Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (464)

Search Parameters:
Keywords = keratinocyte differentiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1507 KiB  
Article
Peony Root Extract Controls AGE–RAGE Interaction, Suppresses AGE Formation, and Reduces Skin Dullness
by Kyoko Kanai, Kazal Boron Biswas, Asuka Hirasawa, Misaki Futamura, Kiyotaka Tanaka and Kotaro Sakamoto
Cosmetics 2025, 12(4), 163; https://doi.org/10.3390/cosmetics12040163 - 4 Aug 2025
Abstract
Skin dullness contributes to a fatigued and aged appearance, often exceeding one’s biological age. It is a common dermatological concern influenced by aging and poor lifestyle habits, regardless of ethnicity or age. This study aimed to examine advanced glycation end products (AGEs) and [...] Read more.
Skin dullness contributes to a fatigued and aged appearance, often exceeding one’s biological age. It is a common dermatological concern influenced by aging and poor lifestyle habits, regardless of ethnicity or age. This study aimed to examine advanced glycation end products (AGEs) and their receptor (receptor for AGEs [RAGE]) as contributing factors to skin dullness. AGEs themselves have a yellowish hue, contributing to “yellow dullness.” Additionally, AGE–RAGE signaling promotes melanin production in melanocytes and impairs keratinocyte differentiation as a result of inflammation. Therefore, regulating the AGE–RAGE interaction may help reduce skin dullness. Through screening various natural ingredients, we found that peony root extract (PRE) inhibits AGE formation and blocks AGE–RAGE binding. Furthermore, the presence of PRE leads to the suppression of AGE-induced melanin production in melanocytes and the restoration of impaired keratinocyte differentiation in glycated basement membrane components. In a human clinical study, topical application of a 1% PRE-containing lotion for 2 weeks significantly reduced melanin content, with a trend toward decreased AGE accumulation and visible spots on the cheeks. These findings support the potential of PRE as a multifunctional cosmetic ingredient that comprehensively addresses skin dullness by modulating the AGE–RAGE interaction. Full article
(This article belongs to the Special Issue Skin Anti-Aging Strategies)
Show Figures

Figure 1

24 pages, 5797 KiB  
Article
Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights
by Lilian Sosa, Lupe Carolina Espinoza, Alba Pujol, José Correa-Basurto, David Méndez-Luna, Paulo Sarango-Granda, Diana Berenguer, Cristina Riera, Beatriz Clares-Naveros, Ana Cristina Calpena, Rafel Prohens and Marcelle Silva-Abreu
Gels 2025, 11(8), 601; https://doi.org/10.3390/gels11080601 - 1 Aug 2025
Viewed by 167
Abstract
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal [...] Read more.
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal properties by differential scanning calorimetry (DSC). Biopharmaceutical evaluation included in vitro drug release and ex vivo skin permeation. Safety was evaluated through biomechanical skin property measurements and cytotoxicity in HaCaT and RAW 267 cells. Leishmanicidal activity was tested against promastigotes and amastigotes of Leishmania infantum, and in silico studies were conducted to explore possible mechanisms of action. The composition of the MA-gel included 30% MA, 20% Pluronic® F127 (P407), and 50% water. Scanning electron microscopy revealed a sponge-like and porous internal structure of the MA-gel. This formula exhibited a pH of 5.45, swelling at approximately 12 min, and a porosity of 85.07%. The DSC showed that there was no incompatibility between MA and P407. Drug release followed a first-order kinetic profile, with 22.11 µg/g/cm2 of the drug retained in the skin and no permeation into the receptor compartment. The MA-gel showed no microbial growth, no cytotoxicity in keratinocytes, and no skin damage. The IC50 for promastigotes and amastigotes of L. infantum were 3.56 and 23.11 µg/mL, respectively. In silico studies suggested that MA could act on three potential therapeutic targets according to its binding mode. The MA-gel demonstrated promising physicochemical, safety, and antiparasitic properties, supporting its potential as a topical treatment for cutaneous leishmaniasis. Full article
(This article belongs to the Special Issue Functional Hydrogels: Design, Processing and Biomedical Applications)
Show Figures

