Mass Movements in Wetlands: An Analysis of a Typical Amazon Delta-Estuary Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Design
- (1)
- Configuration of the applied information system and the supporting cartography;
- (2)
- Adjustment of geospatial relationships associated with the scale and spatial resolution of the sensors adopted;
- (3)
- Evaluation of the following main analysis products:
- (a)
- Precipitation—for characterizing the region’s rainfall regime;
- (b)
- Definition of the regional pattern, with the description of physical aspects associated with elevation, drainage network, groundwater, and relief units;
- (4)
- Application of water indices for characterizing the saturated zone through satellite estimation, as well as evaluation products for the potential of water infiltration and retention in the soil, derived from surface runoff behavior and soil textural characteristics;
- (5)
- Zoning according to areas with the highest potential for mass movements due to soil saturation characteristics and land use;
- (6)
- In situ evaluation using Ground-Penetrating Radar (GPR) of areas that experienced collapse and their relationship with the obtained zoning.
2.3. Diagnosis and Assessment
2.4. Rainfall Distribution Assessment
2.5. Assessment of Saturated Zone Behavior
2.6. Ground-Penetrating Radar (GPR) Survey
3. Results
3.1. Wetland Profile: Influence of Rainfall
3.2. Wetland Profile: Geological–Geomorphological Aspects
3.3. Wetland Profile: Hydrographic Density and Infiltration Potential
3.4. Spectral Indices: Water and Land Cover
3.5. Ground-Penetrating Radar (GPR) Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mansur, A.V.; Brondízio, E.S.; Roy, S.; Hetrick, S.; Vogt, N.D.; Newton, A. An assessment of urban vulnerability in the Amazon Delta and Estuary: A multi-criterion index of flood exposure, socio-economic conditions and infrastructure. Sustain. Sci. 2016, 11, 625–643. [Google Scholar] [CrossRef]
- Ribeiro, R.M.; Amaral, S.; Monteiro, A.M.V.; Dal’Asta, A.P. “Cities in the forest” and “cities of the forest”: An environmental Kuznets curve (EKC) spatial approach to analyzing the urbanization–deforestation relationship in a Brazilian Amazon state. Ecol. Soc. 2022, 27, 2. [Google Scholar] [CrossRef]
- Riquetti, N.B.; Beskow, S.; Guo, L.; Mello, C.R. Soil erosion assessment in the Amazon basin in the last 60 years of deforestation. Environ. Res. 2023, 236, 116846. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, A.S.; Papa, F.; Hamilton, S.K.; Fassoni-Andrade, A.; Wongchuig, S.; Espinoza, J.C.; Paiva, R.C.D.; Melack, J.M.; Fluet-Chouinard, E.; Castello, L.; et al. Increased floodplain inundation in the Amazon since 1980. Environ. Res. Lett. 2023, 18, 034024. [Google Scholar] [CrossRef]
- Staal, A.; Flores, B.M.; Aguiar, A.P.D.; Bosmans, J.H.; Fetzer, I.; Tuinenburg, O.A. Feedback between drought and deforestation in the Amazon. Environ. Res. Lett. 2020, 15, 044024. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Marengo, J.A.; Schongart, J.; Jimenez, J.C. The new historical flood of 2021 in the Amazon River compared to major floods of the 21st century: Atmospheric features in the context of the intensification of floods. Weather Clim. Extrem. 2022, 35, 100406. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Jimenez, J.C.; Marengo, J.A.; Schongart, J.; Ronchail, J.; Lavado-Casimiro, W.; Ribeiro, J.V.M. The new record of drought and warmth in the Amazon in 2023 related to regional and global climatic features. Sci. Rep. 2024, 14, 8107. [Google Scholar] [CrossRef]
- Abuzied, S.M.; Pradhan, B. Hydro-geomorphic assessment of erosion intensity and sediment yield initiated debris-flow hazards at Wadi Dahab Watershed, Egypt. Georisk 2021, 15, 221–246. [Google Scholar] [CrossRef]
- Malka, A. GIS-Based Landslide Susceptibility Modelling in Urbanized Areas: A Case Study of the Tri-City Area of Poland. GeoHazards 2022, 3, 508–528. [Google Scholar] [CrossRef]
- Costa, S.M.F.; Rosa, N.C. O processo de urbanização na Amazônia e suas peculiaridades: Uma análise do delta do rio Amazonas. Rev. Políticas Públicas Cid. 2017, 5, 81–105. [Google Scholar]
