Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,712)

Search Parameters:
Keywords = kinematics analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4367 KiB  
Article
Design and Kinematic and Dynamic Analysis Simulation of a Biomimetic Parallel Mechanism for Lumbar Rehabilitation Exoskeleton
by Chao Hou, Zhicheng Yin, Di Wu, Rui Qian, Yu Tian and Hongbo Wang
Machines 2025, 13(8), 728; https://doi.org/10.3390/machines13080728 (registering DOI) - 16 Aug 2025
Abstract
Lumbar disc herniation is one of the primary causes of lower back pain, and its incidence has significantly increased with the development of industrialization. To assist in rehabilitation therapy, this paper proposes a flexible exoskeleton for active lumbar rehabilitation based on a 4-SPU/SP [...] Read more.
Lumbar disc herniation is one of the primary causes of lower back pain, and its incidence has significantly increased with the development of industrialization. To assist in rehabilitation therapy, this paper proposes a flexible exoskeleton for active lumbar rehabilitation based on a 4-SPU/SP biomimetic parallel mechanism. By analyzing the anatomical structure and movement mechanisms of the lumbar spine, a four degree of freedom parallel mechanism was designed to mimic the three-axis rotation of the lumbar spine around the coronal, sagittal, and vertical axes, as well as movement along the z-axis. Using a 3D motion capture system, data on the range of motion of the lumbar spine was obtained to guide the structural design of the exoskeleton. Using the vector chain method, the display equations for the drive joints of the mechanism were derived, and forward and inverse kinematic models were established and simulated to verify their accuracy. The dynamic characteristics of the biomimetic parallel mechanism were analyzed and simulated to provide a theoretical basis for the design of the exoskeleton control system. A prototype was fabricated and tested to evaluate its maximum range of motion and workspace. Experimental results showed that after wearing the exoskeleton, the lumbar spine’s range of motion could still reach over 83.5% of the state without the exoskeleton, and its workspace could meet the lumbar spine movement requirements for daily life, verifying the rationality and feasibility of the proposed 4-SPU/SP biomimetic parallel mechanism design. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
28 pages, 3939 KiB  
Article
Quantum Particle Swarm Optimization (QPSO)-Based Enhanced Dynamic Model Parameters Identification for an Industrial Robotic Arm
by Mehdi Fazilat and Nadjet Zioui
Mathematics 2025, 13(16), 2631; https://doi.org/10.3390/math13162631 (registering DOI) - 16 Aug 2025
Abstract
Accurate parameter identification in dynamic models of robotic arms is essential for performing high-performance control and energy-efficient procedures. However, classic methods often encounter difficulties when modeling nonlinear, high-dimensional systems, particularly in the presence of real-world uncertainties. To address these challenges, this study focuses [...] Read more.
Accurate parameter identification in dynamic models of robotic arms is essential for performing high-performance control and energy-efficient procedures. However, classic methods often encounter difficulties when modeling nonlinear, high-dimensional systems, particularly in the presence of real-world uncertainties. To address these challenges, this study focuses on identifying mass center positions and inertia matrix elements in a six-jointed industrial robotic arm and comparing the influence of optimized algorithms: the classical Particle Swarm Optimization (PSO) and the Quantum-behaved Particle Swarm Optimization (QPSO). The robot’s kinematic model was validated by comparing it with actual motion data, utilizing a high-precision neural network to ensure accuracy before conducting a dynamic analysis. A comprehensive dynamic model was created using Computer-Aided Optimization (CAO) in SolidWorks Premium 2023 to simulate realistic mass parameters, thereby validating the model’s reliability in a practical setting. The real (Referenced) and optimized dynamic models of the robot arm were validated using trajectory tracking simulations under sliding mode control (SMC) to assess the impact of the optimized model on the robot’s performance metrics. Results indicate that QPSO estimates inertia and mass center parameters with Mean Absolute Percentage Errors (MAPE) of 0.76% and 0.43%, outperforming PSO significantly and delivering smoother torque profiles and greater resilience to external disturbances. Full article
Show Figures

