Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = isolated SEPIC converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9985 KiB  
Article
High-Voltage Gain Single-Switch Quadratic Semi-SEPIC Converters for Powering High-Voltage Sensors Suitable for Renewable Energy Systems and Industrial Automation with Low Voltage Stresses
by Frederick Nana Oppong, Soroush Esmaeili and Ashraf Ali Khan
Sensors 2025, 25(8), 2424; https://doi.org/10.3390/s25082424 - 11 Apr 2025
Viewed by 451
Abstract
This paper presents two new non-isolated DC-DC converters with and without a coupled inductor based on quadratic voltage conversion. Firstly, the coupled inductor-less type is explained in detail. It employs a voltage-boosting cell and a modified SEPIC structure to provide a high voltage [...] Read more.
This paper presents two new non-isolated DC-DC converters with and without a coupled inductor based on quadratic voltage conversion. Firstly, the coupled inductor-less type is explained in detail. It employs a voltage-boosting cell and a modified SEPIC structure to provide a high voltage boost ability with a lower and practical value for the switching duty cycle. This allows for lower power loss compared to conventional DC-DC converters. Having only one switch in the proposed converter simplifies the control and reduces the required number of control signals. Furthermore, the presented transformer-less structure can help avoid producing huge voltage spikes across the power switch. In traditional quadratic SEPIC converters, the voltage-boosting cell’s capacitor experiences relatively high voltage stress due to the voltage multiplication process. In contrast, the proposed converter offers significantly lower voltage stresses. Hence, it becomes possible to utilize a capacitor with a lower voltage rating, leading to cost savings and improved reliability and availability of suitable components. The first topology can be improved for ultrahigh voltage applications by replacing the middle inductor with a coupled transformer. Consequently, a higher voltage range with a lower switching duty cycle can be attained. Theoretical analysis and mathematical derivations are provided, and the comparison section claims the proposed converter’s ability to minimize voltage stress across the switch and output diode. Finally, experimental results are given to verify the effectiveness of the proposed converters at an output power of 260 W. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

24 pages, 8060 KiB  
Article
A Modular Step-Up DC–DC Converter Based on Dual-Isolated SEPIC/Cuk for Electric Vehicle Applications
by Ahmed Darwish and George A. Aggidis
Energies 2025, 18(1), 146; https://doi.org/10.3390/en18010146 - 2 Jan 2025
Viewed by 1156
Abstract
Fuel cells (FCs) offer several operational advantages when integrated as a power source in electric vehicles (EVs). Since the voltage of these cells is typically low, usually less than 1 V, the power conversion system requires a DC–DC converter capable of providing a [...] Read more.
Fuel cells (FCs) offer several operational advantages when integrated as a power source in electric vehicles (EVs). Since the voltage of these cells is typically low, usually less than 1 V, the power conversion system requires a DC–DC converter capable of providing a high voltage conversion ratio to match the input voltage of the motor propulsion system, which can exceed 400 V and reach up to 800 V. The modular DC–DC boost converter proposed in this paper is designed to achieve a high voltage step-up ratio for the input FC voltages through the use of isolated series-connecting boosting submodules connected. The power electronic topology employed in the submodules (SMs) is designed to provide a flexible output voltage while maintaining a continuous input current from the fuel cells with minimal current ripple to improve the FC’s performance. The proposed step-up modular converter provides several benefits including scalability, better controllability, and improved reliability, especially in the presence of partial faults. Computer simulations using MATLAB/SIMULINK® software (R2024a) have been used to study the feasibility of the proposed converter when connected to a permanent magnet synchronous motor (PMSM). Also, experimental results using a 1 kW prototype composed of four SMs have been obtained to validate the performance of the proposed converter. Full article
(This article belongs to the Special Issue Design and Control Strategies for Wide Input Range DC-DC Converters)
Show Figures