Figure 1

17 pages, 7013 KiB  
Article
A Novel HDAC6 Inhibitor Ameliorates Imiquimod-Induced Psoriasis-Like Inflammation in Mice
by Anqi Cao, Yurong Li, Yanqiao Feng, Xiaoquan Wang, Wenyu Wei, Hongyan Sun and Junmin Quan
Molecules 2025, 30(15), 3224; https://doi.org/10.3390/molecules30153224 - 31 Jul 2025
Viewed by 246
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by abnormal proliferation of keratinocytes and infiltration of inflammatory cells. Significant challenges remain in developing effective and safe targeted therapies for psoriasis. Here, we reported the discovery of novel cystamine derivatives for the treatment of [...] Read more.
Psoriasis is a chronic inflammatory skin disease characterized by abnormal proliferation of keratinocytes and infiltration of inflammatory cells. Significant challenges remain in developing effective and safe targeted therapies for psoriasis. Here, we reported the discovery of novel cystamine derivatives for the treatment of psoriasis. These compounds effectively attenuated LPS-induced inflammation in vitro, and the optimal candidate CS1 ameliorated imiquimod-induced psoriasis-like inflammation in mice. Mechanistically, CS1 bound and inhibited the deacetylase HDAC6, subsequently inhibited the AKT, MAPK, and STAT3 pathways, attenuated the hyperproliferation and altered differentiation of keratinocytes and reduced the infiltration of immune cells. These findings suggest that HDAC6 may serve as a potential target for drug development in the treatment of psoriasis. Full article
Show Figures

Graphical abstract

18 pages, 4624 KiB  
Article
Andrographis paniculata Extract Supports Skin Homeostasis by Enhancing Epidermal Stem Cell Function and Reinforcing Their Extracellular Niche
by Roberta Lotti, Laetitia Cattuzzato, Xuefeng Huang, David Garandeau, Elisabetta Palazzo, Marika Quadri, Cécile Delluc, Eddy Magdeleine, Xiaojing Li, Mathilde Frechet and Alessandra Marconi
Cells 2025, 14(15), 1176; https://doi.org/10.3390/cells14151176 - 30 Jul 2025
Viewed by 395
Abstract
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human [...] Read more.
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human skin. Using human skin explants and cell culture models, we demonstrated that APE treatment enhances DEJ composition by increasing Collagen IV and Laminin production while decreasing MMP-9 expression, without altering epidermal structure or differentiation. In the same model, APE preserved stemness potential by upregulating markers related to niche components (collagen XVII and β1-integrin), proliferation (Ki-67 and KRT15), and stem cell capacity (Survivin and LRIG1). In vitro studies revealed that APE selectively stimulated KSC proliferation without affecting transit amplifying cells and promoted Collagen IV and Laminin secretion, particularly in KSCs. Furthermore, in a co-culture model simulating a compromised DEJ (UVB-induced), APE increased Laminin production in KSCs, suggesting a protective effect against photo-damage. These findings indicate that APE enhances DEJ composition and preserves stem cell potential, highlighting its promise as a candidate for skin anti-aging strategies targeting stem cell maintenance and extracellular matrix stability to promote skin regeneration and repair. Full article
Show Figures