Figure 1

26 pages, 66652 KiB  
Article
Modeling and Analysis of Surface Motion Characteristics for a Dual-Propulsion Amphibious Spherical Robot
by Hongqun Zou, Fengqi Zhang, Meng Wang, You Wang and Guang Li
Appl. Sci. 2025, 15(16), 8998; https://doi.org/10.3390/app15168998 - 14 Aug 2025
Abstract
This study introduces an amphibious spherical robot equipped with a dual-propulsion system (ASR-DPS) and investigates its water-surface motion characteristics. Due to its distinctive spherical geometry, the robot exhibits markedly different hydrodynamic behavior compared to conventional vessels. A comparative analysis of the frontal wetted [...] Read more.
This study introduces an amphibious spherical robot equipped with a dual-propulsion system (ASR-DPS) and investigates its water-surface motion characteristics. Due to its distinctive spherical geometry, the robot exhibits markedly different hydrodynamic behavior compared to conventional vessels. A comparative analysis of the frontal wetted area is performed, followed by computational fluid dynamics (CFD) simulations to assess water-surface performance. The results indicate that the hemispherical bow increases hydrodynamic resistance and generates large-scale vortex structures as a consequence of intensified flow separation. Although the resistance is higher than that of traditional hulls, the robot’s greater draft and dual-propulsion configuration enhance stability and maneuverability during surface operations. To validate real-world performance, standard maneuvering tests, including circle and zig-zag maneuvers, are conducted to evaluate the effectiveness of the propeller-based propulsion system. The robot achieves a maximum surface speed of 1.2 m/s and a zero turning radius, with a peak yaw rate of 0.54 rad/s under differential thrust. Additionally, experiments on the pendulum-based propulsion system demonstrate a maximum speed of 0.239 m/s with significantly lower energy consumption (220.6 Wh at 60% throttle). A four-degree-of-freedom kinematic and dynamic model is formulated to describe the water-surface motion. To address model uncertainties and external disturbances, two control strategies are proposed: one employing model simplification and the other adaptive control. Simulation results confirm that the adaptive sliding mode controller provides precise surge speed tracking and smooth yaw regulation with near-zero steady-state error, exhibiting superior robustness and reduced chattering compared to the baseline controller. Full article
(This article belongs to the Special Issue Control Systems in Mechatronics and Robotics)
Show Figures

Figure 1

13 pages, 837 KiB  
Article
Comparison of Gait Characteristics for Horses Without Shoes, with Steel Shoes, and with Aluminum Shoes
by Katherine Gottleib, Lauren Trager-Burns, Amy Santonastaso, Sophie Bogers, Stephen Werre, Travis Burns and Christopher Byron
Animals 2025, 15(16), 2376; https://doi.org/10.3390/ani15162376 - 13 Aug 2025
Viewed by 137
Abstract
Differences in horseshoe materials may have effects on gait that could change perceived esthetic qualities. Objective information regarding effects of shoeing on gait characteristics of horses is scant. The aim of this study was to determine differences in gait characteristics for horses under [...] Read more.
Differences in horseshoe materials may have effects on gait that could change perceived esthetic qualities. Objective information regarding effects of shoeing on gait characteristics of horses is scant. The aim of this study was to determine differences in gait characteristics for horses under various experimental shoeing conditions (barefoot, aluminum shoes, steel shoes) on two surfaces (asphalt and soft footing) using body- and hoof-mounted sensors. We hypothesized that shoeing would affect hoof arc height during early (arc height a) and late (arc height b) swing phases but would not affect other gait variables. Twelve healthy, adult, client-owned horses were evaluated at a trot on asphalt and soft footing under the three experimental shoeing conditions. No significant (p < 0.05) effects of shoeing were detected for gait symmetry (Q score), mediolateral hoof deviation, stride length, or midstance, breakover, swing, and landing stride phase times. Hoof arc height a was significantly (p < 0.001) lower for aluminum versus steel shoes for right and left forelimbs on asphalt and soft footing. Hoof arc height b was significantly higher for aluminum versus steel shoes on soft footing for left (p < 0.001) and right (p = 0.02) forelimbs. Findings indicate that shoe weights affect early and late swing phase hoof heights differently. Further investigation is warranted to determine whether measured hoof arc height changes affect subjective esthetics of gait. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