Figure 1

24 pages, 9398 KiB  
Article
Design and Control of Four-Port Non-Isolated SEPIC Converter for Hybrid Renewable Energy Systems
by Anuradha Chandrasekar, Vijayalakshmi Subramanian, Narayanamoorthi Rajamanickam, Mohammad Shorfuzzaman and Ahmed Emara
Sustainability 2024, 16(19), 8423; https://doi.org/10.3390/su16198423 - 27 Sep 2024
Viewed by 1584
Abstract
A new four-port non-isolated SEPIC converter intended for hybrid renewable energy systems is presented in this study. The suggested converter minimizes space and expense by integrating two inputs and two outputs in a single-stage structure with fewer components. The converter retains important characteristics [...] Read more.
A new four-port non-isolated SEPIC converter intended for hybrid renewable energy systems is presented in this study. The suggested converter minimizes space and expense by integrating two inputs and two outputs in a single-stage structure with fewer components. The converter retains important characteristics including continuous input current, buck/boost capability, non-inverting output, and enhanced power factor because it is based on the fundamental SEPIC topology. It effectively combines an energy storage system (ESS) with a variety of energy sources that have different voltage and current characteristics. The converter can be configured to operate in unidirectional or bidirectional topologies depending on whether storage elements are included. Performance is examined in two operating modes, with an emphasis on the ESS’s charging and discharging processes. System equations are produced by steady-state analysis, and the design of a closed-loop controller for accurate input power and output voltage regulation is informed by dynamic analysis performed with the state-space approach. Through real-time hardware implementation and MATLAB/Simulink simulations, the efficacy of the suggested design is verified, demonstrating the open-loop unidirectional topology’s theoretical and practical validity. Full article
Show Figures

Figure 1

18 pages, 8368 KiB  
Article
Design and Control of a Modular Integrated On-Board Battery Charger for EV Applications with Cell Balancing
by Fatemeh Nasr Esfahani, Ahmed Darwish and Xiandong Ma
Batteries 2024, 10(1), 17; https://doi.org/10.3390/batteries10010017 - 2 Jan 2024
Cited by 9 | Viewed by 4126
Abstract
This paper presents operation and control systems for a new modular on-board charger (OBC) based on a SEPIC converter (MSOBC) for electric vehicle (EV) applications. The MSOBC aims to modularise the battery units in the energy storage system of the EV to provide [...] Read more.
This paper presents operation and control systems for a new modular on-board charger (OBC) based on a SEPIC converter (MSOBC) for electric vehicle (EV) applications. The MSOBC aims to modularise the battery units in the energy storage system of the EV to provide better safety and improved operation. This is mainly achieved by reducing the voltage of the battery packs without sacrificing the performance required by the HV system. The proposed MSOBC is an integrated OBC which can operate the EV during traction and braking, as well as charge the battery units. The MSOBC is composed of several submodules consisting of a full-bridge voltage source converter connected on the ac side and SEPIC converter installed on the battery side. The SEPIC converter controls the battery segments with a continuous current because it has an input inductor which can smooth the battery’s currents without the need for large electrolytic capacitors. The isolated version of the SEPIC converter is employed to enhance the system’s safety by providing galvanic isolation between the batteries and the ac output side. This paper presents the necessary control loops to ensure the optimal operation of the EV with the MSOBC in terms of charge and temperature balance without disturbing the required modes of operation. The mathematical analyses in this paper are validated using a full-scale EV controlled by TMS320F28335 DSP. Full article
(This article belongs to the Special Issue Advances in Battery Electric Vehicles)
Show Figures

Graphical abstract

20 pages, 8003 KiB  
Article
A High-Efficiency Single-Stage Isolated Sepic-Flyback AC–DC Led Driver
by Kenan Gürçam and Mehmet Nuri Almalı
Electronics 2023, 12(24), 4946; https://doi.org/10.3390/electronics12244946 - 9 Dec 2023
Cited by 9 | Viewed by 1949
Abstract
Regulating LED current and voltage is critical to maintaining a constant luminous flux in AC- or DC-powered LED lighting circuits. Today, users require constant current drivers that can provide a wide range of output voltages to drive different numbers of series-connected LED arrays. [...] Read more.
Regulating LED current and voltage is critical to maintaining a constant luminous flux in AC- or DC-powered LED lighting circuits. Today, users require constant current drivers that can provide a wide range of output voltages to drive different numbers of series-connected LED arrays. This work proposes an LED driver by combining an isolated SEPIC converter operating in the continuous conduction mode (CCM) and a modified Vienna rectifier. The proposed LED driver offers a single-switch control structure by adding a Vienna rectifier to the integrated SEPIC-FLYBACK converter. This driver structure provides many advantages over traditional bridge rectifier structures. The prototype circuit was tested in an 18 W continuous current mode (CCM) to verify its feasibility. As a result of the values obtained from both simulation and prototype circuit models, it has been shown to provide many of the following advantages: 95% high efficiency, high reliability, 4% low total harmonic distortion, 97% high power factor, and 70 V low switching voltage. This work meets class C 3-2 and IEC 61000 standards. Full article
Show Figures