Graphical abstract

18 pages, 2876 KiB  
Article
The Secretome of Human Deciduous Tooth-Derived Mesenchymal Stem Cells Enhances In Vitro Wound Healing and Modulates Inflammation
by Thais Simião Payão, Vanessa Pellegrini, Joseane Morari, Gisele Mara Silva Gonçalves, Maria Carolina Ximenes de Godoy, Alessandra Gambero, Leonardo O. Reis, Lício Augusto Velloso, Eliana Pereira Araújo and Lívia Bitencourt Pascoal
Pharmaceutics 2025, 17(8), 961; https://doi.org/10.3390/pharmaceutics17080961 - 25 Jul 2025
Viewed by 342
Abstract
Background/Objectives: Chronic wounds represent a significant clinical and public health challenge due to impaired tissue repair and high associated morbidity. This study investigates the therapeutic potential of the secretome derived from human mesenchymal stem cells obtained from the pulp of deciduous teeth (hDP-MSCs) [...] Read more.
Background/Objectives: Chronic wounds represent a significant clinical and public health challenge due to impaired tissue repair and high associated morbidity. This study investigates the therapeutic potential of the secretome derived from human mesenchymal stem cells obtained from the pulp of deciduous teeth (hDP-MSCs) in promoting skin wound healing. Methods: After confirming the mesenchymal identity and multipotent differentiation potential of hDP-MSCs by using flow cytometry and histological staining, the effects of the secretome on human keratinocyte (HaCaT) cultures were evaluated. Results: Scratch assays, performed under high- and low-glucose conditions, demonstrated that the secretome significantly promoted keratinocyte migration and wound closure without compromising cell viability. Additionally, the secretome modulated the expression of key genes involved in inflammation and tissue regeneration, including IL-1β, TNF-α, TGF-β1, and VEGF-α, in a time-dependent manner. Under inflammatory conditions induced by lipopolysaccharide, co-treatment with the secretome significantly reduced TNF-α expression and increased TGF-β1 expression, suggesting an anti-inflammatory effect. Conclusions: These findings indicate the potential of the hDP-MSC-derived secretome as a promising cell-free therapeutic strategy capable of accelerating skin regeneration and modulating the inflammatory response during the wound healing process. Full article
Show Figures

Graphical abstract

22 pages, 1643 KiB  
Article
Skin Wound Healing: The Impact of Treatment with Antimicrobial Nanoparticles and Mesenchymal Stem Cells
by Pavel Rossner, Eliska Javorkova, Michal Sima, Zuzana Simova, Barbora Hermankova, Katerina Palacka, Zuzana Novakova, Irena Chvojkova, Tereza Cervena, Kristyna Vrbova, Anezka Vimrova, Jiri Klema, Andrea Rossnerova and Vladimir Holan
J. Xenobiot. 2025, 15(4), 119; https://doi.org/10.3390/jox15040119 - 18 Jul 2025
Viewed by 380
Abstract
An investigation into the biological mechanisms initiated in wounded skin following the application of mesenchymal stem cells (MSCs) and nanoparticles (NPs) (Ag, ZnO), either alone or combined, was performed in mice, with the aim of determining the optimal approach to accelerate the healing [...] Read more.
An investigation into the biological mechanisms initiated in wounded skin following the application of mesenchymal stem cells (MSCs) and nanoparticles (NPs) (Ag, ZnO), either alone or combined, was performed in mice, with the aim of determining the optimal approach to accelerate the healing process. This combined treatment was hypothesized to be beneficial, as it is associated with the production of molecules supporting the healing process and antimicrobial activity. The samples were collected seven days after injury. When compared with untreated wounded animals (controls), the combined (MSCs+NPs) treatment induced the expression of Sprr2b, encoding small proline-rich protein 2B, which is involved in keratinocyte differentiation, the response to tissue injury, and inflammation. Pathways associated with keratinocyte differentiation were also affected. Ag NP treatment (alone or combined) modulated DNA methylation changes in genes involved in desmosome organization. The percentage of activated regulatory macrophages at the wound site was increased by MSC-alone and Ag-alone treatments, while the production of nitric oxide, an inflammatory marker, by stimulated macrophages was decreased by both MSC/Ag-alone and MSCs+Ag treatments. Ag induced the expression of Col1, encoding collagen-1, at the injury site. The results of the MSC and NP treatment of skin wounds (alone or combined) suggest an induction of processes accelerating the proliferative phase of healing. Thus, MSC-NP interactions are a key factor affecting global mRNA expression changes in the wound. Full article
Show Figures

