Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (352)

Search Parameters:
Keywords = kinetic energy recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7208 KB  
Article
Investigation of a Vertically Offset Rear-Rotor Quadrotor Configuration for Aerodynamic Interference Mitigation
by He Zhu, Xinyu Yi, Hong Nie, Xiaohui Wei, Qijun Zhao and Yin Yin
Drones 2026, 10(2), 92; https://doi.org/10.3390/drones10020092 - 28 Jan 2026
Abstract
The deployment of multi-rotor drones in applications such as package delivery and urban air mobility is increasingly prevalent. Aerodynamic interference between rotors in traditional quadrotor drones impairs performance, and vertical offset is a promising solution to mitigate this interference. This study systematically investigates [...] Read more.
The deployment of multi-rotor drones in applications such as package delivery and urban air mobility is increasingly prevalent. Aerodynamic interference between rotors in traditional quadrotor drones impairs performance, and vertical offset is a promising solution to mitigate this interference. This study systematically investigates the aerodynamic characteristics of a quadrotor drone with a vertically offset rear-rotor configuration through computational fluid dynamics (CFD) simulations. By varying the vertical spacing ratio between the front and rear rotors (H/R), quantitative analyses were conducted of key performance metrics, including rotor thrust and power loading, with explanations provided from the perspective of the flow field structure. Furthermore, the underlying physical mechanisms influencing the observed performance variations are explored. The results indicate that, under the operating conditions investigated in this study, which include a single rotor RPM, a 10° inflow angle, and a specific forward-flight speed, the vertically offset configuration demonstrates superior aerodynamic performance at H/R = 1. At this spacing ratio, the rear rotor disk avoids most of the downwash-induced velocity generated by the front rotor, allowing partial recovery of the effective angle of attack. Consequently, vortex-propeller interaction (PVI) is significantly weakened, turbulent kinetic energy (TKE) levels in the interference region are reduced, and premature flow separation on the rear rotor blades is suppressed. These combined effects enhance overall aerodynamic efficiency. This study clarifies the role of vertical rotor spacing in regulating aerodynamic interference in multi-rotor drones, offering valuable insights for the aerodynamic design of compact rotorcraft. Full article
(This article belongs to the Special Issue Advanced Flight Dynamics and Decision-Making for UAV Operations)
Show Figures

