Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (982)

Search Parameters:
Keywords = lactobacillus plantarum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2663 KiB  
Article
Antimicrobial and Anticancer Activities of Lactiplantibacillus plantarum Probio87 Isolated from Human Breast Milk
by Pei Xu, Mageswaran Uma Mageswary, Azka Ainun Nisaa, Xiang Li, Yi-Jer Tan, Chern-Ein Oon, Cheng-Siang Tan, Wen Luo and Min-Tze Liong
Nutrients 2025, 17(15), 2554; https://doi.org/10.3390/nu17152554 - 5 Aug 2025
Viewed by 4
Abstract
Background/Objectives: This study evaluated the in vitro probiotic potential of Lactiplantibacillus plantarum Probio87 (Probio87), focusing on its physiological robustness, safety, antimicrobial properties, and anticancer activity, with relevance to vaginal and cervical health. Methods: Tests included acid and bile salt tolerance, mucin adhesion, and [...] Read more.
Background/Objectives: This study evaluated the in vitro probiotic potential of Lactiplantibacillus plantarum Probio87 (Probio87), focusing on its physiological robustness, safety, antimicrobial properties, and anticancer activity, with relevance to vaginal and cervical health. Methods: Tests included acid and bile salt tolerance, mucin adhesion, and carbohydrate utilization. Prebiotic preferences were assessed using FOS, GOS, and inulin. Antibiotic susceptibility was evaluated per EFSA standards. Antimicrobial activity of the cell-free supernatant (CFS) was tested against Staphylococcus aureus, Escherichia coli, and Candida species. Effects on Lactobacillus iners and L. crispatus were analyzed. Anticancer properties were assessed in HeLa, CaSki (HPV-positive), and C-33A (HPV-negative) cervical cancer cell lines through proliferation, apoptosis, angiogenesis, and cell cycle assays. Results: Probio87 showed strong acid and bile tolerance, efficient mucin adhesion, and broad carbohydrate utilization, favoring short-chain prebiotics like FOS and GOS over inulin. It met EFSA antibiotic safety standards. The CFS exhibited potent antimicrobial activity, including complete inhibition of Candida albicans. Probio87 selectively inhibited L. iners without affecting L. crispatus, indicating positive modulation of vaginal microbiota. In cervical cancer cells, the CFS significantly reduced proliferation and angiogenesis markers (p < 0.05), and induced apoptosis and cell cycle arrest in HPV-positive cells, with minimal effects on HPV-negative C-33A cells. Conclusions: Probio87 demonstrates strong probiotic potential, with safe, selective antimicrobial and anticancer effects. Its ability to modulate key microbial and cancer-related pathways supports its application in functional foods or therapeutic strategies for vaginal and cervical health. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

