Running-Induced Fatigue Exacerbates Anteromedial ACL Bundle Stress in Females with Genu Valgum: A Biomechanical Comparison with Healthy Controls
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Experimental Procedures
2.4. Running-Induced Fatigue Protocol
2.5. Data Processing
2.6. ACL Modeling and Attribute Settings
2.7. Statistical Analysis
3. Results
3.1. OpenSim Model Verification
3.2. ACL Stress Comparison Results
3.3. Comparative Analysis of ACL Strain Results
3.4. Comparative Analysis of Lower Limb Joint Angle Peak Values
3.5. Comparative Analysis of Knee Joint Stiffness Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prieto-González, P.; Martínez-Castillo, J.L.; Fernández-Galván, L.M.; Casado, A.; Soporki, S.; Sánchez-Infante, J. Epidemiology of Sports-Related Injuries and Associated Risk Factors in Adolescent Athletes: An Injury Surveillance. Int. J. Environ. Res. Public Health 2021, 18, 4857. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, J.-L.; Xu, X.-H.; Shang, J.; Lin, N.; Lu, H.-D. Incidence and risk factors of joint stiffness after anterior cruciate ligament reconstruction. J. Orthop. Surg. Res. 2020, 15, 175. [Google Scholar] [CrossRef]
- Griffin, L.Y.; Agel, J.; Albohm, M.J.; Arendt, E.A.; Dick, R.W.; Garrett, W.E.; Garrick, J.G.; Hewett, T.E.; Huston, L.; Ireland, M.L. Noncontact anterior cruciate ligament injuries: Risk factors and prevention strategies. J. Am. Acad. Orthop. Surg. 2000, 8, 141–150. [Google Scholar] [CrossRef]
- Simon, D.; Mascarenhas, R.; Saltzman, B.M.; Rollins, M.; Bach, B.R., Jr.; MacDonald, P. The Relationship between Anterior Cruciate Ligament Injury and Osteoarthritis of the Knee. Adv. Orthop. 2015, 2015, 928301. [Google Scholar] [CrossRef] [PubMed]
- Tayton, E.; Verma, R.; Higgins, B.; Gosal, H. A correlation of time with meniscal tears in anterior cruciate ligament deficiency: Stratifying the risk of surgical delay. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Gelber, A.C.; Hochberg, M.C.; Mead, L.A.; Wang, N.Y.; Wigley, F.M.; Klag, M.J. Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann. Intern. Med. 2000, 133, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Arendt, E.; Dick, R. Knee injury patterns among men and women in collegiate basketball and soccer: NCAA data and review of literature. Am. J. Sports Med. 1995, 23, 694–701. [Google Scholar] [CrossRef]
- Wetters, N.; Weber, A.E.; Wuerz, T.H.; Schub, D.L.; Mandelbaum, B.R. Mechanism of injury and risk factors for anterior cruciate ligament injury. Oper. Tech. Sports Med. 2016, 24, 2–6. [Google Scholar] [CrossRef]
- Pfeifer, C.E.; Beattie, P.F.; Sacko, R.S.; Hand, A. Risk factors associated with non-contact anterior cruciate ligament injury: A systematic review. Int. J. Sports Phys. Ther. 2018, 13, 575. [Google Scholar] [CrossRef]
- Sell, T.C.; Ferris, C.M.; Abt, J.P.; Tsai, Y.-S.; Myers, J.B.; Fu, F.H.; Lephart, S.M. The effect of direction and reaction on the neuromuscular and biomechanical characteristics of the knee during tasks that simulate the noncontact anterior cruciate ligament injury mechanism. Am. J. Sports Med. 2006, 34, 43–54. [Google Scholar] [CrossRef]