Figure 1

37 pages, 2028 KB  
Article
A Coordinated Wind-Storage Primary Frequency Regulation Strategy Accounting for Wind-Turbine Rotor Kinetic Energy Recovery
by Xuenan Zhao, Hao Hu, Guozheng Shang, Pengyu Zhao, Wenjing Dong, Zongnan Liu, Hongzhi Zhang and Yu Song
Energies 2026, 19(3), 658; https://doi.org/10.3390/en19030658 - 27 Jan 2026
Abstract
To improve the dynamic response and steady-state frequency quality of a wind–storage coordinated system during primary frequency regulation, and to address the secondary frequency dip caused by rotor kinetic energy recovery when a doubly fed induction generator (DFIG)-based wind turbine (DFIG-WT) participates in [...] Read more.
To improve the dynamic response and steady-state frequency quality of a wind–storage coordinated system during primary frequency regulation, and to address the secondary frequency dip caused by rotor kinetic energy recovery when a doubly fed induction generator (DFIG)-based wind turbine (DFIG-WT) participates in frequency support, this paper proposes a coordinated wind–storage primary frequency regulation strategy. This strategy synergistically controls the wind turbine’s rotor kinetic energy recovery and exploits the advantages of hybrid energy storage system (HESS). During the DFIG-WT control stage, an adaptive weighted model is developed for the inertial and droop power contributions of the DFIG-WT based on the available rotor kinetic energy, enabling a rational distribution of primary frequency regulation power. In the control segment of HESS, an adaptive complementary filtering frequency division strategy is proposed. This approach integrates an adaptive adjustment method based on state of charge (SOC) to control both the battery energy storage system (BESS) and supercapacitor (SC). Additionally, the BESS assists in completing the rotor kinetic energy recovery process. Through simulation experiments, the results demonstrate that under operating conditions of 9 m/s wind speed and a 30 MW step disturbance, the proposed adaptive weight integrated inertia control elevates the frequency nadir to 49.84 Hz and reduces the secondary frequency dip to 0.0035 Hz. Under the control strategy where wind and storage coordinated participate in frequency regulation and BESS assist in rotor kinetic energy recovery, secondary frequency dips were eliminated, with steady-state frequency rising to 49.941 Hz. The applicability of this strategy was further validated under higher wind speeds and larger disturbance conditions. Full article
19 pages, 1547 KB  
Article
Kinetics of Heavy Rare Earth Element Extraction from Phosphoric Acid Solutions
by Olga Cheremisina, Elena Lukyantseva and Vasiliy Sergeev
Eng 2026, 7(2), 58; https://doi.org/10.3390/eng7020058 - 27 Jan 2026
Abstract
Rare earth elements are indispensable for a wide range of advanced technologies, which underscores their strategic importance. This study investigates the kinetics of extracting heavy rare earth elements—lutetium, thulium, yttrium, erbium, and dysprosium—from industrial phosphoric acid solutions generated during apatite processing. A comparative [...] Read more.
Rare earth elements are indispensable for a wide range of advanced technologies, which underscores their strategic importance. This study investigates the kinetics of extracting heavy rare earth elements—lutetium, thulium, yttrium, erbium, and dysprosium—from industrial phosphoric acid solutions generated during apatite processing. A comparative approach using both solvent and solid-phase extraction with di-(2-ethylhexyl)phosphoric acid (D2EHPA) was applied to elucidate the underlying mechanisms. Optimal solvent extraction parameters (Vaq:Vorg = 2:1, φD2EHPA = 0.2, 298 K, stirring at 350 rpm) achieved efficiencies exceeding 85%. Efficient solid-phase recovery was attained under mild conditions (298 K, m:V = 1:10, shaking at 100 opm). The rate-limiting steps were identified as diffusion-controlled for solvent extraction, governed primarily by agitation intensity, and as a mixed external–internal diffusion regime for solid-phase extraction. Calculated activation energies for each element corroborate these findings. Full article
(This article belongs to the Special Issue New Trends in Sustainable Extraction of Energy-Critical Minerals)
Show Figures

Figure 1

17 pages, 12774 KB  
Article
Study of Stibnite Dissolution in Nitric Acid in the Presence of Organic Acids
by Oleg Dizer, Yuri Shklyaev, Dmitry Golovkin, Kirill Karimov and Denis Rogozhnikov
Minerals 2026, 16(2), 125; https://doi.org/10.3390/min16020125 - 24 Jan 2026
Viewed by 131
Abstract
The nitric acid leaching of antimony from stibnite using organic (tartaric and citric) acids as complexing agents was investigated. Tartaric acid has been found to be a more effective complexing agent, providing up to 90% antimony recovery, while citric acid achieves 54% only. [...] Read more.
The nitric acid leaching of antimony from stibnite using organic (tartaric and citric) acids as complexing agents was investigated. Tartaric acid has been found to be a more effective complexing agent, providing up to 90% antimony recovery, while citric acid achieves 54% only. SEM and X-ray diffraction analysis showed tartaric acid to prevent antimony hydrolysis, preserving unreacted stibnite in the residue, while Sb4O4(OH)2(NO3)2 particles were formed in the system with citric acid. Kinetic calculations have revealed that the nitric acid leaching of antimony with the addition of tartaric acid is limited by internal diffusion (R2 > 0.94), the activation energy is 62.5 kJ/mol, and the empirical reaction orders for tartaric and nitric acids are 2.3 and 2.7, respectively. These data are confirmed by morphological and phase analyses, the mechanisms of action of organic acids have been substantiated, and a generalized kinetic equation describing the nitric acid leaching of antimony with the addition of tartaric acid is proposed. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