21 pages, 22173 KiB  
Article
Nature Nano-Barrier: HPMC/MD-Based Lactobacillus plantarum Pickering Emulsion to Extend Cherry Tomato Shelf Life
by Youwei Yu, Tian Li, Shengwang Li, Silong Jia, Xinyu Yang, Yaxuan Cui, Hui Ma, Shuaishuai Yan and Shaoying Zhang
Foods 2025, 14(15), 2729; https://doi.org/10.3390/foods14152729 - 5 Aug 2025
Viewed by 153
Abstract
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus [...] Read more.
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus plantarum), with maltodextrin (MD) as the dispersed phase and hydroxypropyl methylcellulose (HPMC) as the continuous phase. Characterization of emulsions at varying concentrations revealed that the optimized W/W-PL^8 film exhibited superior stability, smooth morphology, and low water vapor permeability (WVP = 220.437 g/(m2·24 h)), making it a promising candidate for fruit and vegetable preservation. Furthermore, the coating demonstrated strong antioxidant activity, with scavenging rates of 58.99% (ABTS) and 94.23% (DPPH), along with potent antimicrobial effects, showing inhibition rates of 12.8% against Escherichia coli and 23.7% against Staphylococcus aureus. Applied to cherry tomatoes, the W/W-PL^8 coating significantly reduced respiration rates, minimized decay incidence, and maintained nutritional quality during storage. Remarkably, the coating successfully controlled Alternaria alternata contamination, enhancing the storage duration of cherry tomatoes. These findings highlight the potential of W/W-PL^8 as an eco-friendly and functional packaging material for fresh produce preservation. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Protective Efficacy of Lactobacillus plantarum Postbiotic beLP-K in a Dexamethasone-Induced Sarcopenia Model
by Juyeong Moon, Jin-Ho Lee, Eunwoo Jeong, Harang Park, Hye-Yeong Song, Jinsu Choi, Min-ah Kim, Kwon-Il Han, Doyong Kim, Han Sung Kim and Tack-Joong Kim
Int. J. Mol. Sci. 2025, 26(15), 7504; https://doi.org/10.3390/ijms26157504 - 3 Aug 2025
Viewed by 148
Abstract
Sarcopenia is characterized by a reduction in muscle function and skeletal muscle mass relative to that of healthy individuals. In older adults and those who are less resistant to sarcopenia, glucocorticoid secretion or accumulation during treatment exacerbates muscle protein degradation, potentially causing sarcopenia. [...] Read more.
Sarcopenia is characterized by a reduction in muscle function and skeletal muscle mass relative to that of healthy individuals. In older adults and those who are less resistant to sarcopenia, glucocorticoid secretion or accumulation during treatment exacerbates muscle protein degradation, potentially causing sarcopenia. This study assessed the preventive effects and mechanisms of heat-killed Lactobacillus plantarum postbiotic beLP-K (beLP-K) against dexamethasone (DEX)-induced sarcopenia in C2C12 myotubes and Sprague-Dawley rats. The administration of beLP-K did not induce cytotoxicity and mitigated cell damage caused by DEX. Furthermore, beLP-K significantly reduced the expression of forkhead box O3 α (FoxO3α), muscle atrophy f-box (MAFbx)/atrogin-1, and muscle RING-finger protein-1 (MuRF1), which are associated with muscle protein degradation. DEX induced weight loss in rats; however, in the beLP-K group, weight gain was observed. Micro-computed tomography analysis revealed that beLP-K increased muscle mass, correlating with weight and grip strength. beLP-K alleviated the DEX-induced reduction in grip strength and increased the mass of hind leg muscles. The correlation between beLP-K administration and increased muscle mass was associated with decreased expression levels of muscle degradation-related proteins such as MAFbx/atrogin-1 and MuRF1. Therefore, beLP-K may serve as a treatment for sarcopenia or as functional food material. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

33 pages, 4819 KiB  
Review
Hydrogels Modulating the Microbiome: Therapies for Tissue Regeneration with Infection Control
by Germán Reynaldo Jiménez-Gastelum, Carlos Esteban Villegas-Mercado, Juan Luis Cota-Quintero, Silvia Ivonne Arzola-Rodríguez, Rosalío Ramos-Payán and Mercedes Bermúdez
Gels 2025, 11(8), 584; https://doi.org/10.3390/gels11080584 - 29 Jul 2025
Viewed by 445
Abstract
This review explores the emerging role of functionalized hydrogels in modulating the microbiome for therapeutic applications in tissue regeneration and infection control. The skin and gut microbiomes play crucial roles in maintaining tissue homeostasis, regulating immune responses, and influencing the healing process. Disruptions [...] Read more.
This review explores the emerging role of functionalized hydrogels in modulating the microbiome for therapeutic applications in tissue regeneration and infection control. The skin and gut microbiomes play crucial roles in maintaining tissue homeostasis, regulating immune responses, and influencing the healing process. Disruptions in microbial balance—such as those observed in chronic wounds, autoimmune conditions, or post-surgical environments—can impair regeneration and increase susceptibility to infection. Hydrogels, due to their tunable physical and chemical properties, serve as versatile platforms for delivering probiotics, prebiotics, antimicrobials, and immune-modulatory agents. The encapsulation of beneficial bacteria, such as Lactobacillus plantarum or Prevotella histicola, within hydrogels could enhance bacterial viability, targeted delivery, and immune tolerance. Additionally, hydrogels functionalized with silver nanoparticles, nitric oxide donors, and bacteriocins have demonstrated effective biofilm disruption and pathogen clearance. These systems also promote favorable immune responses, such as M2 macrophage polarization and the induction of regulatory T cells, which are essential for tissue repair. Innovative approaches, including 3D bioprinting, self-healing materials, and photothermal-responsive hydrogels, expand the clinical versatility of these systems. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Engineering and Biomedical Therapeutics)
Show Figures

