Comparison of Gait Characteristics for Horses Without Shoes, with Steel Shoes, and with Aluminum Shoes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Procedures
2.3. Measures of Outcome
2.4. Statistical Analysis
3. Results
3.1. Hoof Arc Height
3.1.1. Arc Height a
3.1.2. Arc Height b
3.2. Stride Length
3.3. Q Score
3.4. Mediolateral Deviation of the Hoof and Time of Each Stride Phase
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huguet, E.E.; Duberstein, K.J. Effects of steel and aluminum shoes on forelimb kinematics in stock-type horses as measured at the trot. J. Equine Vet. Sci. 2012, 32, 262–267. [Google Scholar] [CrossRef]
- Loushin, K.; Bailey, M. Shoe-Pulling Remains Legal and More Action from USHJA Annual Meeting. The Chronicle of the Horse, 2021. Available online: https://www.chronofhorse.com/article/shoe-pulling-remains-legal-and-more-action-from-ushja-annual-meeting (accessed on 23 February 2022).
- Singer, E.; Garcia, T.; Stover, S. Hoof position during limb loading affects dorsoproximal bone strains on the equine proximal phalanx. J. Biomech. 2015, 48, 1930–1936. [Google Scholar] [CrossRef]
- Hill, A.E.; Gardner, I.A.; Carpenter, T.E.; Stover, S. Effects of injury to the suspensory apparatus, exercise, and horseshoe characteristics on the risk of lateral condylar fracture and suspensory apparatus failure in forelimbs of Thoroughbred racehorses. Am. J. Vet. Res. 2004, 65, 1508–1517. [Google Scholar] [CrossRef]
- Amitrano, F.N.; Gutierrez-Nibeyro, S.D.; Schaeffer, D.J. Effect of hoof boots and toe-extension shoes on the forelimb kinetics of horses during walking. Am. J. Vet. Res. 2016, 77, 527–533. [Google Scholar] [CrossRef]
- Kelleher, M.E.; Burns, T.D.; Werre, S.R.; White, N.A., II. The immediate effect of routine hoof trimming and shoeing on horses’ gait. J. Equine Vet. Sci. 2021, 102, 103633. [Google Scholar] [CrossRef] [PubMed]
- Aoun, R.; Takawira, C.; Lopez, M. Horseshoe effects on equine gait–a systematic scoping review. Vet. Surg. 2025, 54, 31–51. [Google Scholar] [CrossRef] [PubMed]
- Horan, K.; Coburn, J.; Kourdache, K.; Day, P.; Harborne, D.; Brinkley, L.; Carnall, H.; Hammond, L.; Peterson, M.; Millard, S.; et al. Influence of speed, ground surface and shoeing condition on hoof breakover duration in galloping Thoroughbred racehorses. Animals 2021, 11, 2588. [Google Scholar] [CrossRef]
- Willemen, M.A.; Savelberg, H.H.C.M.; Barneveld, A. The improvement of the gait quality of sound trotting warmblood horses by normal shoeing and its effect on the load on the lower forelimb. Livestock Prod. Sci. 1997, 52, 145–153. [Google Scholar] [CrossRef]
- Wickler, S.J.; Hoyt, D.F.; Clayton, H.M.; Mullineaux, D.R.; Cogger, E.A.; Sandoval, E.; McGuire, R.; Lopez, C. Energetic and kinematic consequences of weighting the distal limb. Equine Vet. J. 2004, 36, 772–777. [Google Scholar] [CrossRef]
- Rumpler, B.; Riha, A.; Licka, T.; Kotschwar, A.; Peham, C. Influence of shoes with different weights on the motion of the limbs in Icelandic horses during toelt at different speeds. Equine Vet. J. 2010, 42, 451–454. [Google Scholar] [CrossRef]