- Li, F.; Sun, D.; Song, Y.; Fang, Y.; Cen, X.; Zhang, Q.; Gu, Y. Comparison of Landing Biomechanics in Male Amateur Basketball Players with and without Patellar Tendinopathy during Simulated Games. J. Hum. Kinet. 2025, 96, 69–81. [Google Scholar] [CrossRef]
- Li, F.; Song, Y.; Cen, X.; Sun, D.; Lu, Z.; Bíró, I.; Gu, Y. Comparative efficacy of vibration foam rolling and cold water immersion in amateur basketball players after a simulated load of basketball game. Healthcare 2023, 11, 2178. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sun, D.; Zhou, Z.; Li, F.; Cen, X.; Song, Y.; Gu, Y. Comparison of stop-jump muscle synergies in amateur basketball players with and without asymptomatic patellar tendon abnormalities during simulated games. Acta Bioeng. Biomech. 2024, 26, 97–109. [Google Scholar] [CrossRef]
- Ashraf, S.; Viveiros, R.; França, C.; Ornelas, R.T.; Rodrigues, A. Association between Body Composition, Physical Activity Profile, and Occurrence of Knee and Foot Postural Alterations among Young Healthy Adults. Future 2024, 2, 16–29. [Google Scholar] [CrossRef]
- Larwa, J.; Stoy, C.; Chafetz, R.S.; Boniello, M.; Franklin, C. Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes. Int. J. Environ. Res. Public Health 2021, 18, 3826. [Google Scholar] [CrossRef]
- Khayambashi, K.; Ghoddosi, N.; Straub, R.K.; Powers, C.M. Hip Muscle Strength Predicts Noncontact Anterior Cruciate Ligament Injury in Male and Female Athletes: A Prospective Study. Am. J. Sports Med. 2016, 44, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Mancino, F.; Kayani, B.; Gabr, A.; Fontalis, A.; Plastow, R.; Haddad, F.S. Anterior cruciate ligament injuries in female athletes: Risk factors and strategies for prevention. Bone Jt. Open 2024, 5, 94. [Google Scholar] [CrossRef]
- Ortiz, A.; Olson, S.L.; Etnyre, B.; Trudelle-Jackson, E.E.; Bartlett, W.; Venegas-Rios, H.L. Fatigue effects on knee joint stability during two jump tasks in women. J. Strength Cond. Res. 2010, 24, 1019–1027. [Google Scholar] [CrossRef]
- Wong, T.L.; Huang, C.F.; Chen, P.C. Effects of Lower Extremity Muscle Fatigue on Knee Loading During a Forward Drop Jump to a Vertical Jump in Female Athletes. J. Hum. Kinet. 2020, 72, 5–13. [Google Scholar] [CrossRef]
- Jiang, X.; Sárosi, J.; Bíró, I. Characteristics of lower limb running-related injuries in trail runners: A systematic review. Phys. Act. Health 2024, 8, 137–147. [Google Scholar] [CrossRef]
- Curi, G.; Costa, F.D.D.; Medeiros, V.S.; Barbosa, V.D.; Santos, T.R.T.; Dionisio, V.C. The effects of core muscle fatigue on lower limbs and trunk during single-leg drop landing: A comparison between recreational runners with and without dynamic knee valgus. Knee 2024, 50, 96–106. [Google Scholar] [CrossRef]
- Benjaminse, A.; Webster, K.E.; Kimp, A.; Meijer, M.; Gokeler, A. Revised Approach to the Role of Fatigue in Anterior Cruciate Ligament Injury Prevention: A Systematic Review with Meta-Analyses. Sports Med. 2019, 49, 565–586. [Google Scholar] [CrossRef]