Figure 1

42 pages, 958 KiB  
Review
Topologies and Design Characteristics of Isolated High Step-Up DC–DC Converters for Photovoltaic Systems
by Hazem Meshael, Ahmad Elkhateb and Robert Best
Electronics 2023, 12(18), 3913; https://doi.org/10.3390/electronics12183913 - 16 Sep 2023
Cited by 20 | Viewed by 7588
Abstract
This paper aims to investigate the state-of-the-art isolated high-step-up DC–DC topologies developed for photovoltaic (PV) systems. This study categorises the topologies into transformer-based and coupled inductor-based converters, as well as compares them in terms of various parameters such as component count, cost, voltage [...] Read more.
This paper aims to investigate the state-of-the-art isolated high-step-up DC–DC topologies developed for photovoltaic (PV) systems. This study categorises the topologies into transformer-based and coupled inductor-based converters, as well as compares them in terms of various parameters such as component count, cost, voltage conversion ratio, efficiency, voltage stress, input current ripple, switching mode, and power rating. The majority of the topologies examined exhibit peak efficiencies of 90% to 97%, with voltage conversions in excess of eight, as well as power ratings ranging from 100 W to 2 kW. The existing literature has found that most isolated DC–DC converters increase their turn ratios in order to achieve high step-up ratios. As a result, voltage spikes have increased significantly in switches, resulting in a decrease in overall system efficiency. In this research, the use of passive and active snubbers to provide soft switching in isolated step-up DC–DC converters is investigated. Moreover, a comprehensive analysis of the three most widely used boost techniques is provided. A reduction in turn ratio and a decrease in voltage stress were the results of this process. The main purpose of this study is to provide a comprehensive overview of the most used high-boost isolated DC–DC topologies in PV systems, including flyback, isolated SEPIC, forward, push-pull, half- and full-bridge, and resonant converter, with a focus on the recent research in the field and the recent advancements in these topologies. This study aims to guide further research and analysis in selecting appropriately isolated topologies for PV systems. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

19 pages, 10616 KiB  
Article
A Novel DC Electronic Load Topology Incorporated with Model Predictive Control Approach
by Mohammad Suhail Khan, Chang-Hua Lin, Javed Ahmad, Mohammad Fahad and Hwa-Dong Liu
Mathematics 2023, 11(15), 3353; https://doi.org/10.3390/math11153353 - 31 Jul 2023
Cited by 1 | Viewed by 1713
Abstract
This paper presents a novel topology of a modified isolated single-ended-primary-inductance converter (SEPIC) with a model predictive control (MPC) approach applied to direct current (DC) electronic loads. The proposed converter uses an actual transformer rather than a coupled inductor for isolation between the [...] Read more.
This paper presents a novel topology of a modified isolated single-ended-primary-inductance converter (SEPIC) with a model predictive control (MPC) approach applied to direct current (DC) electronic loads. The proposed converter uses an actual transformer rather than a coupled inductor for isolation between the source and the load. The transformer allows the proposed converter to operate at a higher switching frequency, ultimately reducing the passive components’ size. A low-power hardware prototype is developed and tested with a model predictive control algorithm under variable input voltages and load conditions. The performance of the proposed converter is demonstrated to be satisfactory under steady state, as well as sudden input voltage transients. The proposed converter utilizes a switched capacitor technique to generate alternating current in both windings of the transformer. As the coupled inductor is eliminated from the circuit, the problem of high voltage spikes occurring due to leakage inductances is also eliminated for the proposed converter. Therefore, the proposed converter can be used for isolated medium power applications. The experimental results show that the efficiency of the proposed converter reached 96%. The MPC allows this converter’s DC voltage level to remain stable even as the input voltage and output terminal load change. Lastly, this converter with an MPC approach can be applied to different DC electronic loads, improving DC power quality and DC electronic load life. Full article
(This article belongs to the Special Issue Modeling and Simulation for the Electrical Power System)
Show Figures