34 pages, 11523 KiB  
Article
Hand Kinematic Model Construction Based on Tracking Landmarks
by Yiyang Dong and Shahram Payandeh
Appl. Sci. 2025, 15(16), 8921; https://doi.org/10.3390/app15168921 - 13 Aug 2025
Viewed by 129
Abstract
Visual body-tracking techniques have seen widespread adoption in applications such as motion analysis, human–machine interaction, tele-robotics and extended reality (XR). These systems typically provide 2D landmark coordinates corresponding to key limb positions. However, to construct a meaningful 3D kinematic model for body joint [...] Read more.
Visual body-tracking techniques have seen widespread adoption in applications such as motion analysis, human–machine interaction, tele-robotics and extended reality (XR). These systems typically provide 2D landmark coordinates corresponding to key limb positions. However, to construct a meaningful 3D kinematic model for body joint reconstruction, a mapping must be established between these visual landmarks and the underlying joint parameters of individual body parts. This paper presents a method for constructing a 3D kinematic model of the human hand using calibrated 2D landmark-tracking data augmented with depth information. The proposed approach builds a hierarchical model in which the palm serves as the root coordinate frame, and finger landmarks are used to compute both forward and inverse kinematic solutions. Through step-by-step examples, we demonstrate how measured hand landmark coordinates are used to define the palm reference frame and solve for joint angles for each finger. These solutions are then used in a visualization framework to qualitatively assess the accuracy of the reconstructed hand motion. As a future work, the proposed model offers a foundation for model-based hand kinematic estimation and has utility in scenarios involving occlusion or missing data. In such cases, the hierarchical structure and kinematic solutions can be used as generative priors in an optimization framework to estimate unobserved landmark positions and joint configurations. The novelty of this work lies in its model-based approach using real sensor data, without relying on wearable devices or synthetic assumptions. Although current validation is qualitative, the framework provides a foundation for future robust estimation under occlusion or sensor noise. It may also serve as a generative prior for optimization-based methods and be quantitatively compared with joint measurements from wearable motion-capture systems. Full article
(This article belongs to the Special Issue Human Activity Recognition (HAR) in Healthcare, 3rd Edition)
Show Figures

Figure 1

17 pages, 1243 KiB  
Article
Biomechanical Effects of a Passive Lower-Limb Exoskeleton Designed for Half-Sitting Work Support on Walking
by Qian Li, Naoto Haraguchi, Bian Yoshimura, Sentong Wang, Makoto Yoshida and Kazunori Hase
Sensors 2025, 25(16), 4999; https://doi.org/10.3390/s25164999 - 12 Aug 2025
Viewed by 189
Abstract
The half-sitting posture is essential for many functional tasks performed by industrial workers. Thus, passive lower-limb exoskeletons, known as wearable chairs, are increasingly used to relieve lower-limb loading in such scenarios. However, although these devices lighten muscle effort during half-sitting tasks, they can [...] Read more.
The half-sitting posture is essential for many functional tasks performed by industrial workers. Thus, passive lower-limb exoskeletons, known as wearable chairs, are increasingly used to relieve lower-limb loading in such scenarios. However, although these devices lighten muscle effort during half-sitting tasks, they can disrupt walking mechanics and balance. Moreover, rigorous biomechanical data on joint moments and contact forces during walking with such a device remain scarce. Therefore, this study conducted a biomechanical evaluation of level walking with a wearable chair to quantify its effects on gait and joint loading. Participants performed walking experiments with and without the wearable chair. An optical motion capture system and force plates collected kinematic and ground reaction data. Six-axis force sensors measured contact forces and moments. These measurements were fed into a Newton–Euler inverse dynamics model to estimate lower-limb joint moments and assess joint loading. The contact measurements showed that nearly all rotational load was absorbed at the thigh attachment, while the ankle attachment served mainly as a positional guide with minimal moment transfer. The inverse dynamics analysis revealed that the wearable chair introduced unintended rotational stresses at lower-limb joints, potentially elevating musculoskeletal risk. This detailed biomechanical evidence underpins targeted design refinements to redistribute loads and better protect lower-limb joints. Full article
Show Figures