- Clayton, H.M. (Ed.) The Dynamic Horse: A Biomechanical Guide to Equine Movement and Performance; Sport Horse Publications: Mason, MI, USA, 2004. [Google Scholar]
- Keegan, K.G.; Kramer, J.; Yonezawa, Y.; Maki, H.; Pai, F.; Dent, E.; Kellerman, T.E.; Wilson, D.A.; Reed, S.K. Assessment of repeatability of a wireless, inertial sensor-based lameness evaluation system for horses. Am. J. Vet. Res. 2011, 72, 1158–1163. [Google Scholar] [CrossRef] [PubMed]
- McCracken, M.J.; Kramer, J.; Keegan, K.G.; Lopes, M.; Wilson, D.A.; Reed, S.K.; LaCarrubba, A.; Rasch, M. Comparison of an inertial sensor system of lameness quantification with subjective lameness evaluation. Equine Vet. J. 2012, 44, 652–656. [Google Scholar] [CrossRef]
- Pagliara, E.; Marenchino, M.; Antenucci, L.; Costantini, M.; Zoppi, G.; Giacobini, M.D.L.; Bullone, M.; Riccio, B.; Bertuglia, A. Fetlock joint angle pattern and range of motion quantification using two synchronized wearable inertial sensors per limb in sound horses and horses with single limb naturally occurring lameness. Vet. Sci. 2022, 9, 456. [Google Scholar] [CrossRef] [PubMed]
- Hagen, J.; Jung, F.T.; Brouwer, J.; Bos, R. Detection of equine hoof motion by using a hoof-mounted inertial measurement unit sensor in comparison to examinations with an optoelectronic technique—A pilot study. J. Equine Vet. Sci. 2021, 101, 103454. [Google Scholar] [CrossRef]
- Hagen, J.; Bos, R.; Brouwer, J.; Lux, S.; Jung, F.T. Influence of trimming, hoof angle and shoeing on breakover duration in sound horses examined with hoof-mounted inertial sensors. Vet. Rec. 2021, 189, e450. [Google Scholar] [CrossRef]
- Crecan, C.M.; Pestean, C.P. Inertial sensor technologies-Their role in equine gait analysis, a review. Sensors 2023, 23, 6301. [Google Scholar] [CrossRef]
- Reed, S.K.; Kramer, J.; Thombs, L.; Pitts, J.B.; Wilson, D.A.; Keegan, K.G. Comparison of results for body-mounted intertial sensor assessment with final lameness determination in 1,224 equids. J. Am. Vet. Med. Assoc. 2020, 256, 590–599. [Google Scholar] [CrossRef]
- Singleton, W.H.; Clayton, H.M.; Lanovaz, J.L.; Prades, M. Effects of shoeing on forelimb swing phase kinetics of trotting horses. Vet. Comp. Orthop. Traumatol. 2003, 16, 16–20. [Google Scholar] [CrossRef]
- Lanovaz, J.L.; Clayton, H.M. Sensitivity of forelimb swing phase inverse dynamics to inertial parameter errors. Equine Vet. J. 2001, 33, 27–31. [Google Scholar] [CrossRef]
- Mendez-Angulo, J.L.; Firshman, A.M.; Groschen, D.M.; Kieffer, P.J.; Trumble, T.N. Impact of walking surface on the range of motion of equine distal limb joints for rehabilitation purposes. Vet. J. 2014, 199, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Bowker, R.M.; Lancaster, L.S.; Isbell, D.A. Morphological evaluation of Merkel cells and small lamellated sensory receptors in the equine foot. Am. J. Vet. Res. 2017, 78, 659–667. [Google Scholar] [CrossRef]
- Hagen, J.; Geburek, F.; Kathrinaki, V.; Naem, M.A.; Roecken, M.; Hoffmann, J. Effect of perineural anesthesia on the centre of pressure (COP) path during stance phase at trot in sound horses. J. Equine Vet. Sci. 2021, 101, 103429. [Google Scholar] [CrossRef] [PubMed]