26 pages, 7462 KB  
Article
A Two-Stage Coordinated Frequency Regulation Strategy for Wind Turbines Considering Secondary Frequency Drop and Rotor Speed Recovery
by Yufei Han, Yibo Zhou and Kexin Li
Energies 2026, 19(2), 454; https://doi.org/10.3390/en19020454 - 16 Jan 2026
Viewed by 113
Abstract
The capability of wind turbines (WTs) to provide frequency response is crucial for future power systems with high wind power penetration. Existing strategies primarily focus on mitigating initial and secondary frequency drop (SFD), often overlooking the adverse effects of rotor speed recovery on [...] Read more.
The capability of wind turbines (WTs) to provide frequency response is crucial for future power systems with high wind power penetration. Existing strategies primarily focus on mitigating initial and secondary frequency drop (SFD), often overlooking the adverse effects of rotor speed recovery on turbine safety and sustained grid support. Moreover, the lack of a dynamic linkage between the frequency support stage (FSS) and speed recovery stage (SRS) impedes multi-objective coordination encompassing initial drop suppression, SFD mitigation, and rapid rotor speed recovery. To address these gaps, this paper proposes a two-stage coordinated control strategy. In the FSS, the frequency regulation coefficients (Kp and Kd) are adaptively adjusted based on available kinetic energy, ensuring its rational release. Subsequently, the switching timing from FSS to SRS is optimized using these coefficients to suppress the SFD and accelerate recovery. Finally, a fuzzy logic-based PI controller dynamically governs the SRS to restore rotor speed efficiently while further alleviating the SFD. Simulation results confirm the effectiveness of the proposed strategy under two wind speeds. It improves the initial frequency nadir by up to 0.197 Hz over no frequency control, reduces the secondary frequency drop by as much as 0.106 Hz compared to the stepwise method, and accelerates rotor speed recovery by over 30%, quantitatively validating its superior coordinated performance. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

22 pages, 1464 KB  
Article
Optimal Recycling Ratio of Biodried Product at 12% Enhances Digestate Valorization: Synergistic Acceleration of Drying Kinetics, Nutrient Enrichment, and Energy Recovery
by Xiandong Hou, Hangxi Liao, Bingyan Wu, Nan An, Yuanyuan Zhang and Yangyang Li
Bioengineering 2026, 13(1), 109; https://doi.org/10.3390/bioengineering13010109 - 16 Jan 2026
Viewed by 304
Abstract
Rapid urbanization in China has driven annual food waste production to 130 million tons, posing severe environmental challenges for anaerobic digestate management. To resolve trade-offs among drying efficiency, resource recovery (fertilizer/fuel), and carbon neutrality by optimizing the biodried product (BDP) recycling ratio (0–15%), [...] Read more.
Rapid urbanization in China has driven annual food waste production to 130 million tons, posing severe environmental challenges for anaerobic digestate management. To resolve trade-offs among drying efficiency, resource recovery (fertilizer/fuel), and carbon neutrality by optimizing the biodried product (BDP) recycling ratio (0–15%), six BDP treatments were tested in 60 L bioreactors. Metrics included drying kinetics, product properties, and environmental–economic trade-offs. The results showed that 12% BDP achieved a peak temperature integral (514.13 °C·d), an optimal biodrying index (3.67), and shortened the cycle to 12 days. Furthermore, 12% BDP yielded total nutrients (N + P2O5 + K2O) of 4.19%, meeting the NY 525-2021 standard in China, while ≤3% BDP maximized fuel suitability with LHV > 5000 kJ·kg−1, compliant with CEN/TC 343 RDF standards. BDP recycling reduced global warming potential by 27.3% and eliminated leachate generation, mitigating groundwater contamination risks. The RDF pathway (12% BDP) achieved the highest NPV (USD 716,725), whereas organic fertilizer required farmland subsidies (28.57/ton) to offset its low market value. A 12% BDP recycling ratio optimally balances technical feasibility, environmental safety, and economic returns, offering a closed-loop solution for global food waste valorization. Full article
(This article belongs to the Special Issue Anaerobic Digestion Advances in Biomass and Waste Treatment)
Show Figures