Graphical abstract

18 pages, 20761 KiB  
Article
Integrated Meta-Analysis Identifies Keratin Family Genes and Associated Genes as Key Biomarkers and Therapeutic Targets in Metastatic Cutaneous Melanoma
by Sumaila Abubakari, Yeşim Aktürk Dizman and Filiz Karaman
Diagnostics 2025, 15(14), 1770; https://doi.org/10.3390/diagnostics15141770 - 13 Jul 2025
Viewed by 457
Abstract
Background/Objectives: Cutaneous melanoma is one of the aggressive forms of skin cancer originating from melanocytes. The high incidence of melanoma metastasis continues to rise, partly due to the complex nature of the molecular mechanisms driving its progression. While melanomas generally arise from melanocytes, [...] Read more.
Background/Objectives: Cutaneous melanoma is one of the aggressive forms of skin cancer originating from melanocytes. The high incidence of melanoma metastasis continues to rise, partly due to the complex nature of the molecular mechanisms driving its progression. While melanomas generally arise from melanocytes, we investigated whether aberrant keratinocyte differentiation pathways—like cornified envelope formation—discriminate primary melanoma from metastatic melanoma, revealing novel biomarkers in progression. Methods: In the present study, we retrieved four datasets (GSE15605, GSE46517, GSE8401, and GSE7553) associated with primary and metastatic melanoma tissues and identified differentially expressed genes (DEGs). Thereafter, an integrated meta-analysis and functional enrichment analysis of the DEGs were performed to evaluate the molecular mechanisms involved in melanoma metastasis, such as immune cell deconvolution and protein-protein interaction (PPI) network construction. Hub genes were identified based on four topological methods, including ‘Betweenness’, ‘MCC’, ‘Degree’, and ‘Bottleneck’. We validated the findings using the TCGA-SKCM cohort. Drug-gene interactions were evaluated using the DGIdb, whereas structural druggability was assessed using the ProteinPlus and AlphaFold databases. Results: We identified a total of eleven hub genes associated with melanoma progression. These included members of the keratin gene family (e.g., KRT5, KRT6A, KRT6B, etc.). Except for the gene CDH1, all the hub genes were downregulated in metastatic melanoma tissues. From a prognostic perspective, these hub genes were associated with poor prognosis (i.e., unfavorable). Using the Human Protein Atlas (HPA), immunohistochemistry evaluation revealed mostly undetected levels in metastatic melanoma. Additionally, the cornified envelope formation was the most enriched pathway, with a gene ratio of 17/33. The tumor microenvironment (TME) of metastatic melanomas was predominantly enriched in NK cell–associated signatures. Finally, several hub genes demonstrated favorable druggable potential for immunotherapy. Conclusions: Through integrated meta-analysis, this study identifies transcriptional, immunological, and structural pathways to melanoma metastasis and highlights keratin family genes as promising biomarkers for therapeutic targeting. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

29 pages, 2144 KiB  
Article
Vitamin D Reshapes Genomic Hierarchies in Skin Cells: lncRNA-Driven Responses in Carcinoma Versus Transcription Factor-Based Regulation in Healthy Skin
by Anna M. Olszewska, Joanna I. Nowak, Paweł Domżalski, Kamil Myszczyński and Michał A. Żmijewski
Int. J. Mol. Sci. 2025, 26(14), 6632; https://doi.org/10.3390/ijms26146632 - 10 Jul 2025
Viewed by 237
Abstract
The active form of vitamin D3, 1,25(OH)2D3, exerts hierarchical control over gene expression, initially targeting transcription factors (TFs) that drive downstream responses. Here, we profile the transcriptional landscape of primary keratinocytes (HPEKp) and squamous cell carcinoma (SCC) [...] Read more.
The active form of vitamin D3, 1,25(OH)2D3, exerts hierarchical control over gene expression, initially targeting transcription factors (TFs) that drive downstream responses. Here, we profile the transcriptional landscape of primary keratinocytes (HPEKp) and squamous cell carcinoma (SCC) cells in response to 1,25(OH)2D3, revealing a distinct shift in regulatory targets. While TFs accounted for 9.23% of differentially expressed genes (DEGs) in keratinocytes, this proportion dropped to 4.9% with prolonged exposure. In contrast, SCC cells displayed a five-fold reduction in TFs deregulation and a concurrent enrichment of long non-coding RNAs (lncRNAs), which comprised 22.25% of DEGs after 24 h treatment, with 81% upregulated. Integrative transcriptomic and in silico analyses showed that lncRNA induction was predominantly VDR-dependent, partially RXRA-dependent, and PDIA3-independent. Notably, 90% of deregulated lncRNAs were atypical for head and neck SCC. Several of these lncRNAs exhibit potential antitumor properties and may modulate SCC cell responsiveness to interferon-gamma (IFN-γ). In conclusion, these findings suggest that in SCC cells, the regulation of lncRNA expression—rather than transcription factor modulation—may represent a mechanism of the cellular response to 1,25(OH)2D3. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