Figure 1

19 pages, 6650 KiB  
Article
Multi-Strain Probiotic Regulates the Intestinal Mucosal Immunity and Enhances the Protection of Piglets Against Porcine Epidemic Diarrhea Virus Challenge
by Xueying Wang, Qi Zhang, Weijian Wang, Xiaona Wang, Baifen Song, Jiaxuan Li, Wen Cui, Yanping Jiang, Weichun Xie and Lijie Tang
Microorganisms 2025, 13(8), 1738; https://doi.org/10.3390/microorganisms13081738 - 25 Jul 2025
Viewed by 379
Abstract
Porcine epidemic diarrhea virus (PEDV) infection induces severe, often fatal, watery diarrhea and vomiting in neonatal piglets, characterized by profound dehydration, villus atrophy, and catastrophic mortality rates approaching 100% in unprotected herds. This study developed a composite probiotic from Min-pig-derived Lactobacillus crispatus LCM233, [...] Read more.
Porcine epidemic diarrhea virus (PEDV) infection induces severe, often fatal, watery diarrhea and vomiting in neonatal piglets, characterized by profound dehydration, villus atrophy, and catastrophic mortality rates approaching 100% in unprotected herds. This study developed a composite probiotic from Min-pig-derived Lactobacillus crispatus LCM233, Ligilactobacillus salivarius LSM231, and Lactiplantibacillus plantarum LPM239, which exhibited synergistic growth, potent acid/bile salt tolerance, and broad-spectrum antimicrobial activity against pathogens. In vitro, the probiotic combination disrupted pathogen ultrastructure and inhibited PEDV replication in IPI-2I cells. In vivo, PEDV-infected piglets administered with the multi-strain probiotic exhibited decreased viral loads in anal and nasal swabs, as well as in intestinal tissues. This intervention was associated with the alleviation of diarrhea symptoms and improved weight gain. Furthermore, the multi-strain probiotic facilitated the repair of intestinal villi and tight junctions, increased the number of goblet cells, downregulated pro-inflammatory cytokines, enhanced the expression of barrier proteins, and upregulated antiviral interferon-stimulated genes. These findings demonstrate that the multi-strain probiotic mitigates PEDV-induced damage by restoring intestinal barrier homeostasis and modulating immune responses, providing a novel strategy for controlling PEDV infections. Full article
(This article belongs to the Special Issue Viral Infection on Swine: Pathogenesis, Diagnosis and Control)
Show Figures

Figure 1

19 pages, 4928 KiB  
Article
Microbial and Metabolomic Insights into Lactic Acid Bacteria Co-Inoculation for Dough-Stage Triticale Fermentation
by Yujie Niu, Xiaoling Ma, Chuying Wang, Peng Zhang, Qicheng Lu, Rui Long, Yanyan Wu and Wenju Zhang
Microorganisms 2025, 13(8), 1723; https://doi.org/10.3390/microorganisms13081723 - 23 Jul 2025
Viewed by 236
Abstract
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that [...] Read more.
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that may impair silage quality. This study aimed to investigate the effects of lactic acid bacteria inoculation on the fermentation quality, bacterial community, and metabolome of whole-plant triticale silage at the dough stage. Fresh triticale was ensiled for 30 days without or with an inoculant containing Lactiplantibacillus plantarum and Streptococcus bovis. Fermentation quality, bacterial succession, and metabolic profiles were analyzed at multiple time points. Inoculation significantly improved fermentation quality, characterized by a rapid pH drop, increased lactic acid production, and better preservation of fiber components. Microbial analysis revealed that inoculation successfully established Lactobacillus as the dominant genus while suppressing spoilage bacteria like Enterobacter and Clostridium. Metabolomic analysis on day 30 identified numerous differential metabolites, indicating that inoculation primarily altered pathways related to amino acid and purine metabolism. In conclusion, inoculating dough-stage triticale with this LAB combination effectively directs the fermentation trajectory. It enhances silage quality not only by optimizing organic acid profiles and microbial succession but also by modulating key metabolic pathways, ultimately leading to improved nutrient preservation. Full article
(This article belongs to the Special Issue Beneficial Microorganisms and Antimicrobials: 2nd Edition)
Show Figures