Graphical abstract

37 pages, 4734 KB  
Review
Leaching of Rhenium from Secondary Resources: A Review of Advances, Challenges, and Process Optimisation
by Ignacio Castillo, Mauricio Mura, Edelmira Gálvez, Felipe M. Galleguillos-Madrid, Eleazar Salinas-Rodríguez, Jonathan Castillo, Williams Leiva, Alvaro Soliz, Sandra Gallegos and Norman Toro
Minerals 2026, 16(1), 51; https://doi.org/10.3390/min16010051 - 31 Dec 2025
Viewed by 309
Abstract
Rhenium is one of the rarest and most strategically important metals, indispensable in high-temperature superalloys and platinum–rhenium catalysts used across the aerospace and petrochemical industries. Owing to its limited primary reserves, recovering rhenium from secondary sources, such as spent catalysts, superalloy residues, and [...] Read more.
Rhenium is one of the rarest and most strategically important metals, indispensable in high-temperature superalloys and platinum–rhenium catalysts used across the aerospace and petrochemical industries. Owing to its limited primary reserves, recovering rhenium from secondary sources, such as spent catalysts, superalloy residues, and metallurgical dusts, has become vital to ensuring supply security. This review examines technological developments between 1998 and 2025, focusing on how operational parameters, including temperature, leaching time, reagent concentration, and solid-to-liquid ratio, govern dissolution kinetics and overall process efficiency. Comparative evaluation of hydrometallurgical, alkaline, and hybrid processes indicates that modern systems can achieve recovery rates exceeding 98% through selective oxidation, alkaline activation, or combined pyro and hydrometallurgical mechanisms. Acid–chlorine leaching facilitates rapid, low-temperature dissolution; alkaline sintering stabilises rhenium as soluble perrhenates; and hybrid smelting routes enable the concurrent separation of rhenium and osmium. Sustainable aqueous systems employing nitric and ammonium media have also demonstrated near-complete recovery at ambient temperature under closed-loop recycling conditions. Collectively, these findings highlight a technological transition from energy-intensive, acid-based pathways towards low-impact, recyclable, and digitally optimised hydrometallurgical processes. The integration of selective oxidants, phase engineering, circular reagent management, and artificial intelligence-assisted modelling is defining the next generation of rhenium recovery, combining high extraction yields with reduced environmental impact and alignment with global sustainability goals. Full article
Show Figures

Figure 1

20 pages, 11894 KB  
Article
A Novel Biomass-Derived Reductant for Nitric Acid Dissolution of Manganiferous Iron Ore: Comparative Assessment of Organic Reductants
by Soner Top, Mahmut Altiner, Huseyin Vapur, Sait Kursunoglu and Srecko Stopic
Minerals 2026, 16(1), 47; https://doi.org/10.3390/min16010047 - 31 Dec 2025
Viewed by 333
Abstract
This study investigates the selective dissolution of manganese from a manganiferous iron ore using nitric acid (HNO3) in the presence of various organic reductants. A series of leaching experiments was performed to evaluate the effects of temperature, reductant type, and leaching [...] Read more.
This study investigates the selective dissolution of manganese from a manganiferous iron ore using nitric acid (HNO3) in the presence of various organic reductants. A series of leaching experiments was performed to evaluate the effects of temperature, reductant type, and leaching time on Mn recovery, with particular emphasis on biomass (horse dung) and tartaric acid as novel reducing agents. The dissolution behaviour of Fe, Mn, Mg, Ca, and Al was systematically examined, revealing that Mn extraction was strongly enhanced in the presence of reductants, while Fe dissolution remained below 10% under all conditions. The maximum Mn dissolution exceeded 90% at 90 °C using biomass and reached nearly 85%–90% with tartaric acid at elevated temperatures. Kinetic studies were conducted by applying reaction order models and the shrinking core model. The results indicated that Mn dissolution in HNO3 medium is predominantly controlled by surface chemical reaction, with Arrhenius analysis yielding activation energies of 27.74 kJ/mol for biomass and 21.26 kJ/mol for tartaric acid. These relatively low values confirm the efficiency of organic reductants in facilitating Mn reduction and dissolution. To sum up, comparison of reductant efficiency revealed that, at the lowest concentrations, the dissolution of Mn followed the sequence glucose > sucrose > oxalic acid > tartaric acid > maleic acid > biomass > citric acid > acetic acid. At the highest concentrations, the trend shifted, with citric acid emerging as the most effective, followed by tartaric acid > oxalic acid > glucose > sucrose > maleic acid > biomass > acetic acid. Full article
Show Figures