- Oliveira, J.A. Tempo e espaço urbano na Amazônia no período da borracha. Scripta Nova. Rev. Electrónica De Geogr. Y Cienc. Soc. 2006, 10, 218. [Google Scholar]
- Ribeiro, R.M.; Ferreira, A.E.D.M.; Cardoso, A.C.D.; Monteiro, A.M.V.; Dal’Asta, A.P.; Carmo, M.B.S.; Amaral, S. A trama urbana amazônica: Proposta metodológica para reconhecimento de um território de possibilidades. Rev. Bras. De Estud. Urbanos E Reg. 2024, 26, e202433pt. [Google Scholar] [CrossRef]
- Cardoso, A.C.D.; Lima, J.J.F.; Ponte, J.P.X.; Ventura, R.D.S.; Rodrigues, R.M. Morfologia urbana das cidades amazônicas: A experiência do Grupo de Pesquisa Cidades na Amazônia da Universidade Federal do Pará. URBE—Rev. Bras. De Gestão Urbana 2020, 12, e20190275. [Google Scholar] [CrossRef]
- Milana, J.P.; Geisler, P. Forensic Geology Applied to Decipher the Landslide Dam Collapse and Outburst Flood of the Santa Cruz River, San Juan, Argentina. GeoHazards 2022, 3, 252–276. [Google Scholar] [CrossRef]
- Brondizio, E.S.; Vogt, N.; Mansur, A.V.; Anthony, E.J.; Costa, S.M.F.; Hetrick, S. A conceptual framework for analyzing deltas as coupled social-ecological systems: An example from the Amazon River Delta. Sustain. Sci. 2016, 11, 591–609. [Google Scholar] [CrossRef]
- Rocha, Y.A.D.S.; Lima, A.M.M.D.; Silva, C.M.S.E.; Franco, V.D.S.; Raiol, L.L.; Oliveira, I.S.D.; Dias, M.L.M.; Beltrão Júnior, P.R.E. Hydro-meteorological dynamics of rainfall erosivity risk in the Amazon River Delta-Estuary. J. Water Clim. Change 2025, 16, 1673–1694. [Google Scholar] [CrossRef]
- Edmonds, D.A.; Caldwell, R.L.; Brondizio, E.S.; Siani, S.M.O. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 2020, 11, 4741. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.E.; Amorim, G.; Grigio, A.M.; Paranhos Filho, A.C. Análise Comparativa entre Métodos de Índice de Água por Diferença Normalizada (NDWI) em Área Úmida Continental. Anuário Do Inst. De Geociências 2018, 41, 654–662. [Google Scholar] [CrossRef]
- Liu, S.; Wu, Y.; Zhang, G.; Lin, N.; Liu, Z. Comparing Water Indices for Landsat Data for Automated Surface Water Body Extraction under Complex Ground Background: A Case Study in Jilin Province. Remote Sens. 2023, 15, 1678. [Google Scholar] [CrossRef]
- Land Processes Distributed Active Archive Center (LPDAAC); U.S. Geological Survey (USGS); Earth Observing System Data and Information System (EOSDIS); National Aeronautics and Space Administration (NASA). Google Earth Product: MOD09A1.061 Terra Surface Reflectance 8-Day Global: Ee.ImageCollection(“MODIS/061/MOD09A1”); MODIS Combined 16-Day NDWI: Ee.ImageCollection(“MODIS/MCD43A4_006_NDWI”). 2024. Available online: https://lpdaac.usgs.gov/data/data-citations-and-guidelines/ (accessed on 29 January 2025).
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48, W04531, Google Earth product: GRACE Monthly Mass Grids Release 06 Version 04—Land: Ee.ImageCollection (“NASA/GRACE/MASS_GRIDS_V04LAND”). [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004, Google Earth product: NASA SRTM Digital Elevation 30m: Ee.Image(“USGS/SRTMGL1_003”). [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. 2008, 89, 93–94, Google Earth product: HydroSHEDS Void-Filled DEM: Ee.Image(“WWF/HydroSHEDS/03VFDEM”). [Google Scholar] [CrossRef]
- Hengl, T.; Gupta, S. Soil water content (volumetric%) for 33kPa and 1500kPa suctions predicted at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution (Version v01). Zenodo 2019. Google Earth product: OpenLandMap Soil Water Content (Field Capacity): Ee.Image(“OpenLandMap/SOL/SOL_WATERCONTENT-33KPA_USDA-4B1C_M/v01”). [Google Scholar] [CrossRef]
- Gupta, S.; Papritz, A.; Lehmann, P.; Hengl, T.; Bonetti, S.; Or, D. Global Mapping of Soil Water Characteristics Parameters-Fusing Curated Data with Machine Learning and Environmental Covariates. Remote Sens. 2022, 14, 1947. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853, Google Earth product: Hansen/UMD/Google/USGS/NASA: Ee.Image(“UMD/hansen/global_forest_change_2023_v1_11”). [Google Scholar] [CrossRef]
- SGB. Estimativa de água disponível nos solos do Brasil; Catálogo PRONASOLOS, Escala: 1:500.000; Serviço Geológico do Brasil—SGB: Rio de Janeiro, Brazil, 2024. Available online: https://geosgb.sgb.gov.br/geosgb/pronasolos.html (accessed on 20 January 2025).