Figure 1

16 pages, 3181 KiB  
Article
Effects of Lactic Acid Bacteria Fermentation on the Release and Biotransformation of Bound Phenolics in Ma Bamboo Shoots (Dendrocalamus latiflorus Munro)
by Liangshi Zhang, Anping Li, Hemei Liu, Qifeng Mo and Zhengchang Zhong
Foods 2025, 14(15), 2573; https://doi.org/10.3390/foods14152573 - 23 Jul 2025
Viewed by 299
Abstract
Lactic acid bacteria fermentation has the potential to enhance the biological activity of bamboo shoot polyphenols. The aim of this study was to investigate the release pattern and biotransformation mechanism of bound phenols from bamboo shoots prepared by fermentation with Lactobacillus acidophilus, [...] Read more.
Lactic acid bacteria fermentation has the potential to enhance the biological activity of bamboo shoot polyphenols. The aim of this study was to investigate the release pattern and biotransformation mechanism of bound phenols from bamboo shoots prepared by fermentation with Lactobacillus acidophilus, Pediococcus pentosaceus, and Lactobacillus plantarum. The results showed that compared with unfermented controls, bound forms of vanillic acid, p-coumaric acid, and ferulic acid significantly decreased, while their free forms increased substantially after 6 d fermentation (p < 0.05). Quantitative analysis revealed particularly dramatic transformations for p-coumaric acid, which showed a 30–3000% increase in free form, and ferulic acid with a 203–359% increase in free form. Pediococcus pentosaceus demonstrated outstanding performance in bound phenol release and conversion, correlating with its higher β-glucosidase (0.67 U/g) and ferulic acid esterase (0.69 U/g) production. FITR, SEM, and IFM also demonstrated that LAB fermentation led to changes between free and bound phenols in bamboo shoots. These results demonstrate Pediococcus pentosaceus fermentation most effectively liberates bound phenolics, significantly improving their bioavailability for functional food applications. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 3896 KiB  
Article
Mung Bean Starch-Derived Fermented Liquid Alleviates Constipation via 5-HT Modulation and Gut Microbiota Regulation: An In Vivo Study
by Tao Ma, Mengtian Zhou, Xinru Zhang, Ruixue Zhang, Ying Wei and Jifeng Liu
Foods 2025, 14(14), 2483; https://doi.org/10.3390/foods14142483 - 16 Jul 2025
Viewed by 348
Abstract
Background: Constipation is a common gastrointestinal disorder with a significant impact on quality of life. Methods: Constipation was induced in male ICR mice via 25% cotrimoxazole gavage (20 mL/kg/day for 7 days). Mice were divided into prevention (pre-MBSFL), treatment (MBSFL), and control groups. [...] Read more.
Background: Constipation is a common gastrointestinal disorder with a significant impact on quality of life. Methods: Constipation was induced in male ICR mice via 25% cotrimoxazole gavage (20 mL/kg/day for 7 days). Mice were divided into prevention (pre-MBSFL), treatment (MBSFL), and control groups. MBSFL was prepared by fermenting mung bean starch with Lactobacillus plantarum (1:3 w/v ratio, 37 °C for 48 h), and administered via daily oral gavage (250 mg/kg bw) for 14 days. Fecal parameters (water content and first black stool latency), gastrointestinal motility (gastric emptying and small intestinal propulsion), serum biomarkers (NO, VIP, SP, and 5-HT), and intestinal gene expression (5HTR4, SERT, and MAOA) were analyzed. Results: MBSFL intervention restored fecal water content by 38%, reduced first black stool latency from 6.2 h to 3.1 h, and improved small intestinal propulsion by 64%. Additionally, it downregulated serum NO (25%) and VIP (32%) while upregulating SP (49%) and 5-HT (78%) levels. Intestinal 5HTR4 and SERT expression increased by 78% and 71%, respectively, with MAOA suppression (25%). Microbial analysis revealed a 140% increase in Dubosiella and 49% in Lactobacillus abundance, alongside a 62% reduction in Mucispirillum. MBSFL contained polysaccharides (12.3% w/w) and organic acids, including hydroxy butyric acid (4.2 mg/mL). Conclusions: MBSFL alleviates constipation through dual mechanisms: modulating 5-HT pathway activity and restoring gut microbiota homeostasis. Full article
Show Figures