9 pages, 3287 KiB  
Brief Report
Non-Invasive Diagnostic Techniques in Penile Intraepithelial Neoplasia (PeIN): Insights from Reflectance Confocal Microscopy (RCM), Line-Field Confocal Optical Coherence Tomography (LC-OCT), and Correlation with Histopathological Features
by Caterina Damiani, Cesare Ariasi, Giuseppe La Rosa, Francesca Di Lauro, Mariachiara Arisi, Vincenzo Maione, Marina Venturini and Simone Soglia
Dermatopathology 2025, 12(3), 19; https://doi.org/10.3390/dermatopathology12030019 - 7 Jul 2025
Viewed by 329
Abstract
Penile intraepithelial neoplasia (PeIN) is a rare but clinically significant condition that can progress to invasive squamous carcinoma. Early diagnosis is crucial but often challenging due to its heterogeneous clinical and dermoscopic presentation, which can mimic other benign or malignant lesions. In this [...] Read more.
Penile intraepithelial neoplasia (PeIN) is a rare but clinically significant condition that can progress to invasive squamous carcinoma. Early diagnosis is crucial but often challenging due to its heterogeneous clinical and dermoscopic presentation, which can mimic other benign or malignant lesions. In this study, we report two cases of pigmented penile lesions evaluated using non-invasive imaging techniques: reflectance confocal microscopy (RCM) and line-field confocal optical coherence tomography (LC-OCT). Both methods revealed characteristic features such as hyperkeratosis, parakeratosis, acanthosis, nuclear pleomorphism of keratinocytes, and the presence of bright intraepithelial dendritic cells, correlating closely with histopathological findings of high-grade basaloid PeIN. Our findings highlight the valuable role of RCM and LC-OCT in improving the differential diagnosis of genital lesions, potentially reducing the need for invasive diagnostic procedures and ensuring early, appropriate management. Full article
Show Figures

Figure 1

37 pages, 14233 KiB  
Article
Unveiling the Role of Histone Methyltransferases in Psoriasis Pathogenesis: Insights from Transcriptomic Analysis
by Dóra Romhányi, Ágnes Bessenyei, Kornélia Szabó, Lajos Kemény, Rolland Gyulai and Gergely Groma
Int. J. Mol. Sci. 2025, 26(13), 6329; https://doi.org/10.3390/ijms26136329 - 30 Jun 2025
Viewed by 425
Abstract
Psoriasis involves complex epigenetic alterations, but detailed studies on histone methyltransferases and their role in disease progression are limited. We conducted a comprehensive analysis of nearly 300 transcriptomes, focusing mainly on differential expression of protein isoform-coding transcripts within the SET domain family of [...] Read more.
Psoriasis involves complex epigenetic alterations, but detailed studies on histone methyltransferases and their role in disease progression are limited. We conducted a comprehensive analysis of nearly 300 transcriptomes, focusing mainly on differential expression of protein isoform-coding transcripts within the SET domain family of histone methyltransferases. Consistent with previous findings, EZH2 transcripts showed increased expression in lesional skin, indicating altered H3K27 methylation that may enhance gene silencing, promoting keratinocyte proliferation and inflammatory responses. In the SET2 family, ASH1L exhibited reversed expression patterns between non-lesional and lesional skin, while NSD1 and NSD2 were upregulated, and SETD2 downregulated in lesions, suggesting disrupted H3K36 methylation that may affect immune responses and keratinocyte proliferation. Among H3K9 methyltransferases, SUV39 members, SUV39H2 was upregulated in lesions, whereas EHMT1 transcripts increased in non-lesional skin, and SETDB2 decreased in lesions. Additionally, PRDM family members such as PRDM2, MECOM (PRDM3), PRDM6, and PRDM8 showed altered expression in lesional skin. The H4K20 methylating SUV4-20 subfamily member, a SUV420H1 transcript, and SETD8 belonging to the other SET domain-containing family of methyltransferases were significantly increased in non-lesional skin and in lesions, respectively. Overall, aberrant expression and isoform variability of histone methyltransferases likely contribute to psoriasis pathogenesis by dysregulating proliferation, differentiation, and immune responses. Full article
Show Figures