Figure 1

34 pages, 54704 KiB  
Review
A Comprehensive Review and Analytical Comparison of Non-Isolated DC-DC Converters for Fuel Cell Applications
by Furqan A. Abbas, Thealfaqar A. Abdul-Jabbar, Adel A. Obed, Anton Kersten, Manuel Kuder and Thomas Weyh
Energies 2023, 16(8), 3493; https://doi.org/10.3390/en16083493 - 17 Apr 2023
Cited by 15 | Viewed by 3387
Abstract
The use of renewable energy sources such as solar photovoltaic, wind, and fuel cells is becoming increasingly prevalent due to a combination of environmental concerns and technological advancements, as well as decreasing production costs. Power electronics DC-DC converters play a key role in [...] Read more.
The use of renewable energy sources such as solar photovoltaic, wind, and fuel cells is becoming increasingly prevalent due to a combination of environmental concerns and technological advancements, as well as decreasing production costs. Power electronics DC-DC converters play a key role in various applications, including hybrid energy systems, hybrid vehicles, aerospace, satellite systems, and portable electronic devices. These converters are used to convert power from renewable sources to meet the demands of the load, improving the dynamic and steady-state performance of green generation systems. This study presents a comparison of the most commonly used non-isolated DC-DC converters for fuel cell applications. The important factors considered in the comparison include voltage gain ratio, voltage switch stress, voltage ripple, efficiency, cost, and ease of implementation. Based on the comparison results, the converters have been grouped according to voltage level applications, with low voltage applications being best served by converters such as DBC, DuBC, TLBC, 2-IBC, 1st M-IBC, PSOL, SEPIC, and 1st M-SEPIC owing to their lower cost, smaller size, and reduced switch stress. Medium voltage applications are best suited to converters such as TBC, 1st M-TLBC, 2nd M-TLBC, 4-IBC, 1st M-IBC, 2nd M-IBC, 1st M-PSOL, 2nd M-PSOL, 1st M-SEPIC, and 2nd M-SEPIC, which offer higher efficiency. Finally, high voltage applications are best served by converters such as TBC, 1st M-TBC, 2nd M-IBC, 3rd M-IBC, 3rd M-PSOL, 4th M-PSOL, 2nd M-SEPIC, 3rd M-SEPIC, and 4th M-SEPIC. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

23 pages, 6561 KiB  
Article
A Novel Isolated Intelligent Adjustable Buck-Boost Converter with Hill Climbing MPPT Algorithm for Solar Power Systems
by Bushra Sabir, Shiue-Der Lu, Hwa-Dong Liu, Chang-Hua Lin, Adil Sarwar and Liang-Yin Huang
Processes 2023, 11(4), 1010; https://doi.org/10.3390/pr11041010 - 27 Mar 2023
Cited by 21 | Viewed by 2884
Abstract
This study proposes a new isolated intelligent adjustable buck-boost (IIABB) converter with an intelligent control strategy that is suitable for regenerative energy systems with unsteady output voltages. It also serves as a reliable voltage source for loads such as battery systems, microgrids, etc. [...] Read more.
This study proposes a new isolated intelligent adjustable buck-boost (IIABB) converter with an intelligent control strategy that is suitable for regenerative energy systems with unsteady output voltages. It also serves as a reliable voltage source for loads such as battery systems, microgrids, etc. In addition, the hill climbing (HC) maximum power point tracking (MPPT) algorithm can be utilized with this innovative IIABB converter to capture the MPP and then enhance system performance. In this converter, five inductors (LA, LB, LC, LD, and LE) and four power MOSFETs (SA, SB, SC, and SD) are used in the proposed novel isolated intelligent adjustable buck-boost (IIABB) converter to adjust the applied voltage across the load side. It also has a constant, stable output voltage. The new IIABB converter is simulated and verified using MATLAB R2021b, and the performances of the proposed IIABB converter and conventional SEPIC converter are compared. The solar photovoltaic module output voltages of 20 V, 30 V, and 40 V are given as inputs to the proposed IIABB converter, and the total output voltage of the proposed converter is 48 V. In the new IIABB converter, the duty cycle of the power MOSFET has a small variation. The proposed IIABB converter has an efficiency of 92~99%. On the other hand, in the conventional SEPIC converter, the duty cycle of a power MOSFET varies greatly depending on the relationship between the output and input voltage, which deteriorates the efficiency of the converter. As a result, this research contributes to the development of a novel type of IIABB converter that may be employed in renewable energy systems to considerably increase system performance and reduce the cost and size of the system. Full article
Show Figures