Figure 1

16 pages, 2386 KiB  
Article
Heat-Killed Lactobacillus plantarum beLP1 Attenuates Dexamethasone-Induced Sarcopenia in Rats by Increasing AKT Phosphorylation
by Jinsu Choi, Eunwoo Jeong, Harang Park, Hye-Yeong Song, Juyeong Moon, Min-ah Kim, Bon Seo Koo, Jin-Ho Lee, Jong Kwang Hong, Kwon-Il Han, Doyong Kim, Han Sung Kim and Tack-Joong Kim
Biomedicines 2025, 13(7), 1668; https://doi.org/10.3390/biomedicines13071668 - 8 Jul 2025
Viewed by 437
Abstract
Background/Objectives: Sarcopenia is an age-related disease resulting in muscle mass deterioration and declining strength and functional ability. Muscle protein degradation pathways are activated through the ubiquitin–proteasome system, which is integral to the pathogenesis of sarcopenia. This study examined the capability of Lactobacillus [...] Read more.
Background/Objectives: Sarcopenia is an age-related disease resulting in muscle mass deterioration and declining strength and functional ability. Muscle protein degradation pathways are activated through the ubiquitin–proteasome system, which is integral to the pathogenesis of sarcopenia. This study examined the capability of Lactobacillus plantarum beLP1 as a postbiotic ingredient of kimchi that prevents sarcopenia. Methods: We evaluated cell viability and measured diameters in a C2C12 myotube damage model and muscle volume, muscle weight, muscle strength, and the expression of muscle degradation proteins MuRF1 and Atrogin-1 in dexamethasone-induced sarcopenic model rats using a heat-killed beLP1 strain. Results: beLP1 had no cytotoxic effects on C2C12 and prevented dexamethasone-induced cellular damage, suggesting its role in muscle protein degradation pathways. beLP1 treatment significantly prevented the dexamethasone-induced reduction in myotube diameter. In a dexamethasone-induced sarcopenic rat model, oral beLP1 significantly mitigated muscle mass decline and prevented grip strength reduction. Microcomputed tomography demonstrated that beLP1 reduced dexamethasone-induced muscle volume loss. beLP1 treatment reduced Atrogin-1 and Muscle RING-finger protein-1 (MuRF1) and the transcription factor Forkhead box O3 alpha (FoxO3α), which triggers muscle protein breakdown. beLP1 exerts protective effects by inhibiting the ubiquitin-proteasome system and regulating FoxO3α signaling. It increased AKT (Ser473) phosphorylation, which affected muscle protein synthesis, degradation, and cell survival, suggesting its potential to prevent sarcopenia. Conclusions: Heat-killed Lactobacillus plantarum beLP1 alleviates muscle mass wasting and weakness in a dexamethasone-induced sarcopenia model by regulating muscle protein degradation pathways and signaling molecules. Thus, postbiotics may be functional ingredients in sarcopenia prevention. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

19 pages, 18888 KiB  
Article
Effects of Lactobacillus plantarum-Fermented Feed on Growth and Intestinal Health in Haliotis discus hannai
by Ling Ke, Chenyu Huang, Song Peng, Mengshi Zhao, Fengqiang Lin and Zhaolong Li
Microorganisms 2025, 13(7), 1603; https://doi.org/10.3390/microorganisms13071603 - 8 Jul 2025
Viewed by 448
Abstract
This study multidimensionally investigates the comprehensive effects of Lactobacillus plantarum (LP)-fermented feed on growth performance, intestinal health, and metabolic regulation in Pacific abalone (Haliotis discus hannai). The results demonstrate that LP fermentation significantly alters feed’s physical properties and nutritional profile, softening [...] Read more.
This study multidimensionally investigates the comprehensive effects of Lactobacillus plantarum (LP)-fermented feed on growth performance, intestinal health, and metabolic regulation in Pacific abalone (Haliotis discus hannai). The results demonstrate that LP fermentation significantly alters feed’s physical properties and nutritional profile, softening texture, increasing viscosity, and emitting an acidic aroma. Notably, it enhanced contents of cis-9-palmitoleic acid, α-linolenic acid (ALA), and functional amino acids (GABA, L-histidine, and L-asparagine), indicating that fermentation optimized ω-3 fatty acid accumulation and amino acid profiles through the modulation of fatty acid metabolic pathways, thereby improving feed biofunctionality and stress-resistant potential. Further analyses revealed that fermented feed markedly improved intestinal morphology in abalone, promoting villus integrity and upregulating tight junction proteins (ZO-1, Claudin) to reinforce intestinal barrier function. Concurrently, it downregulated inflammatory cytokines (TNF-α, NF-κB, IL-16) while upregulating anti-inflammatory factors (TLR4) and antioxidant-related genes (NRF2/KEAP1 pathway), synergistically mitigating intestinal inflammation and enhancing antioxidant capacity. Sequencing and untargeted metabolomics unveiled that fermented feed substantially remodeled gut microbiota structure, increasing Firmicutes abundance while reducing Bacteroidetes, with the notable enrichment of beneficial genera such as Mycoplasma. Metabolite profiling highlighted the significant activation of lipid metabolism, tryptophan pathway, and coenzyme A biosynthesis. A Spearman correlation analysis identified microbiota–metabolite interactions (such as Halomonas’ association with isethionic acid) potentially driving growth performance via metabolic microenvironment regulation. In conclusion, LP-fermented feed enhances abalone growth, immune response, and aquaculture efficiency through multi-dimensional synergistic mechanisms (nutritional optimization, intestinal homeostasis regulation, microbiota–metabolome crosstalk), providing critical theoretical foundations for aquafeed development and probiotic applications in aquaculture. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