Figure 1

12 pages, 1246 KiB  
Article
Research on Personalized Exercise Volume Optimization in College Basketball Training Based on LSTM Neural Network with Multi-Modal Data Fusion Intervention
by Xiongce Lv, Ye Tao and Yang Xue
Appl. Sci. 2025, 15(16), 8871; https://doi.org/10.3390/app15168871 - 12 Aug 2025
Viewed by 242
Abstract
This study addresses the shortcomings of traditional exercise volume assessment methods in dynamic modeling and individual adaptation by proposing a multi-modal data fusion framework based on a spatio-temporal attention-enhanced LSTM neural network for personalized exercise volume optimization in college basketball courses. By integrating [...] Read more.
This study addresses the shortcomings of traditional exercise volume assessment methods in dynamic modeling and individual adaptation by proposing a multi-modal data fusion framework based on a spatio-temporal attention-enhanced LSTM neural network for personalized exercise volume optimization in college basketball courses. By integrating physiological signals (heart rate), kinematic parameters (triaxial acceleration, step count), and environmental data collected from smart wearable devices, we constructed a dynamic weighted fusion mechanism and a personalized correction engine, establishing an evaluation model incorporating BMI correction factors and fitness-level compensation. Experimental data from 100 collegiate basketball trainees (60 males, 40 females; BMI 17.5–28.7) wearing Polar H10 and Xsens MVN devices were analyzed through an 8-week longitudinal study design. The framework integrates physiological monitoring (HR, HRV), kinematic analysis (3D acceleration at 100 Hz), and environmental sensing (SHT35 sensor). Experimental results demonstrate the following: (1) the LSTM-attention model achieves 85.3% accuracy in exercise intensity classification, outperforming traditional methods by 13.2%, with its spatio-temporal attention mechanism effectively capturing high-dynamic movement features such as basketball sudden stops and directional changes; (2) multi-modal data fusion reduces assessment errors by 15.2%, confirming the complementary value of heart rate and acceleration data; (3) the personalized correction mechanism significantly improves evaluation precision for overweight students (error reduction of 13.6%) and beginners (recognition rate increase of 18.5%). System implementation enhances exercise goal completion rates by 10.3% and increases moderate-to-vigorous training duration by 14.7%, providing a closed-loop “assessment-correction-feedback” solution for intelligent sports education. The research contributes methodological innovations in personalized modeling for exercise science and multi-modal time-series data processing. Full article
Show Figures

Figure 1

14 pages, 7337 KiB  
Article
The Study and Determination of Rational Hydraulic Parameters of a Prototype Multi-Gear Pump
by Olga Zharkevich, Alexandra Berg, Olga Reshetnikova, Andrey Berg, Oxana Nurzhanova, Asset Altynbayev, Darkhan Zhunuspekov and Oleg Stukach
Fluids 2025, 10(8), 211; https://doi.org/10.3390/fluids10080211 - 11 Aug 2025
Viewed by 184
Abstract
This article presents a comprehensive experimental and theoretical study and substantiation of the hydraulic parameters of a prototype multi-gear pump. The proposed pump design, which features one drive gear and four driven gears, aims to address the common disadvantages of traditional gear pumps, [...] Read more.
This article presents a comprehensive experimental and theoretical study and substantiation of the hydraulic parameters of a prototype multi-gear pump. The proposed pump design, which features one drive gear and four driven gears, aims to address the common disadvantages of traditional gear pumps, including radial force imbalance, uneven flow, high acoustic noise, and increased fluid leakage. Tests of the prototype multi-stage pump were conducted on a specialized test stand in the “Hydraulics” workshop of “Hansa-Flex Hydraulik Almaty” LLP. Experimental analysis, supported by theoretical calculations, established the optimal operating speed range for the prototype to be between 900 and 1450 rpm, with the volumetric efficiency remaining stable between 70% and 88% when using VMGZ hydraulic oil (45 cSt). A significant deterioration in performance, including a sharp drop in volumetric efficiency to 30% and a decrease in the pressure generated, was observed at rotational speeds below 900 rpm due to an increase in internal leaks. In addition, this study examined the effect of kinematic viscosity, which revealed a 15–20% decrease in performance and power when using a fluid with lower viscosity (15 cSt) with a slight increase in noise level. This study also examines in detail the linear relationship between useful power and pressure in the system and analyzes noise characteristics under various operating conditions. Full article
(This article belongs to the Section Non-Newtonian and Complex Fluids)
Show Figures