- Chappell, J.D.; Herman, D.C.; Knight, B.S.; Kirkendall, D.T.; Garrett, W.E.; Yu, B. Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am. J. Sports Med. 2005, 33, 1022–1029. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S., Jr.; Colosimo, A.J.; McLean, S.G.; Van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Quatman, C.E.; Hewett, T.E. The anterior cruciate ligament injury controversy: Is “valgus collapse” a sex-specific mechanism? Br. J. Sports Med. 2009, 43, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; de Vito, G.; Ditroilo, M.; Delahunt, E. Neuromuscular training effects on the stiffness properties of the knee joint and landing biomechanics of young female recreational athletes. Br. J. Sports Med. 2017, 51, 405. [Google Scholar] [CrossRef]
- Bencke, J.; Aagaard, P.; Zebis, M.K. Muscle Activation During ACL Injury Risk Movements in Young Female Athletes: A Narrative Review. Front. Physiol. 2018, 9, 445. [Google Scholar] [CrossRef]
- Ireland, M.L. The female ACL: Why is it more prone to injury? Orthop. Clin. 2002, 33, 637–651. [Google Scholar] [CrossRef]
- Borgia, B.; Dufek, J.S.; Silvernail, J.F.; Radzak, K.N. The effect of fatigue on running mechanics in older and younger runners. Gait Posture 2022, 97, 86–93. [Google Scholar] [CrossRef]
- Marques Luís, N.; Varatojo, R. Radiological assessment of lower limb alignment. EFORT Open Rev. 2021, 6, 487–494. [Google Scholar] [CrossRef]
- Paley, D. Principles of Deformity Correction; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Farr, S.; Kranzl, A.; Pablik, E.; Kaipel, M.; Ganger, R. Functional and radiographic consideration of lower limb malalignment in children and adolescents with idiopathic genu valgum. J. Orthop. Res. 2014, 32, 1362–1370. [Google Scholar] [CrossRef]
- Besomi, M.; Hodges, P.W.; Clancy, E.A.; Van Dieën, J.; Hug, F.; Lowery, M.; Merletti, R.; Søgaard, K.; Wrigley, T.; Besier, T. Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix. J. Electromyogr. Kinesiol. 2020, 53, 102438. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Song, Y.; Sun, D.; Cen, X.; Wang, M.; Lu, Z.; Gu, Y. Impact of Becker muscular dystrophy on gait patterns: Insights from biomechanical analysis. Gait Posture 2025, 121, 160–165. [Google Scholar] [CrossRef]
- Chang, H.; Cen, X. Can running technique modification benefit patellofemoral pain improvement in runners? A systematic review and meta-analysis. Int. J. Biomed. Eng. Technol. 2024, 45, 83–101. [Google Scholar] [CrossRef]
- Williams, N. The Borg Rating of Perceived Exertion (RPE) scale. Occup. Med. 2017, 67, 404–405. [Google Scholar] [CrossRef]
- Liguori, G.; Medicine, A.C.o.S. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2020. [Google Scholar]
- Yu, P.; Gong, Z.; Meng, Y.; Baker, J.S.; István, B.; Gu, Y. The acute influence of running-induced fatigue on the performance and biomechanics of a countermovement jump. Appl. Sci. 2020, 10, 4319. [Google Scholar] [CrossRef]
- Cen, X.; Yu, P.; Song, Y.; Sun, D.; Liang, M.; Bíró, I.; Gu, Y. Influence of medial longitudinal arch flexibility on lower limb joint coupling coordination and gait impulse. Gait Posture 2024, 114, 208–214. [Google Scholar] [CrossRef]
- Li, F.; Sun, D.; Song, Y.; Zhou, Z.; Wang, D.; Cen, X.; Gu, Y. Dynamic simulation of knee joint mechanics: Individualized multi-moment finite element modelling of patellar tendon stress during landing. J. Biomech. 2025, 186, 112730. [Google Scholar] [CrossRef]