- Haussler, K.K.; le Jeune, S.S.; MacKechnie-Guire, R.; Latif, S.N.; Clayton, H.M. The challenge of defining laterality in horses is it laterality or just asymmetry? Animals 2025, 15, 288. [Google Scholar] [CrossRef] [PubMed]
- Lanovaz, J.L.; Clayton, H.M.; Colborne, G.R.; Schamhardt, H.C. Forelimb kinematics and net joint moments during the swing phase of the trot. Equine Vet. J. Suppl. 1999, 30, 235–239. [Google Scholar] [CrossRef]
- Parkes, R.S.; Weller, R.; Groth, A.M.; May, S.; Pfau, T. Evidence of the development of ‘domain-restricted’ expertise in the recognition of asymmetric motion characteristics of hindlimb lameness in the horse. Equine Vet. J. 2009, 41, 112–117. [Google Scholar] [CrossRef]
- Asti, V.; Ablondi, M.; Molle, A.; Zanotti, A.; Vasini, M.; Sabbioni, A. Inertial measurement unit technology for gait detection: A comprehensive evaluation of gait traits in two Italian horse breeds. Front. Vet. Sci. 2024, 11, 1459553. [Google Scholar] [CrossRef]
- Balch, O.K.; Clayton, H.M.; Lanovaz, J.L. Weight- and length-induced changes in limb kinematics in trotting horses. In Proceedings of the Annual Convention American Association of Equine Practitioners, Denver, CO, USA, 8–11 December 1996; Volume 42, pp. 218–219. [Google Scholar]
- Serra Bragança, F.M.; Brommer, H.; van den Belt, A.J.M.; Maree, J.T.M.; van Weeren, P.R.; Sloet van Oldruitenborgh-Oosterbaan, M.M. Subjective and objective evaluations of horses for fit-to-compete or unfit-to-compete judgement. Vet. J. 2020, 257, 105454. [Google Scholar] [CrossRef]
- de Chiara, M.; Montano, C.; De Matteis, A.; Guidi, L.; Buono, F.; Auletta, L.; Del Prete, C.; Pasolini, M.P. Agreement between subjective gait assessment and markerless video gait-analysis in endurance horses. Equine Vet. J. 2025; epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
Variable | Footing | Baseline | Barefoot | Aluminum | Steel | p-Value |
---|---|---|---|---|---|---|
LF Arc height a | A | 14.00 (0.54) ab | 13.38 (0.73) ab | 12.88 (0.40) b | 14.42 (0.46) a | <0.001 |
SF | 15.00 (0.46) ab | 13.38 (0.69) c | 14.75 (0.52) b | 15.92 (0.51) a | <0.001 | |
RF Arc height a | A | 14.29 (0.74) a | 13.42 (0.73) ab | 12.88 (0.49) b | 14.42 (0.61) a | <0.001 |
SF | 14.71 (0.45) ab | 13.92 (0.75) b | 14.54 (0.50) b | 15.75 (0.49) a | <0.001 | |
LF Arc height b | A | 12.08 (0.30) a | 12.38 (0.35) a | 12.04 (0.27) a | 11.67 (0.21) a | 0.058 |
SF | 13.83 (0.44) ab | 14.13 (0.44) ab | 14.42 (0.48) b | 13.71 (0.42) a | <0.001 | |
RF Arc height b | A | 12.25 (0.27) b | 12.88 (0.39) a | 11.92 (0.25) bc | 11.67 (0.22) c | <0.001 |
SF | 13.75 (0.48) ab | 14.08 (0.43) b | 14.25 (0.46) b | 13.63 (0.40) a | 0.031 |
Footing | Baseline | Barefoot | Aluminum | Steel | p-Value |
---|---|---|---|---|---|
A | 208.67 (20.40) | 206.58 (28.22) | 208.13 (20.71) | 204.25 (21.89) | 0.75 |
SF | 212.63 (14.68) | 215.58 (20.93) | 217.29 (18.04) | 214.42 (14.58) | 0.75 |
Footing | Baseline | Barefoot | Aluminum | Steel | p-Value |