Figure 1

21 pages, 9559 KiB  
Article
Modular SEPIC-Based Isolated dc–dc Converter with Reduced Voltage Stresses across the Semiconductors
by Marcos Vinicius Mosconi Ewerling, Telles Brunelli Lazzarin and Carlos Henrique Illa Font
Energies 2022, 15(21), 7844; https://doi.org/10.3390/en15217844 - 23 Oct 2022
Cited by 1 | Viewed by 2574
Abstract
This paper presents the theoretical analysis, experimental results and generalized structure for N modules of an isolated dc–dc SEPIC converter. The structure comes from the integration of N conventional SEPIC converters based on the input-series and output-parallel connection. The main advantages provided by [...] Read more.
This paper presents the theoretical analysis, experimental results and generalized structure for N modules of an isolated dc–dc SEPIC converter. The structure comes from the integration of N conventional SEPIC converters based on the input-series and output-parallel connection. The main advantages provided by the proposed structure are reduced voltage stress across the semiconductors and division of the current stress in the output diodes. The proposed converter is presented in a generalized approach, varying the voltage stress across the semiconductors according to the number of modules used. As the converter uses more than one switch, the commands can be either equal or phase-shifted by 360/N degrees. When operating with phase-shift modulation, a multilevel converter is obtained, which brings another advantage of the structure, since there is a reduction in the volume of the input inductors (Li1 and Li2) and the output capacitor (Co). In this paper, the steady-state analysis, a dynamic model, system control and experimental results are presented for phase-shift modulation and discontinuous conduction mode (DCM). The performance of the proposed converter was verified in a prototype with four modules and the following specifications: 500 W output power, 800 V input voltage, 120 V output voltage and 50 kHz switching frequency. The converter achieved 94.42% efficiency at rated power. Full article
Show Figures

Figure 1

25 pages, 10156 KiB  
Article
PV/Battery Grid Integration Using a Modular Multilevel Isolated SEPIC-Based Converter
by Fatemeh Nasr Esfahani, Ahmed Darwish and Ahmed Massoud
Energies 2022, 15(15), 5462; https://doi.org/10.3390/en15155462 - 28 Jul 2022
Cited by 13 | Viewed by 2483
Abstract
Photovoltaic (PV) plants can be built rapidly when compared with other conventional electrical plants; hence, they are a competent candidate for supplying the electricity grid. The output power of the PV modules can be used in plug-in electric vehicles (PEVs) DC charging stations [...] Read more.
Photovoltaic (PV) plants can be built rapidly when compared with other conventional electrical plants; hence, they are a competent candidate for supplying the electricity grid. The output power of the PV modules can be used in plug-in electric vehicles (PEVs) DC charging stations to reduce the burden on the electricity grid, particularly during peak load hours. To integrate PV modules and electric vehicles (EVs) with the electricity grid, the modular multilevel converters (MMCs) topologies producing staircase voltage waveforms are preferred as they are able to deliver less total harmonic distortion (THD) and higher efficiency in addition to lower voltage stress on semiconductor switches. In conventional centralized MMC topologies, a direct connection to a high-DC-link input voltage is required which is not appropriate for PV plants. A new MMC topology for PV/EV/grid integration is proposed in this paper, where the individual PV arrays are directly connected to each phase of the AC grid to harvest the maximum available power point. A current-source converter (CSC) based on a single-stage isolated SEPIC converter is adopted as the submodule (SM) for the proposed MMC topology given its outstanding features, such as low input ripple current, high efficiency, high power factor, and flexible output voltage higher or lower than the input voltage. The single-stage SMs can operate in both DC/DC and DC/AC operating modes. Proper controllers for each mode of operation are designed and applied to supply constant current from either the PV modules or the battery cells by eliminating the second-order harmonic component. The performance of the proposed converter is verified by simulations and a downscaled prototype controlled by TMSF28335 DSP. Full article
(This article belongs to the Special Issue Modular Multilevel Converter for Photovoltaic Applications)
Show Figures