- Kar, J.; Quesada, P.M. A numerical simulation approach to studying anterior cruciate ligament strains and internal forces among young recreational women performing valgus inducing stop-jump activities. Ann. Biomed. Eng. 2012, 40, 1679–1691. [Google Scholar] [CrossRef] [PubMed]
- Thelen, D.G.; Anderson, F.C.; Delp, S.L. Generating dynamic simulations of movement using computed muscle control. J. Biomech. 2003, 36, 321–328. [Google Scholar] [CrossRef]
- Rajagopal, A.; Dembia, C.L.; DeMers, M.S.; Delp, D.D.; Hicks, J.L.; Delp, S.L. Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 2016, 63, 2068–2079. [Google Scholar] [CrossRef]
- Song, Y.; Cen, X.; Wang, M.; Gao, Z.; Tan, Q.; Sun, D.; Gu, Y.; Wang, Y.; Zhang, M. A Systematic Review of Finite Element Analysis in Running Footwear Biomechanics: Insights for Running-Related Musculoskeletal Injuries. J. Sports Sci. Med. 2025, 24, 370. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Cheng, E.J.; Brown, I.E.; Loeb, G.E. Virtual muscle: A computational approach to understanding the effects of muscle properties on motor control. J. Neurosci. Methods 2000, 101, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Sikidar, A.; Marieswaran, M.; Kalyanasundaram, D. Estimation of forces on anterior cruciate ligament in dynamic activities. Biomech. Model. Mechanobiol. 2021, 20, 1533–1546. [Google Scholar] [CrossRef] [PubMed]
- Pataky, T.C.; Vanrenterghem, J.; Robinson, M. Statistical parametric mapping (SPM): Theory, software, and future directions. In Proceedings of the International Society of Biomechanics, Brisbane, Australia, 23–27 July 2017. [Google Scholar]
- Amis, A.A.; Dawkins, G. Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. J. Bone Jt. Surg. Br. Vol. 1991, 73, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, M.T.; Wong, E.K.; Woo, S.L.Y.; Yagi, M.; Debski, R.E. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J. Orthop. Res. 2004, 22, 85–89. [Google Scholar] [CrossRef]
- Yu, B.; Lin, C.F.; Garrett, W.E. Lower extremity biomechanics during the landing of a stop-jump task. Clin. Biomech. 2006, 21, 297–305. [Google Scholar] [CrossRef]
- Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.; Slauterbeck, J.L. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 1995, 13, 930–935. [Google Scholar] [CrossRef]
- Schmitz, R.J.; Ficklin, T.K.; Shimokochi, Y.; Nguyen, A.D.; Beynnon, B.D.; Perrin, D.H.; Shultz, S.J. Varus/valgus and internal/external torsional knee joint stiffness differs between sexes. Am. J. Sports Med. 2008, 36, 1380–1388. [Google Scholar] [CrossRef]
- Zlotnicki, J.P.; Naendrup, J.H.; Ferrer, G.A.; Debski, R.E. Basic biomechanic principles of knee instability. Curr. Rev. Musculoskelet. Med. 2016, 9, 114–122. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Wu, B.; Zhou, L.; Luo, Y.; Huang, X.; Xu, W.; Wang, S. Subregional analysis of joint stiffness facilitates insight into ligamentous laxity after ACL injury. Front. Bioeng. Biotechnol. 2023, 11, 1298402. [Google Scholar] [CrossRef]
- Wang, D.; de Vito, G.; Ditroilo, M.; Delahunt, E. Different Effect of Local and General Fatigue on Knee Joint Stiffness. Med. Sci. Sports Exerc. 2017, 49, 173–182. [Google Scholar] [CrossRef]