17 pages, 2424 KiB  
Article
Characterization and Evaluation of Lactic Acid Bacteria from Feline Milk for Probiotic Properties
by Haohong Zheng, Jiali Wang, Yunjiang Liu, Zhijun Zhong, Haifeng Liu, Ziyao Zhou and Guangneng Peng
Animals 2025, 15(13), 1990; https://doi.org/10.3390/ani15131990 - 7 Jul 2025
Viewed by 434
Abstract
Antibiotic overuse has contributed to the emergence of multidrug-resistant (MDR) bacteria, posing a serious public health threat. Pets may act as reservoirs of MDR bacteria, with the potential to transmit these pathogens to humans. This study aimed to identify probiotic alternatives to antibiotics [...] Read more.
Antibiotic overuse has contributed to the emergence of multidrug-resistant (MDR) bacteria, posing a serious public health threat. Pets may act as reservoirs of MDR bacteria, with the potential to transmit these pathogens to humans. This study aimed to identify probiotic alternatives to antibiotics by isolating and evaluating lactic acid bacteria (LAB) from feline milk. In addition to conventional in vitro assessments such as growth kinetics, adhesion ability, safety, and antipathogenic activity, this study also evaluated the antioxidant capacity and production of beneficial metabolites. Three LAB strains were isolated from feline milk, including two strains of Lactobacillus plantarum (M2 and M3) and one strain of Weissella confusa (M1). Resistance assays revealed that strains M2 and M3 exhibited high survival rates under stress conditions, including exposure to bile salts, acidic environments, artificial intestinal and gastric juice. Notably, strain M3 demonstrated strong auto-aggregation ability (73.39%) and high hydrophobicity toward trichloromethane (62.16%). It was also nonhemolytic and susceptible to various β-lactam antibiotics. Furthermore, strain M3 exhibited potent antimicrobial activity in both co-aggregation and Oxford cup assays. Overall, L. plantarum M3 displayed superior probiotic properties, suggesting its potential as an adjunct or alternative to antibiotics in managing MDR bacterial infections in cats. Full article
(This article belongs to the Topic Research on Companion Animal Nutrition)
Show Figures

Figure 1

22 pages, 1853 KiB  
Article
Fermentation Characteristics, Nutrient Content, and Microbial Population of Silphium perfoliatum L. Silage Produced with Different Lactic Acid Bacteria Additives
by Yitong Jin, Bao Yuan, Fuhou Li, Jiarui Du, Meng Yu, Hongyu Tang, Lixia Zhang and Peng Wang
Animals 2025, 15(13), 1955; https://doi.org/10.3390/ani15131955 - 2 Jul 2025
Viewed by 383
Abstract
The aim of this study was to explore the effects of different lactic acid bacteria additives (Lactiplantibacillus plantarum or Lentilactobacillus buchneri) on the fermentation quality, chemical composition, in vitro digestibility, bacterial community structure, and predictive function of S. perfoliatum silage feed. [...] Read more.
The aim of this study was to explore the effects of different lactic acid bacteria additives (Lactiplantibacillus plantarum or Lentilactobacillus buchneri) on the fermentation quality, chemical composition, in vitro digestibility, bacterial community structure, and predictive function of S. perfoliatum silage feed. Fresh S. perfoliatum was wilted overnight, then its moisture content was adjusted between 65 and 70%. The experiment was performed in three groups as follows: (1) the control group (CK group), which lacked a Lactobacillus preparation; (2) the Lactiplantibacillus plantarum (L. plantarum) group (LP group), which was inoculated with L. plantarum at 5 × 106 cfu/g FW; and (3) the Lentilactobacillus buchneri (L. buchneri) group (LB group), which was inoculated with L. buchneri at 5 × 106 cfu/g FW. The results showed that L. plantarum significantly reduced pH and increased lactic acid (LA) content in S. perfoliatum silage compared with the control. L. buchneri, on the other hand, excelled in reducing ammonia nitrogen (NH3-N) content and significantly increased acetic acid (AA) content. At 60 days of fermentation, the CP content was significantly higher (p < 0.05) in the LP and LB groups than in the CK group (19.29 vs. 15.53 and 15.87). At 60 days of fermentation, the ivCPD was significantly higher (p < 0.05) in the LB group than in the CK and LP groups (57.80 vs. 54.77 and 55.77). The 60-day silage process completely altered the bacterial community of S. perfoliatum silage. In the fresh samples, the dominant genera were Weissella_A and Pantoea_A. Weissella_A and Pantoea_A were gradually replaced by Lentilactobacillus and Lactiplantibacillus after S. perfoliatum ensiling. After 45 days of fermentation, L. buchneri became the dominant strain in CK, LP and LB groups. Inoculation with L. plantarum altered the succession of the bacterial community from 7 to 15 days of fermentation of S. perfoliatum. In contrast, inoculation with L. buchneri affected the succession of the bacterial community from 30 to 60 days of S. perfoliatum fermentation. In S. perfoliatum silage aged 7 to 60 days, the amino acid metabolic pathway in the LB group remained upregulated. The experimental results revealed that inoculation with L. buchneri had a stronger effect on S. perfoliatum silage than inoculation with L. plantarum. Thus, L. buchneri should be selected as an additive for S. perfoliatum silage fermentation in practical production. Full article
(This article belongs to the Special Issue Impacts of Silage-Based Forages on Ruminant Health and Welfare)
Show Figures