Figure 1

18 pages, 6176 KiB  
Article
Dual Isolated Multilevel Modular Inverter with Novel Switching and Voltage Stress Suppression
by Saud Alotaibi, Xiandong Ma and Ahmed Darwish
Energies 2022, 15(14), 5025; https://doi.org/10.3390/en15145025 - 9 Jul 2022
Cited by 1 | Viewed by 1746
Abstract
This paper presents an improved structure for the submodules (SMs) in the three-phase modular inverter (TPMI) based on a dual isolated SEPIC/CUK (DISC) converter for large-scale photovoltaic (LSPV) plants. The DISC SMs can offer several advantages, including increased efficiency, reduced passive elements, and [...] Read more.
This paper presents an improved structure for the submodules (SMs) in the three-phase modular inverter (TPMI) based on a dual isolated SEPIC/CUK (DISC) converter for large-scale photovoltaic (LSPV) plants. The DISC SMs can offer several advantages, including increased efficiency, reduced passive elements, and galvanic isolation via compact-size high-frequency transformers. The SMs can also provide a wide range for the output voltage and draw continuous currents with low ripples from the input source. However, the high dv/dt value across the switches during hard switching can cause current oscillations and voltage spikes, which will impair the operation of complementary switches and affect the safety of the power devices. For this challenge, the DISC SM is improved by replacing the output switches with diodes and adding a bypassing switch. In comparison to the conventional DISC SM, the improved DISC SM reduces the switch’s voltage spikes; hence, it can increase the overall efficiency. Thus, the DISC SM’s will be able to suppress voltage spikes in the TPMI inverter and therefore the total reliability will be improved. The work will detail the analysis of the proposed system along with design guidelines. Additionally, the simulation and experimental results to validate the operation of proposed DISC SM are presented using MATLAB/SIMULINK as well as a scaled-down experimental prototype. Full article
(This article belongs to the Special Issue Modular Multilevel Converter for Photovoltaic Applications)
Show Figures

Figure 1

27 pages, 5725 KiB  
Article
Design and Development of Non-Isolated Modified SEPIC DC-DC Converter Topology for High-Step-Up Applications: Investigation and Hardware Implementation
by Manoharan Premkumar, Umashankar Subramaniam, Hassan Haes Alhelou and Pierluigi Siano
Energies 2020, 13(15), 3960; https://doi.org/10.3390/en13153960 - 1 Aug 2020
Cited by 34 | Viewed by 4816
Abstract
A new non-isolated modified SEPIC front-end dc-dc converter for the low power system is proposed in this paper, and this converter is the next level of the traditional SEPIC converter with additional devices, such as two diodes and splitting of the output capacitor [...] Read more.
A new non-isolated modified SEPIC front-end dc-dc converter for the low power system is proposed in this paper, and this converter is the next level of the traditional SEPIC converter with additional devices, such as two diodes and splitting of the output capacitor into two equal parts. The circuit topology proposed in this paper is formulated by combining the boost structure with the traditional SEPIC converter. Therefore, the proposed converter has the benefit of the SEPIC converter, such as continuous input current. The proposed circuit structure also improves the features, such as high voltage gain and high conversion efficiency. The converter comprises one MOSFET switch, one coupled inductor, three diodes, and two capacitors, including the output capacitor. The converter effectively recovers the leakage energy of the coupled inductor through the passive clamp circuit. The operation of the proposed converter is explained in continuous conduction mode (CCM) and discontinuous conduction mode (DCM). The required voltage gain of the converter can be acquired by adjusting the coupled inductor turn’s ratio along with the additional devices at less duty cycle of the switch. The simulation of the proposed converter under CCM is carried out, and an experimental prototype of 100 W, 25 V/200 V is made, and the experimental outcomes are presented to validate the theoretical discussions of the proposed converter. The operating performance of the proposed converter is compared with the converters discussed in the literature. The proposed converter can be extended by connecting voltage multiplier (VM) cell circuits to get the ultra-high voltage gain. Full article
(This article belongs to the Special Issue Smart Distribution Grid Technologies and Applications)
Show Figures

