ | 0.2 | \ |
49 | Caryophyllaceae | Cerastium glomeratum | 10.4 | 22.7 | 0.2 | 3.1 |
50 | Rosaceae | Potentilla supina | 10.4 | \ | 0.2 | \ |
Species | Corn Stubble | Rice Stubble |
---|---|---|
Veronica persica * | 63.2 ± 20.5 | 20.5 ± 2.8 |
Echinochloa crus-galli * | 0.2 ± 0.2 | 4.2 ± 0.9 |
Polypogon fugax * | 4.8 ± 1.3 | 17.9 ± 3.2 |
Descurainia sophia * | 4.5 ± 0.7 | 0.8 ± 0.4 |
Capsella bursa-pastoris * | 8.8 ± 2.1 | 18.0 ± 3.1 |
Humulus scandens * | 74.5 ± 22.9 | 12.9 ± 2.1 |
Stellaria aquatica * | 6.6 ± 4.1 | 18.6 ± 3.3 |
Alopecurus japonicus * | 18.4 ± 12.2 | 94.8 ± 14.8 |
Acalypha australis * | 2.1 ± 0.6 | 4.9 ± 0.6 |
Mazus pumilus * | 2.3 ± 1.3 | 9.8 ± 1.0 |
Beckmannia syzigachne * | 51.8 ± 21.7 | 189.2 ± 16.6 |
Galium spurium * | 39.6 ± 8.6 | 68.9 ± 9.2 |
Veronica anagallis-aquatica | 6.8 ± 4.4 | 4.1 ± 0.7 |
Polygonum aviculare | 5.0 ± 2.5 | 7.5 ± 2.0 |
Potentilla supina | 2.0 ± 1.0 | 1.4 ± 0.4 |
Rumex dentatus | 3.9 ± 1.0 | 4.2 ± 1.0 |
Lactuca indica | 4.3 ± 1.1 | 2.8 ± 0.8 |
Cirsium arvense | 9.6 ± 5.9 | 5.5 ± 1.6 |
Calystegia hederacea | 21.6 ± 7.3 | 14.4 ± 2.2 |
Vicia sativa | 8.2 ± 2.2 | 12.6 ± 3.6 |
Lolium multiflorum | 59.3 ± 17.6 | 55.1 ± 10.7 |
Elymus kamoji | 30.5 ± 14.6 | 9.4 ± 1.7 |
Cynodon dactylon | 5.0 ± 1.4 | 2.5 ± 0.6 |
Rorippa indica | 1.1 ± 0.4 | 5.7 ± 2.3 |
Solidago canadensis | 3.2 ± 1.4 | 3.6 ± 1.6 |
Aegilops tauschii | 10.4 ± 2.7 | 3.0 ± 1.7 |
Alopecurus aequalis | 21.4 ± 13.8 | 47.6 ± 7.7 |
Alternanthera philoxeroides | 37.5 ± 16.5 | 12.3 ± 1.7 |
Sonchus oleraceus | 12.0 ± 7.2 | 3.2 ± 0.9 |
Chenopodium album | 11.6 ± 10.2 | 1.9 ± 0.5 |
Phragmites australis | 24.3 ± 12.2 | 5.1 ± 1.3 |
Cynanchum rostellatum | 16.6 ± 13.0 | 5.3 ± 1.2 |
Digitaria sanguinalis | 4.3 ± 1.2 | 3.6 ± 0.6 |
Medicago polymorpha | 6.3 ± 4.8 | 2.7 ± 0.5 |
Hemisteptia lyrata | 23.8 ± 8.2 | 8.2 ± 1.6 |
Eleusine indica | 5.2 ± 2.0 | 2.2 ± 0.9 |
Cerastium glomeratum | 1.3 ± 0.6 | 2.1 ± 0.6 |
Bromus japonicus | 24.5 ± 12.1 | 7.0 ± 2.3 |
Cnidium monnieri | 2.9 ± 0.8 | 10.8 ± 2.7 |
Persicaria lapathifolia | 7.0 ± 3.9 | 13.8 ± 2.8 |
Causonis japonica | 2.5 ± 0.7 | 1.5 ± 0.4 |
Vicia hirsuta | 7.0 ± 3.8 | 5.8 ± 2.8 |
Erigeron canadensis | 7.9 ± 1.3 | 9.2 ± 1.4 |
Chenopodium ficifolium | 33.9 ± 17.3 | 9.6 ± 1.7 |
Sonchus asper | 7.9 ± 4.2 | 2.3 ± 0.4 |
Geranium carolinianum | 24.6 ± 3.8 | 25.9 ± 2.7 |
Avena fatua | 19.6 ± 7.8 | 11.6 ± 5.3 |
Erigeron annuus | 10.9 ± 8.4 | 1.1 ± 0.2 |
Poa annua | 13.4 ± 8.5 | 6.6 ± 1.1 |
Euphorbia helioscopia | 4.6 ± 1.1 | 2.8 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Huang, Z.; Xue, J.; Zhu, F.; Chen, Y.; Wu, Y. Succession of Weed Community on Wheat Lands in the Past 25 Years: A Case Study in Eastern China. Biology 2025, 14, 943. https://doi.org/10.3390/biology14080943
Chen G, Huang Z, Xue J, Zhu F, Chen Y, Wu Y. Succession of Weed Community on Wheat Lands in the Past 25 Years: A Case Study in Eastern China. Biology. 2025; 14(8):943. https://doi.org/10.3390/biology14080943
Chicago/Turabian StyleChen, Guoqi, Zeyue Huang, Jiahao Xue, Feng Zhu, Yang Chen, and Yunfei Wu. 2025. "Succession of Weed Community on Wheat Lands in the Past 25 Years: A Case Study in Eastern China" Biology 14, no. 8: 943. https://doi.org/10.3390/biology14080943
APA StyleChen, G., Huang, Z., Xue, J., Zhu, F., Chen, Y., & Wu, Y. (2025). Succession of Weed Community on Wheat Lands in the Past 25 Years: A Case Study in Eastern China. Biology, 14(8), 943. https://doi.org/10.3390/biology14080943