Figure 1

23 pages, 1856 KB  
Article
Influence of Photosynthetic Cathodes on Anodic Microbial Communities in Acetate-Fed Microbial Fuel Cells Pre-Enriched Under Applied Voltage
by Paulina Rusanowska, Łukasz Barczak, Adam Starowicz, Katarzyna Głowacka, Marcin Dębowski and Marcin Zieliński
Energies 2026, 19(1), 41; https://doi.org/10.3390/en19010041 - 21 Dec 2025
Viewed by 321
Abstract
Electrical stimulation is increasingly explored as a strategy to accelerate the development of electroactive biofilms in microbial fuel cells (MFCs), yet its integration with photosynthetic MFCs (pMFCs) remains insufficiently understood. This study evaluated how short-term anodic stimulation (0.5–5 V, 4 days) affects biofilm [...] Read more.
Electrical stimulation is increasingly explored as a strategy to accelerate the development of electroactive biofilms in microbial fuel cells (MFCs), yet its integration with photosynthetic MFCs (pMFCs) remains insufficiently understood. This study evaluated how short-term anodic stimulation (0.5–5 V, 4 days) affects biofilm formation and COD removal, and how subsequent operation with photosynthetic cathodes—Chlorella sp., Arthrospira platensis and Tetraselmis subcordiformis—modulates anodic microbial communities and functional potential. Stimulation at 1 V yielded the best activation effect, resulting in the highest voltage output, power density and fastest COD removal kinetics, whereas 5 V inhibited biofilm development. During pMFC operation, Chlorella produced the highest voltage (0.393 ± 0.064 V), current density (0.14 ± 0.02 mA·cm−2) and Coulombic efficiency (~19%). Arthrospira showed moderate performance, while Tetraselmis generated no current despite efficient COD removal. 16S rRNA sequencing revealed distinct cathode-driven community shifts: Chlorella enriched facultative electroactive taxa, Arthrospira promoted sulfur-cycling bacteria and Actinobacteria, and Tetraselmis induced strong methanogenic dominance. Functional prediction and qPCR confirmed these trends, with Chlorella showing increased pilA abundance and Tetraselmis displaying enriched methanogenic pathways. Overall, the combined use of optimal anodic stimulation and photosynthetic cathodes demonstrates that cathodic microalgae strongly influence anodic redox ecology and energy recovery, with Chlorella-based pMFCs offering the highest electrochemical performance. Full article
(This article belongs to the Special Issue Applications of Fuel Cell Systems)
Show Figures