Figure 1

16 pages, 2462 KiB  
Article
Potential of LP as a Biocontrol Agent for Vibriosis in Abalone Farming
by Ling Ke, Chenyu Huang, Song Peng, Mengshi Zhao, Fengqiang Lin and Zhaolong Li
Microorganisms 2025, 13(7), 1554; https://doi.org/10.3390/microorganisms13071554 - 2 Jul 2025
Viewed by 306
Abstract
Vibrio species are among the primary pathogenic bacteria affecting abalone aquaculture, posing significant threats to farming practices. Current clinical control predominantly relies on antibiotics, which can result in antibiotic residues in both abalone and the surrounding marine environments. Lactobacillus plantarum (LP) [...] Read more.
Vibrio species are among the primary pathogenic bacteria affecting abalone aquaculture, posing significant threats to farming practices. Current clinical control predominantly relies on antibiotics, which can result in antibiotic residues in both abalone and the surrounding marine environments. Lactobacillus plantarum (LP) has been shown to release bioactive antagonistic substances and exhibits potent inhibitory effects against marine pathogenic bacteria. This study aimed to screen and characterize the probiotic properties of LP strains isolated from rice wine lees to develop a novel biocontrol strategy against Vibriosis in abalone. The methods employed included selective media cultivation, streak plate isolation, and single-colony purification for strain screening, followed by Gram staining, 16S rDNA sequencing, and phylogenetic tree construction using MEGA11 for identification. The resilience, antimicrobial activity, and in vivo antagonistic efficacy of the strains were evaluated through stress tolerance assays, agar diffusion tests, and animal experiments. The results demonstrated the successful isolation and purification of four LP strains (NDMJ-1 to NDMJ-4). Phylogenetic analysis revealed closer genetic relationships between NDMJ-3 and NDMJ-4, while NDMJ-1 and NDMJ-2 were found to be more distantly related. All strains exhibited γ-hemolytic activity, bile salt tolerance (0.3–3.0%), and resistance to both acid (pH 2.5) and alkali (pH 8.5), although they were temperature sensitive (inactivated above 45 °C). The strains showed susceptibility to most of the 20 tested antibiotics, with marked variations in hydrophobicity (1.91–93.15%) and auto-aggregation (13.29–60.63%). In vitro antibacterial assays revealed that cell-free supernatants of the strains significantly inhibited Vibrio parahaemolyticus, V. alginolyticus, and V. natriegens, with NDMJ-4 displaying the strongest inhibitory activity. In vivo experiments confirmed that NDMJ-4 significantly reduced mortality in abalone infected with V. parahaemolyticus. In conclusion, the LP strains isolated from rice wine lees (NDMJ-1 to NDMJ-4) possess robust stress resistance, adhesion capabilities, and broad antibiotic susceptibility. Their metabolites exhibit significant inhibition against abalone-pathogenic Vibrios, particularly NDMJ-4, which demonstrates exceptional potential as a candidate strain for developing eco-friendly biocontrol agents against Vibriosis in abalone aquaculture. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