- Avaliação, Predição e Mapeamento de Água Disponível em Solos do Brasil. Boletim de Pesquisa e Desenvolvimento; Embrapa Solos: Rio de Janeiro, Brazil, 2022; p. 146. [Google Scholar]
- Brasil. Agência Nacional de Águas e Saneamento Básico—ANA. HidroWeb: Sistema de Informações Hidrológicas. 2024. Available online: https://www.snirh.gov.br/hidroweb (accessed on 14 January 2025).
- Li, Q.; Lu, L.; Wang, C.; Li, Y.; Sui, Y.; Guo, H. MODIS-derived spatiotemporal changes of major lake surface areas in arid Xinjiang, China, 2000–2014. Water 2015, 7, 5731–5751. [Google Scholar] [CrossRef]
- Laonamsai, J.; Julphunthong, P.; Saprathet, T.; Kimmany, B.; Ganchanasuragit, T.; Chomcheawchan, P.; Tomun, N. Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand. Hydrology 2023, 10, 70. [Google Scholar] [CrossRef]
- Rocha, A.D.; Vulova, S.; Meier, F.; Förster, M.; Kleinschmit, B. Mapping evapotranspirative and radiative cooling services in an urban environment. Sustain. Cities Soc. 2022, 85, 104051. [Google Scholar] [CrossRef]
- Loizos, A.; Plati, C. Accuracy of pavement thickness estimation using different ground penetrating radar analysis approaches. NDT E Int. 2007, 40, 147–157. [Google Scholar] [CrossRef]
- Annan, A.P. Electromagnetic Principles of Ground Penetrating Radar. In Ground Penetrating Radar: Theory and Applications; Jol, H.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Yoon, J.H.; Zeng, N. An Atlantic influence on Amazon rainfall. Clim. Dyn. 2010, 34, 249–264. [Google Scholar] [CrossRef]
- Limberger, L.; Silva, M.E.S. Precipitação na bacia amazônica e sua associação à variabilidade da temperatura da superfície dos oceanos Pacífico e Atlântico: Uma revisão. GEOUSP: Espaço E Tempo 2016, 20, 657–675. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, W.; Zhang, Y.; Lin, X.; Li, Z. Near-term projection of Amazon rainfall dominated by phase transition of the Interdecadal Pacific Oscillation. Clim. Atmos. Sci. 2024, 7, 46. [Google Scholar] [CrossRef]
- João, X.S.J.; Teixeira, S.G.; Fonseca, D.D.F. Geodiversidade do Estado do Pará; CPRM: Belém, Brazil, 2013; p. 256. [Google Scholar]
- Folha, S.A. 22 Belém. Programa Geologia do Brasil—Cartografia Hidrogeológica; Carta Hidrogeológica, Escala 1:1.000.000; Serviço Geológico do Brasil (SGB/CPRM): Rio de Janeiro, Brazil, 2016. [Google Scholar]
- El-Robrini, M.; Silva, P.V.; Magno, C.; Rodrigues, M.V. Morfodinâmica e transporte de sedimentos em praias amazônicas de meso-marés: O caso da Vila do Conde (Barcarena/Pará). Cad. De Geogr. 2023, 33, 1300–1328. [Google Scholar] [CrossRef]
- Huang, J.; Hartemink, A.E. Soil and environmental issues in sandy soils. Earth-Sci. Rev. 2020, 208, 103295. [Google Scholar] [CrossRef]
- Bronswijk, J.J.B. Modeling of water balance, cracking and subsidence of clay soils. J. Hydrol. 1988, 97, 199–212. [Google Scholar] [CrossRef]
- Coyle, C.; Creamer, R.E.; Schulte, R.P.; O’Sullivan, L.; Jordan, P. A functional land management conceptual framework under soil drainage and land use scenarios. Environ. Sci. Policy 2016, 56, 39–48. [Google Scholar] [CrossRef]
- Javed, A.; Cheng, Q.; Peng, H.; Altan, O.; Li, Y.; Ara, I.; Huq, E.; Ali, Y.; Saleem, N. Review of spectral indices for urban remote sensing. Photogramm. Eng. Remote Sens. 2021, 87, 513–524. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, Y.; Gowda, P.H.; Dong, J.; Zhang, G.; Kakani, V.G.; Wagle, P.; Chen, L.; Flynn, C.; Jiang, W. Application of the water-related spectral reflectance indices: A review. Ecol. Indic. 2019, 98, 68–79. [Google Scholar] [CrossRef]