Figure 1

17 pages, 1182 KB  
Article
Recovery of Valuable Metals from Lead Smelting Slag by Methanesulfonic Acid Leaching: Kinetic Insights and Recycling Potential
by Juana María Nájera-Ibarra, Francisco Raúl Carrillo-Pedroza, Ma. De Jesús Soria-Aguilar, Nallely Guadalupe Picazo-Rodríguez, Antonia Martínez Luévanos, Simón Alberto Pedroza-Figueroa, Isaías Almaguer-Guzmán, Josué Cháidez-Félix and Manuel Flores-Favela
Recycling 2026, 11(1), 1; https://doi.org/10.3390/recycling11010001 - 19 Dec 2025
Viewed by 484
Abstract
The depletion of natural resources remains a major global challenge, emphasizing the need to develop sustainable processes that enable both metal recovery and waste recycling. This study investigates the leaching of valuable metals from lead smelting slag using methanesulfonic acid (MSA), a biodegradable [...] Read more.
The depletion of natural resources remains a major global challenge, emphasizing the need to develop sustainable processes that enable both metal recovery and waste recycling. This study investigates the leaching of valuable metals from lead smelting slag using methanesulfonic acid (MSA), a biodegradable and environmentally benign reagent. Batch experiments were performed under different MSA concentrations (0.35–1.4 M) and temperatures (22–80 °C). Metal dissolution increased nearly linearly with acid concentration up to 1 M, with maximum recoveries after 60 min of 85% Zn, 64% Pb, 75% Cu, and 68% Fe. Copper dissolution was governed by the oxidation of Cu2S, while Fe leaching was affected by pH variations that promoted re-precipitation. Kinetic modeling indicated mixed chemical–diffusion control mechanisms, with activation energies of 22.6 kJ mol−1 for Zn and 31–33 kJ mol−1 for Pb, Cu, and Fe. Beyond efficient metal extraction, the process generated a leach residue with reduced concentrations of base metals and a mineralogical composition dominated by stable calcium-silicate phases, improving its potential suitability for reuse in construction or mining backfill applications. Overall, methanesulfonic acid proved to be an effective and sustainable lixiviant, combining high metal recovery with the generation of recyclable slag, thereby contributing to circular metallurgical practices. Full article
Show Figures

Figure 1

17 pages, 1798 KB  
Article
Mild Two-Step Thermochemical Recovery of Clean Glass Fibers from Wind-Blade GFRP
by AbdulAziz AlGhamdi, Imtiaz Ali and Salman Raza Naqvi
Polymers 2025, 17(24), 3344; https://doi.org/10.3390/polym17243344 - 18 Dec 2025
Viewed by 514
Abstract
End-of-life wind turbine blade accumulation is a growing global materials management problem and current industrial recycling routes for glass fiber-reinforced polymer composites remain limited in material recovery value. There is limited understanding on how to recover clean glass fibers while keeping thermal exposure [...] Read more.
End-of-life wind turbine blade accumulation is a growing global materials management problem and current industrial recycling routes for glass fiber-reinforced polymer composites remain limited in material recovery value. There is limited understanding on how to recover clean glass fibers while keeping thermal exposure and energy input low, and existing studies have not quantified whether very short isothermal thermal residence can still result in complete matrix removal. The hypothesis of this study is that a mild two-step thermochemical sequence can recover clean glass fibers at lower temperature and near zero isothermal dwell if pyrolysis and oxidation are separated. We used wind-blade epoxy-based GFRP in a step-batch reactor and combined TGA-based thermodynamic mapping, short pyrolysis at 425 °C, and mild oxidation at 475 °C with controlled dwell from zero to thirty minutes. We applied model-free kinetics and machine learning methods to quantify activation energy trends as a function of conversion. The thermal treatment of 425 °C for zero minutes in nitrogen, followed by 475 °C for fifteen minutes in air, resulted in mechanically sound, visually clean white fibers. These fibers retained 76% of the original tensile strength and 88% of the Young’s modulus, which indicates the potential for energy-efficient GFRP recycling. The activation energy was found to be approximately 120 to 180 kJ mol−1. These findings demonstrate energy lean recycling potential for GFRP and can inform future industrial scale thermochemical designs. Full article
Show Figures