Figure 1

14 pages, 3850 KiB  
Article
Mitogen-Activated Protein Kinase Kinase Kinase 1 Overexpression Disrupts Development of the Ocular Surface Epithelium
by Maureen Mongan, Bo Xiao, Antonius Christianto, Yueh-Chiang Hu and Ying Xia
Cells 2025, 14(12), 894; https://doi.org/10.3390/cells14120894 - 13 Jun 2025
Viewed by 422
Abstract
Mitogen-Activated Protein Kinase Kinase Kinase 1 (MAP3K1) is a key signaling molecule essential for eyelid closure during embryogenesis. In mice, Map3k1 knockout leads to a fully penetrant eye-open at birth (EOB) phenotype due to disrupted MAPK signaling, abnormal epithelial differentiation, and morphogenesis. To [...] Read more.
Mitogen-Activated Protein Kinase Kinase Kinase 1 (MAP3K1) is a key signaling molecule essential for eyelid closure during embryogenesis. In mice, Map3k1 knockout leads to a fully penetrant eye-open at birth (EOB) phenotype due to disrupted MAPK signaling, abnormal epithelial differentiation, and morphogenesis. To further explore the roles of MAP3K1 in ocular development, we generated a Cre-inducible gain-of-function transgenic mouse, designated as Map3k1TG, and crossed it with Lens epithelial (Le)-Cre mice to drive MAP3K1 overexpression in developing ocular surface epithelium (OSE). Map3k1TG;Le-Cre embryos exhibited ocular defects including premature eyelid closure, lens degeneration, and corneal edema. While corneal epithelial differentiation remained intact, the lens epithelium degenerated with lens formation compromised. Eyelid epithelium was markedly thickened, containing cells with aberrant keratin (K)14/K10 co-expression. Genetic rescue experiments revealed that Map3k1TG;Le-Cre restored eyelid closure in Map3k1 knockout mice, whereas MAP3K1 deficiency attenuated the epithelial thickening caused by transgene expression. Mechanistically, MAP3K1 overexpression enhanced c-Jun phosphorylation in vivo and activated JNK-c-Jun, WNT, TGFβ, and Notch signaling and promoted keratinocyte proliferation and migration in vitro. These findings highlight a dose-sensitive role for MAP3K1 in regulating epithelial proliferation, differentiation, and morphogenesis during eyelid development. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

15 pages, 542 KiB  
Review
The Association Between Psoriasis and Metabolic Syndrome in Children: A Narrative Review
by Mateusz Matwiejuk, Hanna Myśliwiec, Agnieszka Mikłosz, Adrian Chabowski and Iwona Flisiak
Metabolites 2025, 15(6), 377; https://doi.org/10.3390/metabo15060377 - 6 Jun 2025
Viewed by 737
Abstract
Psoriasis is a common inflammatory skin disease with a complex pathogenesis consisting of genetic factors, immune dysfunction and environmental background. In adults, psoriasis is strongly associated with a higher risk of developing metabolic abnormalities; however, data in children are inconclusive. Metabolic syndrome (MetS) [...] Read more.
Psoriasis is a common inflammatory skin disease with a complex pathogenesis consisting of genetic factors, immune dysfunction and environmental background. In adults, psoriasis is strongly associated with a higher risk of developing metabolic abnormalities; however, data in children are inconclusive. Metabolic syndrome (MetS) is a group of conditions that include central and abdominal obesity, hypertension, dyslipidemia and hyperglycemia. Potential pathogenic mechanisms linking psoriasis with metabolic syndrome include releasing large amounts of proinflammatory cytokines such as interleukins (IL-17, IL-23) and tumor necrosis factor alpha (TNF-α). These abnormalities promote excessive keratinocyte proliferation and impaired differentiation, which leads to typical psoriatic skin lesions. This paper aims to assess the potential link between psoriasis and each component of metabolic syndrome in children. It is speculated that the same proinflammatory cytokines produced by Th17 cells are also implicated in the development and progression of various metabolic disorders in patients with a severe course of the disease. Psoriatic patients are at higher risk for development metabolic diseases such as diabetes mellitus and cardiovascular disease. Full article
(This article belongs to the Special Issue Psoriasis and Metabolic Syndrome)
Show Figures