- Zhao, C.; Wei, H.; Feyisa, G.L.; Castro Tayer, T.; Ma, G.; Wu, H.; Pan, Y. Evaluating spectral indices for water extraction: Limitations and contextual usage recommendations. Int. J. Appl. Earth Obs. Geoinf. 2025, 139, 104510. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Gümüş, M.G. Performance Analysis of Water Extraction Indices with Geospatial and Statistical Techniques Using Google Earth Engine Platform: A Case Study of Ramsar Wetlands in Türkiye. J. Indian Soc. Remote Sens. 2025, 53, 2697–2721. [Google Scholar] [CrossRef]
- Sevil, J.; Gutiérrez, F.; Carnicer, C.; Carbonel, D.; Desir, G.; García-Arnay, Á.; Guerrero, J. Characterizing and monitoring a high-risk sinkhole in an urban area underlain by salt through non-invasive methods: Detailed mapping, high-precision leveling and GPR. Eng. Geol. 2020, 272, 105641. [Google Scholar] [CrossRef]
- Lago, A.L.; Borges, W.R.; Barros, J.S.; Sousa Amaral, E. GPR application for the characterization of sinkholes in Teresina, Brazil. Environ. Earth Sci. 2022, 81, 132. [Google Scholar] [CrossRef]
- Scheip, C.M.; Wegmann, K.W. HazMapper: A global open-source natural hazard mapping application in Google Earth Engine. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 21, 1495–1511. [Google Scholar] [CrossRef]
- Chen, C.W.; Hung, C.; Lin, G.W.; Liou, J.J.; Lin, S.Y.; Li, H.C.; Chen, Y.M.; Chen, H. Preliminary establishment of a mass movement warning system for Taiwan using the soil water index. Landslides 2022, 19, 1779–1789. [Google Scholar] [CrossRef]
- Assis, L.E.; Marques, E.A.G.; Lima, C.A.; Menezes, S.J.M.C.; Roque, L.A. Mapping of Geological-Geotechnical Risk of Mass Movement in an Urban Area in Rio Piracicaba, MG, Brazil. Soils Rocks 2020, 43, 57–70. [Google Scholar] [CrossRef]
- Bandeira, I.C.N.; Adamy, A.; Andretta, E.R.; Costa da Conceição, R.A.; Andrade, M.M.N. Terras caídas: Fluvial erosion or distinct phenomenon in the Amazon? Environ. Earth Sci. 2018, 77, 222. [Google Scholar] [CrossRef]
- Mendes, A.; Galvão, P.; Sousa, J.; Silva, I.; Carneiro, R.N. Relations of the groundwater quality and disorderly occupation in an Amazon low-income neighborhood developed over a former dump area, Santarém/PA, Brazil. Environ. Dev. Sustain. 2019, 21, 353–368. [Google Scholar] [CrossRef]
- Di Prinzio, M.; Bittelli, M.; Castellarin, A.; Pisa, P.R. Application of GPR to the monitoring of river embankments. J. Appl. Geophys. 2010, 71, 53–61. [Google Scholar] [CrossRef]
- Wierzbicki, G.; Ostrowski, P.; Falkowski, T. Applying floodplain geomorphology to flood management (The Lower Vistula River upstream from Plock, Poland). Open Geosci. 2020, 12, 1003–1016. [Google Scholar] [CrossRef]
- Ashfaq, S.; Tufail, M.; Niaz, A.; Muhammad, S.; Alzahrani, H.; Tariq, A. Flood susceptibility assessment and mapping using GIS-based analytical hierarchy process and frequency ratio models. Glob. Planet. Change 2025, 251, 104831. [Google Scholar] [CrossRef]
- Xiao, T.; Zhang, L.M. Data-driven landslide forecasting: Methods, data completeness, and real-time warning. Eng. Geol. 2023, 317, 107068. [Google Scholar] [CrossRef]
- Zêzere, J.L.; Pereira, S.; Melo, R.; Oliveira, S.C.; Garcia, R.A. Mapping landslide susceptibility using data-driven methods. Sci. Total Environ. 2017, 589, 250–267. [Google Scholar] [CrossRef]