Graphical abstract

18 pages, 6466 KB  
Article
Copper-Mediated Leaching of LiCoO2 in H3PO4: Kinetics and Residue Transformation
by Dragana Medić, Ivan Đorđević, Maja Nujkić, Vladan Nedelkovski, Aleksandra Papludis, Stefan Đorđievski and Nataša Gajić
Chemistry 2025, 7(6), 203; https://doi.org/10.3390/chemistry7060203 - 17 Dec 2025
Viewed by 430
Abstract
The recycling of spent lithium-ion batteries (LIBs) requires efficient and sustainable methods for recovering critical metals. In this study, the leaching behavior of LiCoO2 cathode material obtained from spent LIBs was investigated in phosphoric acid, using copper powder recovered from waste LIBs [...] Read more.
The recycling of spent lithium-ion batteries (LIBs) requires efficient and sustainable methods for recovering critical metals. In this study, the leaching behavior of LiCoO2 cathode material obtained from spent LIBs was investigated in phosphoric acid, using copper powder recovered from waste LIBs as a reducing agent. Leaching experiments were conducted under various conditions (temperature, solid-to-liquid ratio, agitation rate) and compared with systems without copper. In the absence of copper, lithium and cobalt, recoveries after 30 min were approximately 77% and 23%, respectively. The addition of copper significantly enhanced leaching, achieving >96% recovery for both metals at 80 °C, with most extraction occurring within the first 30 min. Kinetic analysis using the shrinking core model indicated a mixed-control mechanism involving both surface chemical reaction and product layer diffusion. The calculated activation energies were 20.2 kJ·mol−1 for lithium and 16.1 kJ·mol−1 for cobalt. Solid residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS). XRD results revealed that the composition of the residues varied with leaching temperature: Co3O4 was consistently detected, whereas Cu8(PO3OH)2(PO4)4·7H2O appeared only when leaching was performed above 50 °C. Thermodynamic calculations supported the reductive role of copper and provided insight into possible reaction pathways. These findings confirm the effectiveness of copper-mediated leaching in phosphoric acid and demonstrate that temperature strongly influences residue phase evolution, thereby offering valuable guidance for the design of sustainable LIB recycling processes. Full article
(This article belongs to the Section Green and Environmental Chemistry)
Show Figures

Graphical abstract

32 pages, 1415 KB  
Review
Challenges in Operating a Microbial Electrolysis Cell (MEC): Translating Biofilm Activity to Electron Flow and Hydrogen
by Naufila Mohamed Ashiq, Alreem Ali Juma Al Rahma Aldarmaki, Mariam Salem Saif Alketbi, Haya Aadel Abdullah Alshehhi, Alreem Salem Obaid Alkaabi, Noura Suhail Mubarak Saeed Alshamsi and Ashraf Aly Hassan
Sustainability 2025, 17(24), 11216; https://doi.org/10.3390/su172411216 - 15 Dec 2025
Viewed by 576
Abstract
Microbial electrolysis cells (MECs) are bioreactors that utilize electroactive microorganisms to catalyze the oxidation of organic substrates in wastewater, generating electron flow for hydrogen production. Despite the concept, a persistent performance gap exists where metabolically active anodic biofilms frequently fail to achieve expected [...] Read more.
Microbial electrolysis cells (MECs) are bioreactors that utilize electroactive microorganisms to catalyze the oxidation of organic substrates in wastewater, generating electron flow for hydrogen production. Despite the concept, a persistent performance gap exists where metabolically active anodic biofilms frequently fail to achieve expected current densities by the flow of electrons to produce hydrogen. This review examines the multiple causes that lead to the disconnect between robust biofilm development, electron transfer, and hydrogen production. Factors affecting biofilm generation (formation, substrate selection, thickness, conductivity, and heterogeneity) are discussed. Moreover, factors affecting electron transfer (electrode configuration, mass transfer constraints, key electroactive species, and metabolic pathways) are discussed. Also, substrate diffusion limitations, proton accumulation causing inhibitory pH gradients in stratified biofilms, elevated internal resistance, electron diversion to competing processes like hydrogenotrophic methanogenesis consuming H2, and detrimental biofilm aging, impacting hydrogen production, are studied. The critical roles of electrode materials, reactor configuration, and biofilm electroactivity are analyzed, emphasizing advanced electrochemical (CV, EIS, LSV), imaging (CLSM, SEM, AFM), and omics (metagenomics, transcriptomics, proteomics) techniques essential for diagnosing bottlenecks. Strategies to enhance extracellular electron transfer (EET) (advanced nanomaterials, redox mediators, conductive polymers, bioaugmentation, and pulsed electrical operation) are evaluated for bridging this performance gap and improving energy recovery. The review presents an integrated framework connecting biofilm electroactivity, EET kinetics, and hydrogen evolution efficiency. It highlights that conventional biofilm metrics may not reflect actual electron flow. Combining electrochemical, microelectrode, and omics insights allows precise evaluation of EET efficiency and supports sustainable MEC optimization for enhanced hydrogen generation. Full article
Show Figures