Graphical abstract

17 pages, 2031 KiB  
Review
Protein Kinase CK2 Inhibition Represents a Pharmacological Chance for the Treatment of Skin Diseases
by Michele Scuruchi, Desirèe Speranza, Giuseppe Bruschetta, Federico Vaccaro, Mariarosaria Galeano, Giovanni Pallio, Mario Vaccaro, Francesco Borgia, Federica Li Pomi, Massimo Collino and Natasha Irrera
Int. J. Mol. Sci. 2025, 26(11), 5404; https://doi.org/10.3390/ijms26115404 - 4 Jun 2025
Viewed by 641
Abstract
Protein kinase CK2 has emerged as a pivotal regulator of cellular processes involved in skin homeostasis, including cell proliferation, differentiation and inflammatory response regulation. In fact, CK2 activity dysregulation is implicated in the pathogenesis of different skin diseases, such as psoriasis, cancer and [...] Read more.
Protein kinase CK2 has emerged as a pivotal regulator of cellular processes involved in skin homeostasis, including cell proliferation, differentiation and inflammatory response regulation. In fact, CK2 activity dysregulation is implicated in the pathogenesis of different skin diseases, such as psoriasis, cancer and inflammatory dermatoses. CK2 overactivation fosters keratinocyte proliferation and pro-inflammatory cytokine production through the STAT3 and Akt pathways in psoriasis, thus contributing to epidermal hyperplasia and inflammation. In the realm of oncology, CK2 overexpression correlates with tumor progression, facilitating cell survival and metastasis in melanoma and non-melanoma skin cancers. Pharmacological inhibition of CK2 has demonstrated therapeutic potential, with CX-4945 (Silmitasertib) as the most studied adenosine triphosphate-competitive inhibitor (ATP-competitive inhibitor). Preclinical models reveal that CK2 inhibitors effectively mitigate pathological features of psoriasis, regulate keratinocyte differentiation, and suppress tumor growth in skin cancers. These inhibitors also potentiate the efficacy of conventional chemotherapeutics and exhibit anti-inflammatory effects in dermatological conditions. Future research will aim to enhance the specificity and delivery of CK2-targeting therapies, including topical formulations, to minimize systemic side effects. Combination therapies integrating CK2 inhibitors with other agents might offer synergistic benefits in managing skin diseases. This review underscores CK2’s critical role in skin and its therapeutic potential as a pharmacological target, advocating for innovative approaches to harness CK2 inhibition in dermatology. Full article
(This article belongs to the Special Issue The Role of Protein Kinase in Health and Diseases)
Show Figures