- Shao, E.; Lu, Z.; Cen, X.; Zheng, Z.; Sun, D.; Gu, Y. The Effect of Fatigue on Lower Limb Joint Stiffness at Different Walking Speeds. Diagnostics 2022, 12, 1470. [Google Scholar] [CrossRef]
- Saber, B.; Bridger, D.; Agrawal, D.K. A Critical Analysis of the Factors Contributing to Anterior Cruciate Ligament Injuries in Female Athletes. J. Orthop. Sports Med. 2024, 6, 203–209. [Google Scholar] [CrossRef]
- Rinaldi, V.G.; Prill, R.; Jahnke, S.; Zaffagnini, S.; Becker, R. The influence of gluteal muscle strength deficits on dynamic knee valgus: A scoping review. J. Exp. Orthop. 2022, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Khou, S.B.; Saki, F.; Tahayori, B. Muscle activation in the lower limb muscles in individuals with dynamic knee valgus during single-leg and overhead squats: A meta-analysis study. BMC Musculoskelet. Disord. 2024, 25, 652. [Google Scholar] [CrossRef]
- Takai, S.; Woo, S.L.; Livesay, G.A.; Adams, D.J.; Fu, F.H. Determination of the in situ loads on the human anterior cruciate ligament. J. Orthop. Res. 1993, 11, 686–695. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, J.; Breighner, R.; Chandrashekar, N.; Hardy, D.M.; Chaudhari, A.M.; Shultz, S.J.; Slauterbeck, J.R.; Beynnon, B.D. Hip extension, knee flexion paradox: A new mechanism for non-contact ACL injury. J. Biomech. 2011, 44, 577–585. [Google Scholar] [CrossRef]
- Withrow, T.J.; Huston, L.J.; Wojtys, E.M.; Ashton-Miller, J.A. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clin. Biomech. 2006, 21, 977–983. [Google Scholar] [CrossRef]
- Shao, E.; Mei, Q.; Ye, T.; Kovács, B.; Baker, J.S.; Liu, W.; Gu, Y. The Effects of 5 km Interval Running on the Anterior Cruciate Ligament Strain and Biomechanical Characteristic of the Knee Joint: Simulation and Principal Component Analysis. Appl. Sci. 2023, 13, 6760. [Google Scholar] [CrossRef]
- Yoon, S.W.; Lee, J.W.; Cho, W.S.; Kim, A.N.; Lee, K.H. Analysis of balance ability dependent on the angle of the knee joint in females in their 20s. J. Phys. Ther. Sci. 2013, 25, 997–1000. [Google Scholar] [CrossRef] [PubMed]
- Shimokochi, Y.; Shultz, S.J. Mechanisms of noncontact anterior cruciate ligament injury. J. Athl. Train. 2008, 43, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Barrios, J.A.; Heitkamp, C.A.; Smith, B.P.; Sturgeon, M.M.; Suckow, D.W.; Sutton, C.R. Three-dimensional hip and knee kinematics during walking, running, and single-limb drop landing in females with and without genu valgum. Clin. Biomech. 2016, 31, 7–11. [Google Scholar] [CrossRef]
- Blackburn, J.T.; Padua, D.A. Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing. Clin. Biomech. 2008, 23, 313–319. [Google Scholar] [CrossRef]
- Baird, D.C.; Dickison, C.G.; Spires, H.I. Lower Extremity Abnormalities in Children. Am. Fam. Physician 2025, 111, 125–139. [Google Scholar] [CrossRef]
- Hinckel, B.B.; Demange, M.K.; Gobbi, R.G.; Pécora, J.R.; Camanho, G.L. The Effect of Mechanical Varus on Anterior Cruciate Ligament and Lateral Collateral Ligament Stress: Finite Element Analyses. Orthopedics 2016, 39, e729–e736. [Google Scholar] [CrossRef]
- Girgis, F.G.; Marshall, J.L.; JEM, A.A.M. The cruciate ligaments of the knee joint: Anatomical, functional and experimental analysis. Clin. Orthop. Relat. Res. 1975, 106, 216–231. [Google Scholar] [CrossRef]