Figure 1

19 pages, 3824 KiB  
Article
A Low-Cost Validated Two-Camera 3D Videogrammetry System Applicable to Kinematic Analysis of Human Motion
by Alejandro Peña-Trabalon, Salvador Moreno-Vegas, Maria Belen Estebanez-Campos, Fernando Nadal-Martinez, Francisco Garcia-Vacas and Maria Prado-Novoa
Sensors 2025, 25(16), 4900; https://doi.org/10.3390/s25164900 - 8 Aug 2025
Viewed by 157
Abstract
(1) Background: Image acquisition systems based on videogrammetry principles are widely used across various research fields, particularly in mechanics, with applications ranging from civil engineering to biomechanics and kinematic analysis. This study presents the design, development, and validation of a low-cost, two-camera 3D [...] Read more.
(1) Background: Image acquisition systems based on videogrammetry principles are widely used across various research fields, particularly in mechanics, with applications ranging from civil engineering to biomechanics and kinematic analysis. This study presents the design, development, and validation of a low-cost, two-camera 3D videogrammetry system for the kinematic analysis of human motion. (2) Materials and Methods: Built using commercially available components and custom MATLAB® (version 2019b) software, the system captures synchronized video streams and extracts precise 3D coordinates of markers. Its performance was validated against the Vicon® (Vicon Nexus 1.7.1) system, a gold standard in musculoskeletal motion analysis. Comparative tests were conducted under static and dynamic conditions at varying working distances and velocities. (3) Results: Results demonstrate that the proposed system achieves high accuracy, with maximum measurement errors below 0.3% relative to Vicon®, and similar repeatability (SD of approximately 0.02 mm in static conditions). Compared to manual caliper measurements, both vision systems yielded similar results, with errors ranging between 0.01% and 0.82%. (4) Conclusions: A low-cost, two-camera videogrametric system was validated, offering full transparency, flexibility, and affordability, making it a practical alternative for both clinical and research settings in biomechanics and human movement analysis, with potential to be extended to general kinematic analysis. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

12 pages, 2071 KiB  
Article
Patellofemoral Joint Stress During Front and Back Squats at Two Depths
by Naghmeh Gheidi, Rachel Kiminski, Matthew Besch, Abbigail Ristow, Brian Wallace and Thomas Kernozek
Appl. Sci. 2025, 15(16), 8784; https://doi.org/10.3390/app15168784 - 8 Aug 2025
Viewed by 346
Abstract
The purpose of this study was to identify differences between patellofemoral joint stress (PFJS), patellofemoral joint reaction force (PFJRF), quadriceps force, trunk and knee flexion angles, and horizontal position of applied load relative to the knee and heel between the front squat (FS) [...] Read more.
The purpose of this study was to identify differences between patellofemoral joint stress (PFJS), patellofemoral joint reaction force (PFJRF), quadriceps force, trunk and knee flexion angles, and horizontal position of applied load relative to the knee and heel between the front squat (FS) and back squat (BS) exercises at two depths (60 and 80% of leg length, where 60% represents a lower squat depth). Twenty-two healthy college-aged females (age: 22.23 ± 1.86 years, mass: 67.65 ± 9.60 kg, height: 171.34 ± 6.38 cm) participated in this study. Mechanical variables were measured or estimated using a 15-camera 3D motion analysis (180 Hz) system and force platforms (1800 Hz). Five repetitions of each squatting technique at each depth were performed. Multivariate testing showed a difference in patellofemoral loading variables, trunk and knee kinematics, and bar position relative to the heel and knee (p = 0.00) between squat depths. There was no difference between techniques, no interaction between depth and techniques (p > 0.05). Follow-up univariate analyses showed differences in PFJS, PFJRF, quadriceps force, horizontal bar position relative to the heel and knee, and knee and trunk flexion between squat depths. The similar joint stress observed between FS and BS may be explained by compensatory trunk mechanics or the use of a light external load. Full article
(This article belongs to the Special Issue Advances in the Biomechanics of Sports)
Show Figures