Graphical abstract

14 pages, 372 KiB  
Article
Modified Methylation Following Electrostimulation in a Standardized Setting—Complementing a Transcriptomic Analysis
by Biagio Di Pietro, Simona Villata, Anna Plaksienko, Tiziana Guarnieri, Simeone Dal Monego, Margherita Degasperi, Pietro Di Lena, Danilo Licastro, Claudia Angelini, Francesca Frascella, Lucia Napione and Christine Nardini
Cells 2025, 14(11), 838; https://doi.org/10.3390/cells14110838 - 4 Jun 2025
Cited by 1 | Viewed by 525
Abstract
Electrical stimulation (ES) is widely employed in both clinical therapies and research settings where it has shown promise in promoting tissue regeneration, wound healing, and inflammation control. Research has also highlighted ES as a regulator of DNA demethylation, which plays a critical role [...] Read more.
Electrical stimulation (ES) is widely employed in both clinical therapies and research settings where it has shown promise in promoting tissue regeneration, wound healing, and inflammation control. Research has also highlighted ES as a regulator of DNA demethylation, which plays a critical role in nerve regeneration and cellular repair mechanisms. While the impact of ES on epigenetic processes is recognized, its broader effects on cellular functions, particularly in inflammation and wound healing, are less understood. We recently showed how ES impacts inflammatory states by modulating transcriptomic and metabolomic profiles in a 3Din vitromodel where human fibroblasts and keratinocytes are included in a collagen matrix, i.e., even in the absence of the nervous system. Here, we propose to deepen our exploration on the differential effects on DNA methylation, including an investigation of the correlation with age acceleration using a mitotic clock. These results confirm and caution on the differential effect of DC on inflamed and non-inflamed samples and suggest an involvement of direct current stimuli at 1 V (DC1) in the control of senescent processes associated with mitosis and inflammation; the mechanistic details of these will have to be clarified with additional experiments. Full article
Show Figures

Figure 1

30 pages, 3388 KiB  
Article
Bicomponent Cutaneous Cell Therapy for Early Burn Care: Manufacturing Homogeneity and Epidermis-Structuring Functions of Clinical Grade FE002-SK2 Allogeneic Dermal Progenitor Fibroblasts
by Xi Chen, Nathalie Hirt-Burri, Corinne Scaletta, Alexis E. Laurent and Lee Ann Applegate
Pharmaceutics 2025, 17(6), 692; https://doi.org/10.3390/pharmaceutics17060692 - 24 May 2025
Viewed by 557
Abstract
Background: The extracellular matrix (ECM), primarily composed of collagen and elastin synthesized by dermal fibroblasts, is critical for mesenchymal tissue integrity. Fibroblast phenotypes vary significantly with the anatomical location and developmental stage. Fetal skin, particularly prior to 14 weeks of gestation, exhibits a [...] Read more.
Background: The extracellular matrix (ECM), primarily composed of collagen and elastin synthesized by dermal fibroblasts, is critical for mesenchymal tissue integrity. Fibroblast phenotypes vary significantly with the anatomical location and developmental stage. Fetal skin, particularly prior to 14 weeks of gestation, exhibits a simplified structure compared to adult skin, characterized by a thin, loose dermal matrix and a single-layered epithelium. Objectives: This study aimed to characterize and functionally compare homogenous progenitor fetal fibroblast (PFF) populations derived from 14-week-old fetal skin with fibroblasts isolated from adult burn patients. Methods: We evaluated the proliferative capacity, collagen synthesis, and differentiation potential (adipogenesis and osteogenesis) of PFF and adult burn patient fibroblasts. Furthermore, we assessed their ability to support skin regeneration using a de-epidermized dermis (DED) model seeded with both PFF and patient-derived keratinocytes. The stability of PFF characteristics was monitored across multiple passages (P5–P12). Results: PFF demonstrated a 2–4-fold increase in proliferation rate and a 30–50% enhancement in collagen production in vitro compared to adult fibroblasts. Notably, PFF exhibited a consistent lack of adipogenic and osteogenic differentiation, an attribute distinct from adult fibroblasts. In the DED model, PFF, even at a low fibroblast-to-keratinocyte ratio (1:5), effectively facilitated the formation of well-organized skin structures, including rete ridges, surpassing the performance of adult fibroblasts and adipose-derived cells. These properties remained stable over multiple passages. Conclusions: The unique attributes of PFF, likely attributable to the simplified microenvironment (i.e., collagen organization) of developing fetal tissue, positions them as a promising source for cell-based therapies. Their inherent high collagen synthesis capacity is particularly advantageous for wound healing applications. Consequently, PFF represent a consistent and readily available resource for developing “off-the-freezer” cutaneous cell therapies, potentially enabling accelerated and improved treatment of severe burn injuries. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

Back to TopTop