Figure 1

13 pages, 3404 KB  
Article
A Dual-Function TiO2@CoOx Photocatalytic Fuel Cell for Sustainable Energy Production and Recovery of Metallic Copper from Wastewater
by Xiao-He Liu, Rui Yuan, Nan Li, Shaohui Wang, Xiaoyuan Zhang, Yunteng Ma, Chaoqun Fan and Peipei Du
Inorganics 2025, 13(12), 404; https://doi.org/10.3390/inorganics13120404 - 12 Dec 2025
Viewed by 397
Abstract
Developing photoelectrochemical systems that couple pollutant removal with resource recovery is of great significance for sustainable wastewater treatment. In this study, a dual-function photocatalytic fuel cell (PFC) was developed using a TiO2 nanotube photoanode modified with an amorphous CoOx cocatalyst, which markedly [...] Read more.
Developing photoelectrochemical systems that couple pollutant removal with resource recovery is of great significance for sustainable wastewater treatment. In this study, a dual-function photocatalytic fuel cell (PFC) was developed using a TiO2 nanotube photoanode modified with an amorphous CoOx cocatalyst, which markedly enhances charge separation and interfacial reaction kinetics. The optimized TiO2@CoOx electrode achieves a twofold enhancement in photocurrent compared to pristine TiO2. When applied to Cu2+-containing wastewater, the PFC achieved 91% Cu2+ removal under N2-purged conditions, with metallic Cu identified as the sole reduction product. Although dissolved oxygen reduced metal recovery efficiency through competitive electron consumption, it simultaneously increased power generation and improved anodic organic degradation. Overall, the results demonstrate that amorphous-CoOx-modified TiO2 photoanodes offer an effective platform for integrating sustainable energy production with wastewater remediation and valuable copper recovery. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

23 pages, 2666 KB  
Article
Investigation of a System Combining Separate Hydrolysis and Fermentation of Biomass with a Direct-Ethanol Solid Oxide Fuel Cell: Thermodynamic and Reaction Kinetic Studies
by Siwen Gu, Yuhao Lu and Yu Zhuang
Energies 2025, 18(24), 6456; https://doi.org/10.3390/en18246456 - 10 Dec 2025
Viewed by 256
Abstract
Bioethanol can be efficiently produced from lignocellulosic biomass via two-phase processes, consisting of enzymatic hydrolysis and fermentation. To enhance economic and energy efficiency, a system combining separate hydrolysis and fermentation of biomass with a direct-ethanol solid oxide fuel cell (SOFC) is proposed in [...] Read more.
Bioethanol can be efficiently produced from lignocellulosic biomass via two-phase processes, consisting of enzymatic hydrolysis and fermentation. To enhance economic and energy efficiency, a system combining separate hydrolysis and fermentation of biomass with a direct-ethanol solid oxide fuel cell (SOFC) is proposed in this work. The system comprises six units: a pretreatment reactor unit, a conditioning unit, a high-solids hydrolysis unit, a seed train unit, an ethanol recovery unit, and an SOFC unit. Exergy analysis based on a thermodynamic model indicates a total exergy efficiency of approximately 0.72. Within the high-solids hydrolysis unit, one piece of equipment exhibits the lowest exergy efficiency of 0.21, at a biomass flux of 71,510 kg/h. The other main exergy destruction exists in the conditioning unit and is followed by seed train unit, accounting for 5.61 and 2.77 of total exergy destruction ratios, respectively. In addition, the tentative parametric analysis for reaction kinetics is performed with varying reaction orders. The results indicate that ammonia gas in a specific unit can follow first- or second-reaction order, whereas acetic acid and sulfuric acid exhibit zero-reaction order, due to the gradual conversion of cellulose to glucose. This work provides key insights for the practical design and operation of the proposed separate hydrolysis and fermentation–SOFC system. Full article
Show Figures

Figure 1

Back to TopTop