Figure 1

31 pages, 5417 KiB  
Article
Design and Analysis of an Autonomous Active Ankle–Foot Prosthesis with 2-DoF
by Sayat Akhmejanov, Nursultan Zhetenbayev, Aidos Sultan, Algazy Zhauyt, Yerkebulan Nurgizat, Kassymbek Ozhikenov, Abu-Alim Ayazbay and Arman Uzbekbayev
Sensors 2025, 25(16), 4881; https://doi.org/10.3390/s25164881 - 8 Aug 2025
Viewed by 430
Abstract
This paper presents the development, modeling, and analysis of an autonomous active ankle prosthesis with two degrees of freedom (2-DoF), designed to reproduce movements in the sagittal (dorsiflexion/plantarflexion) and frontal (inversion/eversion) planes in order to enhance the stability and naturalness of the user’s [...] Read more.
This paper presents the development, modeling, and analysis of an autonomous active ankle prosthesis with two degrees of freedom (2-DoF), designed to reproduce movements in the sagittal (dorsiflexion/plantarflexion) and frontal (inversion/eversion) planes in order to enhance the stability and naturalness of the user’s gait. Unlike most commercial prostheses, which typically feature only one active degree of freedom, the proposed device combines a lightweight mechanical design, a screw drive with a stepper motor, and a microcontroller-based control system. The prototype was developed using CAD modeling in SolidWorks 2024, followed by dynamic modeling and finite element analysis (FEA). The simulation results confirmed the achievement of physiological angular ranges of ±20–22 deg. in both planes, with stable kinematic behavior and minimal vertical displacements. According to the FEA data, the maximum von Mises stress (1.49 × 108 N/m2) and deformation values remained within elastic limits under typical loading conditions, though cyclic fatigue and impact energy absorption were not experimentally validated and are planned for future work. The safety factor was estimated at ~3.3, indicating structural robustness. While sensor feedback and motor dynamics were idealized in the simulation, future work will address real-time uncertainties such as sensor noise and ground contact variability. The developed design enables precise, energy-efficient, and adaptive motion control, with an estimated average power consumption in the range of 7–9 W and an operational runtime exceeding 3 h per charge using a standard 18,650 cell pack. These results highlight the system’s potential for real-world locomotion on uneven surfaces. This research contributes to the advancement of affordable and functionally autonomous prostheses for individuals with transtibial amputation. Full article
(This article belongs to the Special Issue Recent Advances in Sensor Technology and Robotics Integration)
Show Figures