- Famiglietti, N.A.; Miele, P.; Massa, B.; Memmolo, A.; Moschillo, R.; Zarrilli, L.; Vicari, A. Ground Penetrating Radar (GPR) Investigations in Urban Areas Affected by Gravity-Driven Deformations. Geosciences 2024, 14, 222. [Google Scholar] [CrossRef]
- Schwendel, A.C.; Milan, D.J.; Pope, R.J.; Williams, R.; Thompson, W. Using geophysical subsurface data for the reconstruction of valley-scale spatio-temporal floodplain evolution: Implications for upland river restoration. Geomorphology 2024, 466, 109459. [Google Scholar] [CrossRef]
Description | Source | Indicator |
---|---|---|
MODIS Ground, bands 1–7, 500 m resolution. | [20] | MNDWI, WRI, and AWEI |
MODIS Ground, water content response, 500 m resolution. | [20] | NDWI |
GRACE, water mass equivalent (water thickness) anomalies, derived from time-varying gravity observations, 111 km resolution. | [21] | PG |
Shuttle Radar Topography Mission. The SRTM V3 (SRTM Plus) product is provided by NASA JPL at 1 arcsecond (~30 m) resolution. | [22] | Digital elevation model and landform |
The datasets at 3 arcseconds (~90 m) are the void-filled DEM, hydrologically conditioned DEM, and drainage (flow) direction. | [23] | Hydrographic density |
Soil water content (% vol.) for 33 kPa and 1500 kPa suctions predicted at 6 standard depths (200 cm) at 250 m resolution. | [24,25] | Infiltration potential |
Hansen Global Forest Change v1.11 (2000–2023), 30.92 m resolution. Time-series analysis of Landsat images—global forest extent and change. | [26] | Land cover change |
The volume of water stored in the soil and accessible to plants is a parameter used in the modeling of agroclimatic risk in Brazil. | [27,28] | Soil available water |
Parameters | Source | ||
---|---|---|---|
[18,19] | |||
Spectral Range—MODIS Sensor Bands Product MOD09A1 | |||
Band 3 | B | Blue | 459–479 nm |
Band 4 | G | Green | 545–565 nm |
Band 1 | R | Red | 620–670 nm |
Band 2 | IVP | Near-infrared | 841–875 nm |
Band 5 | SWIR1 | Shortwave infrared | 1230–1250 nm |
Band 6 | SWIR2 | Shortwave infrared | 1628–1652 nm |
Statistical Parameters | NDWI | MNDWI | WRI | AWEI |
---|---|---|---|---|
Mean | 0.010 | −0.397 | 0.384 | −0.549 |
Median | 0.003 | −0.412 | 0.383 | −0.585 |
Standard deviation | 0.054 | 0.128 | 0.130 | 0.170 |
Quartiles (0.25, 0.5, 0.75) | −0.009/0.003/0.022 | −0.485/−0.412/−0.327 | 0.310/0.383/0.467 | −0.663/−0.585/−0.467 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima, A.M.M.; do Nascimento, V.G.Q.; Martins, S.S.; de Oliveira, A.C.S.; da Silva Rocha, Y.A. Mass Movements in Wetlands: An Analysis of a Typical Amazon Delta-Estuary Environment. GeoHazards 2025, 6, 40. https://doi.org/10.3390/geohazards6030040
de Lima AMM, do Nascimento VGQ, Martins SS, de Oliveira ACS, da Silva Rocha YA. Mass Movements in Wetlands: An Analysis of a Typical Amazon Delta-Estuary Environment. GeoHazards. 2025; 6(3):40. https://doi.org/10.3390/geohazards6030040
Chicago/Turabian Stylede Lima, Aline M. Meiguins, Vitor Gabriel Queiroz do Nascimento, Saulo Siqueira Martins, Arthur Cesar Souza de Oliveira, and Yuri Antonio da Silva Rocha. 2025. "Mass Movements in Wetlands: An Analysis of a Typical Amazon Delta-Estuary Environment" GeoHazards 6, no. 3: 40. https://doi.org/10.3390/geohazards6030040
APA Stylede Lima, A. M. M., do Nascimento, V. G. Q., Martins, S. S., de Oliveira, A. C. S., & da Silva Rocha, Y. A. (2025). Mass Movements in Wetlands: An Analysis of a Typical Amazon Delta-Estuary Environment. GeoHazards, 6(3), 40. https://doi.org/10.3390/geohazards6030040