- Zantop, T.; Herbort, M.; Raschke, M.J.; Fu, F.H.; Petersen, W. The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am. J. Sports Med. 2007, 35, 223–227. [Google Scholar] [CrossRef]
- Colombet, P.; Robinson, J.; Jambou, S.; Allard, M.; Bousquet, V.; de Lavigne, C. Two-bundle, four-tunnel anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 629–636. [Google Scholar] [CrossRef]
- Grunenberg, O.; Gerwing, M.; Oeckenpöhler, S.; Peez, C.; Briese, T.; Glasbrenner, J.; Hägerich, L.M.; Raschke, M.J.; Kittl, C.; Herbst, E. The anteromedial retinaculum in ACL-injured knees: An overlooked injury? Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Yeo, I.-S.; Hong, J.-E.; Yang, H.-M. Histomorphometric analysis of anterior cruciate ligament bundles and anatomical insights into injury mechanisms. Sci. Rep. 2025, 15, 6762. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Singh, S. Analysis of partial bundle anterior cruciate ligament tears- diagnosis and management with ACL augmentation. J. Clin. Orthop. Trauma. 2020, 11, S337–S341. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, M.L.; Ashton-Miller, J.A.; Wojtys, E.M. Loading mechanisms of the anterior cruciate ligament. Sports Biomech. 2023, 22, 1–29. [Google Scholar] [CrossRef]
- Bien, D.P. Rationale and implementation of anterior cruciate ligament injury prevention warm-up programs in female athletes. J. Strength Cond. Res. 2011, 25, 271–285. [Google Scholar] [CrossRef]
- Maniar, N.; Cole, M.H.; Bryant, A.L.; Opar, D.A. Muscle Force Contributions to Anterior Cruciate Ligament Loading. Sports Med. 2022, 52, 1737–1750. [Google Scholar] [CrossRef]
- Moshashaei, M.S.; Gandomi, F.; Amiri, E.; Maffulli, N. Anodal tDCS improves the effect of neuromuscular training on the feedforward activity of lower extremity muscles in female taekwondo athletes with dynamic knee valgus. Sci. Rep. 2024, 14, 20007. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Kim, J. Electromyography-signal-based muscle fatigue assessment for knee rehabilitation monitoring systems. Biomed. Eng. Lett. 2018, 8, 345–353. [Google Scholar] [CrossRef]
- Sun, D.; Song, Y.; Cen, X.; Wang, M.; Baker, J.S.; Gu, Y. Workflow assessing the effect of Achilles tendon rupture on gait function and metatarsal stress: Combined musculoskeletal modeling and finite element analysis. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2022, 236, 676–685. [Google Scholar] [CrossRef]
- Song, Y.; Cen, X.; Wang, M.; Bálint, K.; Tan, Q.; Sun, D.; Gao, S.; Li, F.; Gu, Y.; Wang, Y.; et al. The influence of simulated worn shoe and foot inversion on heel internal biomechanics during running impact: A subject-specific finite element analysis. J. Biomech. 2025, 180, 112517. [Google Scholar] [CrossRef]
- Song, Y.; Cen, X.; Sun, D.; Bálint, K.; Wang, Y.; Chen, H.; Gao, S.; Biro, I.; Zhang, M.; Gu, Y. Curved carbon-plated shoe may further reduce forefoot loads compared to flat plate during running. Sci. Rep. 2024, 14, 13215. [Google Scholar] [CrossRef]
- Cen, X.; Song, Y.; Sun, D.; Bíró, I.; Gu, Y. Applications of finite element modeling in biomechanical analysis of foot arch deformation: A scoping review. J. Biomech. Eng. 2023, 145, 070801. [Google Scholar] [CrossRef]