Figure 1

21 pages, 8315 KiB  
Article
The Influence of the Geometric Configuration of the Drive System on the Motion Dynamics of Jaw Crushers
by Emilian Mosnegutu, Claudia Tomozei, Oana Irimia, Vlad Ciubotariu, Diana Mirila, Mirela Panainte-Lehadus, Marcin Jasiński, Nicoleta Sporea and Ivona Camelia Petre
Processes 2025, 13(8), 2498; https://doi.org/10.3390/pr13082498 - 7 Aug 2025
Viewed by 221
Abstract
This study presents a comparative analysis of two double-toggle drive systems for jaw crushers that are tension based and compression based (this refers to the way in which the connecting rod is mechanically stressed within the drive mechanism), with the objective of identifying [...] Read more.
This study presents a comparative analysis of two double-toggle drive systems for jaw crushers that are tension based and compression based (this refers to the way in which the connecting rod is mechanically stressed within the drive mechanism), with the objective of identifying the optimal configuration from both kinematic and functional perspectives. Jaw crushers play a critical role in the extractive industry, and their performance is strongly influenced by the geometry and positioning of the drive mechanism. A theoretical approach based on mathematical modeling and numerical simulation was applied to a real constructive model (SMD-117), assessing variations in the linear velocity of the moving links as a function of mechanism placement. The study employed Mathcad 15, Roberts Animator, and GIM (Graphical Interactive Mechanisms) 2025.4 software to perform calculations and simulate motion. Results revealed a sinusoidal velocity pattern with significant differences between the two systems: the tension-based drive achieves peak velocities at the beginning of the angular variation interval, while the compression-based system reaches its maximum toward the end. Link C consistently exhibits higher velocities than link E, indicating increased mechanical stress. Polar graphic analysis identified critical velocity angles, and simulations confirmed the model’s validity with a maximum error of just 1.79%. The findings emphasize the importance of selecting an appropriate drive system to enhance performance, durability, and energy efficiency, offering concrete recommendations for equipment design and operation. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

16 pages, 1391 KiB  
Article
Running-Induced Fatigue Exacerbates Anteromedial ACL Bundle Stress in Females with Genu Valgum: A Biomechanical Comparison with Healthy Controls
by Xiaoyu Jian, Dong Sun, Yufan Xu, Chengyuan Zhu, Xuanzhen Cen, Yang Song, Gusztáv Fekete, Danica Janicijevic, Monèm Jemni and Yaodong Gu
Sensors 2025, 25(15), 4814; https://doi.org/10.3390/s25154814 - 5 Aug 2025
Viewed by 451
Abstract
Genu valgum (GV) is a common lower limb deformity that may increase the risk of anterior cruciate ligament (ACL) injury. This study used OpenSim musculoskeletal modeling and kinematic analysis to investigate the mechanical responses of the ACL under fatigue in females with GV. [...] Read more.
Genu valgum (GV) is a common lower limb deformity that may increase the risk of anterior cruciate ligament (ACL) injury. This study used OpenSim musculoskeletal modeling and kinematic analysis to investigate the mechanical responses of the ACL under fatigue in females with GV. Eight females with GV and eight healthy controls completed a running-induced fatigue protocol. Lower limb kinematic and kinetic data were collected and used to simulate stress and strain in the anteromedial ACL (A–ACL) and posterolateral ACL (P–ACL) bundles, as well as peak joint angles and knee joint stiffness. The results showed a significant interaction effect between group and fatigue condition on A–ACL stress. In the GV group, A–ACL stress was significantly higher than in the healthy group both before and after fatigue (p < 0.001) and further increased following fatigue (p < 0.001). In the pre-fatigued state, A–ACL strain was significantly higher during the late stance phase in the GV group (p = 0.036), while P–ACL strain significantly decreased post-fatigue (p = 0.005). Additionally, post-fatigue peak hip extension and knee flexion angles, as well as pre-fatigue knee abduction angles, showed significant differences between groups. Fatigue also led to substantial changes in knee flexion, adduction, abduction, and hip/knee external rotation angles within the GV group. Notably, knee joint stiffness in this group was significantly lower than in controls and decreased further post-fatigue. These findings suggest that the structural characteristics of GV, combined with exercise-induced fatigue, exacerbate A–ACL loading and compromise knee joint stability, indicating a higher risk of ACL injury in fatigued females with GV. Full article
(This article belongs to the Special Issue Sensors for Human Posture and Movement)
Show Figures