---|---|---|---|---|---|
A | 10.10 (2.21) | 13.73 (2.26) | 11.63 (2.23) | 11.55 (2.34) | 0.26 |
SF | 11.10 (1.49) | 9.72 (0.95) | 12.18 (2.68) | 9.42 (2.20) | 0.63 |
Variable | Footing | Baseline | Barefoot | Aluminum | Steel | p-Value |
---|---|---|---|---|---|---|
LF Mediolateral hoof deviation | A | 4.96 (0.89) | 6.08 (0.89) | 4.88 (0.61) | 4.58 (0.63) | 0.06 |
SF | 4.04 (0.55) | 4.00 (0.61) | 3.88 (0.52) | 3.83 (0.51) | 0.91 | |
RF Mediolateral hoof deviation | A | 4.71 (1.04) | 6.29 (1.08) | 5.17 (0.73) | 4.67 (0.86) | 0.29 |
SF | 3.38 (0.53) | 3.92 (0.78) | 3.88 (0.76) | 3.54 (0.59) | 0.53 |
Stride Phase | Limb | Footing | Baseline | Barefoot | Aluminum | Steel | p-Value |
---|---|---|---|---|---|---|---|
Landing | LF | A | 13.7 (3.8) | 13.4 (5.1) | 12.3 (1.7) | 15.2 (2.1) | 0.96 |
SF | 71.8 (15.5) | 66.0 (15.0) | 76.2 (20.2) | 68.7 (18.3) | 0.19 | ||
RF | A | 15.0 (3.8) | 12.9 (4.3) | 14.1 (2.7) | 15.7 (2.4) | 0.95 | |
SF | 67.7 (12.3) | 68.4 (20.0) | 70.2 (19.8) | 66.8 (19.3) | 0.54 | ||
Midstance | LF | A | 245.6 (32.5) | 258.9 (39.6) | 256.5 (34.8) | 262.2 (35.7) | 0.11 |
SF | 223.7 (26.0) | 229.3 (26.9) | 228.8 (28.3) | 234.5 (25.2) | 0.51 | ||
RF | A | 242.2 (32.7) | 254.6 (38.5) | 252.8 (36.9) | 258.3 (35.2) | 0.16 | |
SF | 224.7 (28.8) | 226.5 (28.3) | 230.9 (29.5) | 235.5 (27.8) | 0.47 | ||
Breakover | LF | A | 71.9 (13.3) | 73.8 (17.8) | 73.6 (12.9) | 77.1 (11.9) | 0.45 |
SF | 64.9 (14.6) | 61.9 (11.9) | 59.7 (12.9) | 64.1 (13.7) | 0.39 | ||
RF | A | 70.0 (12.0) | 73.3 (16.8) | 72.1 (9.5) | 76.6 (12.2) | 0.22 | |
SF | 62.3 (11.8) | 59.0 (12.3) | 58.0 (12.3) | 63.0 (11.6) | 0.31 | ||
Swing | LF | A | 369.3 (24.8) | 361.6 (24.8) | 372.0 (24.8) | 372.9 (26.0) | 0.06 |
SF | 375.1 (24.2) | 375.9 (24.7) | 375.2 (25.8) | 379.3 (26.1) | 0.75 | ||
RF | A | 373.3 (26.2) | 366.0 (23.6) | 375.6 (25.7) | 376.7 (27.4) | 0.10 | |
SF | 384.5 (19.4) | 382.4 (27.1) | 382.3 (29.6) | 385.8 (26.3) | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gottleib, K.; Trager-Burns, L.; Santonastaso, A.; Bogers, S.; Werre, S.; Burns, T.; Byron, C. Comparison of Gait Characteristics for Horses Without Shoes, with Steel Shoes, and with Aluminum Shoes. Animals 2025, 15, 2376. https://doi.org/10.3390/ani15162376
Gottleib K, Trager-Burns L, Santonastaso A, Bogers S, Werre S, Burns T, Byron C. Comparison of Gait Characteristics for Horses Without Shoes, with Steel Shoes, and with Aluminum Shoes. Animals. 2025; 15(16):2376. https://doi.org/10.3390/ani15162376
Chicago/Turabian StyleGottleib, Katherine, Lauren Trager-Burns, Amy Santonastaso, Sophie Bogers, Stephen Werre, Travis Burns, and Christopher Byron. 2025. "Comparison of Gait Characteristics for Horses Without Shoes, with Steel Shoes, and with Aluminum Shoes" Animals 15, no. 16: 2376. https://doi.org/10.3390/ani15162376
APA StyleGottleib, K., Trager-Burns, L., Santonastaso, A., Bogers, S., Werre, S., Burns, T., & Byron, C. (2025). Comparison of Gait Characteristics for Horses Without Shoes, with Steel Shoes, and with Aluminum Shoes. Animals, 15(16), 2376. https://doi.org/10.3390/ani15162376