Variables | GV Group | Healthy Group | ||
---|---|---|---|---|
Mean | SD | Mean | SD | |
Age (year) | 23.0 | 1.4 | 23.0 | 3.2 |
Weight (kg) | 59.1 | 11.1 | 50.3 | 3.6 |
Height (cm) | 163.7 | 8.7 | 161.6 | 3.5 |
BMI | 21.9 | 1.9 | 19.3 | 1.6 |
mLDFA | 82.3 | 0.4 | 87.2 | 0.3 |
mMPTA | 91.6 | 0.3 | 87.8 | 0.7 |
Length of the A–ACL (mm) | 23.1 | 2.2 | 23.3 | 1.4 |
Length of the P–ACL (mm) | 30.1 | 1.6 | 30.0 | 0.9 |
Variables | GV Group | Healthy Group | p | |||
---|---|---|---|---|---|---|
Peak Angle | Pre-Fatigue | Post-Fatigue | Pre-Fatigue | Post-Fatigue | ||
Sagittal Plane | Hip Flexion | 44.37 ± 4.44 | 45.65 ± 5.96 | 45.98 ± 8.75 | 45.68 ± 5.17 | 0.06 |
Hip Extension | −1.86 ± 6.33 | −1.42 ± 5.90 | 3.63 ± 3.95 | 3.80 ± 2.69 # | 0.08 | |
Knee Flexion | 37.45 ± 4.93 | 41.75 ± 6.98 * | 35.16 ± 6.17 | 37.17 ± 7.49 # | 0.43 | |
Knee Extension | −17.01 ± 4.24 | −18.12 ± 5.77 | −9.38 ± 5.49 | −8.06 ± 2.60 | 0.22 | |
Frontal Plane | Hip Adduction | 7.94 ± 3.36 | 8.37 ± 2.44 | 10.09 ± 6.47 | 10.78 ± 6.47 | 0.88 |
Hip Abduction | 3.62 ± 4.74 | 4.17 ± 3.85 | 5.39 ± 1.75 | 4.53 ± 2.44 | 0.49 | |
Knee Adduction | 4.71 ± 3.85 | 3.12 ± 4.47 * | 2.90 ± 3.19 | 2.33 ± 3.23 | 0.77 | |
Knee Abduction | 4.54 ± 3.39 | 5.77 ± 5.28 * | 6.10 ± 3.23 # | 6.82 ± 3.68 | 0.37 | |
Transverse Plane | Hip Internal Rotation | 15.56 ± 5.73 | 16.71 ± 4.84 | 18.26 ± 5.77 | 19.08 ± 2.55 | 0.54 |
Hip External Rotation | 5.18 ± 7.65 | 3.30 ± 9.85 * | 5.19 ± 9.07 | 5.16 ± 6.47 | 0.73 | |
Knee Internal Rotation | 17.20 ± 6.51 | 20.95 ± 2.45 | 20.37 ± 5.10 | 21.21 ± 4.23 | 0.78 | |
Knee External Rotation | 19.89 ± 4.24 | 16.86 ± 7.23 * | 17.32 ± 5.71 | 16.53 ± 4.30 | 0.69 |
Variables | Healthy Group | GV Group | p Group | p |
---|---|---|---|---|
Pre-fatigue | 0.043 ± 0.020 | 0.034 ± 0.013 | 0.001 | 0.073 |
Post-fatigue | 0.041 ± 0.018 | 0.029 ± 0.022 | 0.001 | |
p Fatigue | 0.063 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jian, X.; Sun, D.; Xu, Y.; Zhu, C.; Cen, X.; Song, Y.; Fekete, G.; Janicijevic, D.; Jemni, M.; Gu, Y. Running-Induced Fatigue Exacerbates Anteromedial ACL Bundle Stress in Females with Genu Valgum: A Biomechanical Comparison with Healthy Controls. Sensors 2025, 25, 4814. https://doi.org/10.3390/s25154814
Jian X, Sun D, Xu Y, Zhu C, Cen X, Song Y, Fekete G, Janicijevic D, Jemni M, Gu Y. Running-Induced Fatigue Exacerbates Anteromedial ACL Bundle Stress in Females with Genu Valgum: A Biomechanical Comparison with Healthy Controls. Sensors. 2025; 25(15):4814. https://doi.org/10.3390/s25154814
Chicago/Turabian StyleJian, Xiaoyu, Dong Sun, Yufan Xu, Chengyuan Zhu, Xuanzhen Cen, Yang Song, Gusztáv Fekete, Danica Janicijevic, Monèm Jemni, and Yaodong Gu. 2025. "Running-Induced Fatigue Exacerbates Anteromedial ACL Bundle Stress in Females with Genu Valgum: A Biomechanical Comparison with Healthy Controls" Sensors 25, no. 15: 4814. https://doi.org/10.3390/s25154814
APA StyleJian, X., Sun, D., Xu, Y., Zhu, C., Cen, X., Song, Y., Fekete, G., Janicijevic, D., Jemni, M., & Gu, Y. (2025). Running-Induced Fatigue Exacerbates Anteromedial ACL Bundle Stress in Females with Genu Valgum: A Biomechanical Comparison with Healthy Controls. Sensors, 25(15), 4814. https://doi.org/10.3390/s25154814