Graphical abstract

24 pages, 6951 KiB  
Article
A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility
by M. Karthikeyan, R. Elavarasu, P. Ramesh, C. Bharatiraja, P. Sanjeevikumar, Lucian Mihet-Popa and Massimo Mitolo
Energies 2020, 13(9), 2312; https://doi.org/10.3390/en13092312 - 6 May 2020
Cited by 39 | Viewed by 5284
Abstract
In the current era, the desire for high boost DC-to-DC converter development has increased. Notably, there has been voltage gain improvement without adding extra power switches, and a large number of passive components have advanced. Magnetically coupled isolated converters are suggested for the [...] Read more.
In the current era, the desire for high boost DC-to-DC converter development has increased. Notably, there has been voltage gain improvement without adding extra power switches, and a large number of passive components have advanced. Magnetically coupled isolated converters are suggested for the higher voltage gain. These converters use large size inductors, and thus the non-isolated traditional boost, Cuk and Sepic converters are modified to increase their gain by adding an extra switch, inductors and capacitors. These converters increase circuit complexity and become bulky. In this paper, we present a hybrid high voltage gain non-isolated single switch converter for photovoltaic applications. The proposed converter connects the standard conventional Cuk and boost converter in parallel for providing continuous current mode operation with the help of a single power switch, which gives less voltage stress on controlled switch and diodes. The proposed hybrid topology uses a single switch with a lower component-count and provides a higher voltage gain than non-isolated traditional converters. The converter circuit mode of operation, operating performance, mathematical derivations and steady-state exploration and circuit parameters design procedures are deliberated in detail. The proposed hybrid converter circuit components, voltage gain and performance, were compared with other topologies in the literature. The MATLAB/Simulink simulation study and microcontroller-based experimental laboratory prototype of 150 W were implemented. The simulation study and experimentation results were confirmed to be a satisfactory agreement with the theoretical analysis. This topology produced non-inverting output in continuous input current mode using a single switch with high voltage gain (≈5.116 gain) with a maximum efficiency of 92.2% under full load. Full article
Show Figures

Figure 1

21 pages, 9473 KiB  
Article
Modular Battery Charger for Light Electric Vehicles
by Andrei Blinov, Ievgen Verbytskyi, Denys Zinchenko, Dmitri Vinnikov and Ilya Galkin
Energies 2020, 13(4), 774; https://doi.org/10.3390/en13040774 - 11 Feb 2020
Cited by 16 | Viewed by 4411
Abstract
Rapid developments in energy storage and conversion technologies have led to the proliferation of low- and medium-power electric vehicles. Their regular operation typically requires an on-board battery charger that features small dimensions, high efficiency and power quality. This paper analyses an interleaved step-down [...] Read more.
Rapid developments in energy storage and conversion technologies have led to the proliferation of low- and medium-power electric vehicles. Their regular operation typically requires an on-board battery charger that features small dimensions, high efficiency and power quality. This paper analyses an interleaved step-down single-ended primary-inductor converter (SEPIC) operating in the discontinuous conduction mode (DCM) for charging of battery-powered light electric vehicles such as an electric wheelchair. The required characteristics are achieved thanks to favourable arrangement of the inductors in the circuit: the input inductor is used for power factor correction (PFC) without additional elements, while the other inductor is used to provide galvanic isolation and required voltage conversion ratio. A modular interleaved structure of the converter helps to implement low-profile converter design with standard components, distribute the power losses and improve the performance. An optimal number of converter cells was estimated. The converter uses a simple control algorithm for constant current and constant voltage charging modes. To reduce the energy losses, synchronous rectification along with a common regenerative snubber circuit was implemented. The proposed charger concept was verified with a developed 230 VAC to 29.4 VDC experimental prototype that has proved its effectiveness. Full article
(This article belongs to the Special Issue Emerging DC/AC Converters for Storage and Renewable Application)
Show Figures

Graphical abstract

Back to TopTop