24 pages, 3808 KiB  
Systematic Review
Psychobiotics in Depression: Sources, Metabolites, and Treatment—A Systematic Review
by Angelika Śliwka, Magdalena Polak-Berecka, Kinga Zdybel, Agnieszka Zelek-Molik and Adam Waśko
Nutrients 2025, 17(13), 2139; https://doi.org/10.3390/nu17132139 - 27 Jun 2025
Viewed by 2003
Abstract
Background: Depression and other stress-related mental disorders are the leading causes of disability worldwide, making them a significant global health challenge. This systematic review aimed to determine the effects of psychobiotic microorganisms on mental health outcomes, with particular focus on their sources, [...] Read more.
Background: Depression and other stress-related mental disorders are the leading causes of disability worldwide, making them a significant global health challenge. This systematic review aimed to determine the effects of psychobiotic microorganisms on mental health outcomes, with particular focus on their sources, metabolites, and therapeutic potential for depression. Methods: A systematic review following PRISMA guidelines was conducted using publications from 2020 to 2024 in Web of Science, Scopus, and PubMed databases. Inclusion criteria encompassed studies examining psychobiotics and their effects on mental health in humans and experimental animals. Risk of bias assessment was performed using the Cochrane Risk of Bias Tool (ROB 2). Results: Of 369 identified articles, 45 met inclusion criteria. The predominant psychobiotic strains belonged to Lactobacillus (45.5%) and Bifidobacterium (29%) genera. Strain sources included commercial preparations (24%), human-derived (16%), and food-derived (16%) strains. Psychobiotic bacterial strains produce neuromodulatory metabolites, such as short-chain fatty acids (SCFAs), neurotransmitters (e.g., GABA and serotonin), and indole derivatives that influence the gut–brain axis. Their mechanisms of action include neurotransmitter regulation (27.1%), modulation of the gut microbiota (27.1%), SCFA production (16.9%), and control of inflammatory responses (15.3%). Lactobacillus plantarum, Bifidobacterium breve, and Akkermansia muciniphila demonstrated particularly promising effects. Conclusions: Psychobiotics show significant potential as adjunctive and therapeutic agents in depressive disorders through modulation of the gut–brain axis. Full article
Show Figures

Figure 1

12 pages, 1861 KiB  
Article
Metal–Phenolic Network-Directed Coating of Lactobacillus plantarum: A Promising Strategy to Increase Stability
by Haoxuan Zhang, Huange Zhang and Hao Zhong
Foods 2025, 14(13), 2277; https://doi.org/10.3390/foods14132277 - 26 Jun 2025
Viewed by 458
Abstract
Lactobacillus plantarum exhibits probiotic effects, including regulating the balance of the intestinal microbiota and enhancing immune function. However, this strain often experiences viability loss upon ingestion due to harsh conditions within the human digestive tract. This study aimed to evaluate the efficacy of [...] Read more.
Lactobacillus plantarum exhibits probiotic effects, including regulating the balance of the intestinal microbiota and enhancing immune function. However, this strain often experiences viability loss upon ingestion due to harsh conditions within the human digestive tract. This study aimed to evaluate the efficacy of metal–phenol networks (MPNs) fabricated via three polyphenols—tannic acid (TA), tea polyphenol (TP), and anthocyanin (ACN)—combined with Fe(III) coatings in protecting Lactobacillus plantarum during simulated digestion and storage. The results demonstrated that MPNs formed a protective film on the bacterial surface. While TA and ACN inhibited the growth of Lactobacillus plantarum YJ7, TP stimulated proliferation. Within the MPNs system, only Fe(III)-TA exhibited growth-inhibitory effects. Notably, ACN displayed the highest proliferation rate during the initial 2 h, followed by TP between 3 and 4 h. All MPN-coated groups maintained high bacterial viability at 25 °C and −20 °C, with TP-coated bacteria showing the highest viable cell count, followed by TA and ACN. In vitro digestion experiments further revealed that the Fe(III)-ACN group exhibited the strongest resistance to artificial gastric juice. In conclusion, tea polyphenol and anthocyanin demonstrate superior potential for probiotic encapsulation, offering both protective stability during digestion and enhanced viability under storage conditions. Full article
Show Figures

Figure 1

Back to TopTop