Figure 1

18 pages, 4182 KiB  
Article
Structural Design of a Multi-Stage Variable Stiffness Manipulator Based on Low-Melting-Point Alloys
by Moufa Ye, Lin Guo, An Wang, Wei Dong, Yongzhuo Gao and Hui Dong
Technologies 2025, 13(8), 338; https://doi.org/10.3390/technologies13080338 - 5 Aug 2025
Viewed by 324
Abstract
Soft manipulators have garnered significant research attention in recent years due to their flexibility and adaptability. However, the inherent flexibility of these manipulators imposes limitations on their load-bearing capacity and stability. To address this, this study compares various variable stiffness technologies and proposes [...] Read more.
Soft manipulators have garnered significant research attention in recent years due to their flexibility and adaptability. However, the inherent flexibility of these manipulators imposes limitations on their load-bearing capacity and stability. To address this, this study compares various variable stiffness technologies and proposes a novel design concept: leveraging the phase-change characteristics of low-melting-point alloys (LMPAs) with distinct melting points to fulfill the variable stiffness requirements of soft manipulators. The pneumatic structure of the manipulator is fabricated via 3D-printed molds and silicone casting. The manipulator integrates a pneumatic working chamber, variable stiffness chambers, heating devices, sensors, and a central channel, achieving multi-stage variable stiffness through controlled heating of the LMPAs. A steady-state temperature field distribution model is established based on the integral form of Fourier’s law, complemented by finite element analysis (FEA). Subsequently, the operational temperatures at which the variable stiffness mechanism activates, and the bending performance are experimentally validated. Finally, stiffness characterization and kinematic performance experiments are conducted to evaluate the manipulator’s variable stiffness capabilities and flexibility. This design enables the manipulator to switch among low, medium, and high stiffness levels, balancing flexibility and stability, and provides a new paradigm for the design of soft manipulators. Full article
Show Figures

Figure 1

23 pages, 3055 KiB  
Article
A Markerless Approach for Full-Body Biomechanics of Horses
by Sarah K. Shaffer, Omar Medjaouri, Brian Swenson, Travis Eliason and Daniel P. Nicolella
Animals 2025, 15(15), 2281; https://doi.org/10.3390/ani15152281 - 5 Aug 2025
Viewed by 625
Abstract
The ability to quantify equine kinematics is essential for clinical evaluation, research, and performance feedback. However, current methods are challenging to implement. This study presents a motion capture methodology for horses, where three-dimensional, full-body kinematics are calculated without instrumentation on the animal, offering [...] Read more.
The ability to quantify equine kinematics is essential for clinical evaluation, research, and performance feedback. However, current methods are challenging to implement. This study presents a motion capture methodology for horses, where three-dimensional, full-body kinematics are calculated without instrumentation on the animal, offering a more scalable and labor-efficient approach when compared with traditional techniques. Kinematic trajectories are calculated from multi-camera video data. First, a neural network identifies skeletal landmarks (markers) in each camera view and the 3D location of each marker is triangulated. An equine biomechanics model is scaled to match the subject’s shape, using segment lengths defined by markers. Finally, inverse kinematics (IK) produces full kinematic trajectories. We test this methodology on a horse at three gaits. Multiple neural networks (NNs), trained on different equine datasets, were evaluated. All networks predicted over 78% of the markers within 25% of the length of the radius bone on test data. Root-mean-square-error (RMSE) between joint angles predicted via IK using ground truth marker-based motion capture data and network-predicted data was less than 10 degrees for 25 to 32 of 35 degrees of freedom, depending on the gait and data used for network training. NNs trained over a larger variety of data improved joint angle RMSE and curve similarity. Marker prediction error, the average distance between ground truth and predicted marker locations, and IK marker error, the distance between experimental and model markers, were used to assess network, scaling, and registration errors. The results demonstrate the potential of markerless motion capture for full-body equine kinematic analysis. Full article
(This article belongs to the Special Issue Advances in Equine Sports Medicine, Therapy and Rehabilitation)
Show Figures

Figure 1

Back to TopTop