Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = isolated DC-DC bidirectional converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7758 KiB  
Article
A Multi-Vector Modulated Model Predictive Control Based on Coordinated Control Strategy of a Photovoltaic-Storage Three-Port DC–DC Converter
by Qihui Feng, Meng Zhang, Yutao Xu, Chao Zhang, Dunhui Chen and Xufeng Yuan
Energies 2025, 18(12), 3208; https://doi.org/10.3390/en18123208 - 19 Jun 2025
Viewed by 381
Abstract
As a core component of the photovoltaic-storage microgrid systems, three-port DC–DC converters have attracted significant attention in recent years. This paper proposes a multi-vector modulated model predictive control (MVM-MPC) method based on vector analysis for a non-isolated three-port DC–DC converter formed by paralleling [...] Read more.
As a core component of the photovoltaic-storage microgrid systems, three-port DC–DC converters have attracted significant attention in recent years. This paper proposes a multi-vector modulated model predictive control (MVM-MPC) method based on vector analysis for a non-isolated three-port DC–DC converter formed by paralleling two bidirectional DC–DC converters. The proposed modulated MPC method utilizes three basic vectors to calculate the optimal switching sequence for minimizing the error vector. It can significantly minimize voltage ripple while maintaining the nonlinear and dynamic performance characteristics of a traditional MPC. MATLAB/Simulink R2024a simulations and hardware-in-loop (HIL) experimental results demonstrate that, compared with finite control set MPC and traditional two-vector modulated MPC methods, the proposed approach achieves remarkable reductions in current ripple and voltage ripple, along with excellent dynamic performance featuring smooth mode-switching. Full article
Show Figures

Figure 1

28 pages, 6345 KiB  
Article
Multimodal Switching Control Strategy for Wide Voltage Range Operation of Three-Phase Dual Active Bridge Converters
by Chenhao Zhao, Chuang Huang, Shaoxu Jiang and Rui Wang
Processes 2025, 13(6), 1921; https://doi.org/10.3390/pr13061921 - 17 Jun 2025
Viewed by 308
Abstract
In recent years, to achieve “dual carbon” goals, increasing the penetration of renewable energy has become a critical approach in China’s power sector. Power electronic converters play a key role in integrating renewable energy into the power system. Among them, the Dual Active [...] Read more.
In recent years, to achieve “dual carbon” goals, increasing the penetration of renewable energy has become a critical approach in China’s power sector. Power electronic converters play a key role in integrating renewable energy into the power system. Among them, the Dual Active Bridge (DAB) DC-DC converter has gained widespread attention due to its merits, such as galvanic isolation, bidirectional power transfer, and soft switching. It has been extensively applied in microgrids, distributed generation, and electric vehicles. However, with the large-scale integration of stochastic renewable sources and uncertain loads into the grid, DAB converters are required to operate over a wider voltage regulation range and under more complex operating conditions. Conventional control strategies often fail to meet these demands due to their limited soft-switching range, restricted optimization capability, and slow dynamic response. To address these issues, this paper proposes a multi-mode switching optimized control strategy for the three-port DAB (3p-DAB) converter. The proposed method aims to broaden the soft-switching range and optimize the operation space, enabling high-power transfer capability while reducing switching and conduction losses. First, to address the issue of the narrow soft-switching range at medium and low power levels, a single-cycle interleaved phase-shift control mode is proposed. Under this control, the three-phase Dual Active Bridge can achieve zero-voltage switching and optimize the minimum current stress, thereby improving the operating efficiency of the converter. Then, in the face of the actual demand for wide voltage regulation of the converter, a standardized global unified minimum current stress optimization scheme based on the virtual phase-shift ratio is proposed. This scheme establishes a unified control structure and a standardized control table, reducing the complexity of the control structure design and the gain expression. Finally, both simulation and experimental results validate the effectiveness and superiority of the proposed multi-mode optimized control strategy. Full article
Show Figures

Figure 1

28 pages, 7959 KiB  
Article
Current-Adaptive Control for Efficiency Enhancement in Interleaved Converters for Battery Energy Storage Systems
by Andrej Brandis, Kristian Knol and Denis Pelin
Electronics 2025, 14(9), 1862; https://doi.org/10.3390/electronics14091862 - 2 May 2025
Viewed by 474
Abstract
Battery energy storage systems are essential for grid stability and the efficient integration of renewable energy sources. Their performance is influenced by the efficiency of bidirectional converters, particularly under varying load conditions. This study presents a novel current-adaptive control strategy for a two-stage [...] Read more.
Battery energy storage systems are essential for grid stability and the efficient integration of renewable energy sources. Their performance is influenced by the efficiency of bidirectional converters, particularly under varying load conditions. This study presents a novel current-adaptive control strategy for a two-stage non-isolated bidirectional DC-DC converter designed to dynamically adjust the number of active branches based on real-time load variations. The proposed approach introduces a current-adaptive algorithm for branch activation and deactivation, combined with real-time temperature-based control decision making, which has not been explored in existing studies. The validation was conducted using real-time Hardware-in-the-Loop simulation with the Typhoon HIL 402 system, ensuring accurate system representation. The results show an increase in average efficiency from 77.69% to 83.15% in Buck mode and from 81.00% to 83.71% in Boost mode, with a reduction in average power losses by 8.67% and 13.31%, respectively. These findings underscore the need for further research on temperature-adaptive control for efficiency optimization and thermal management, which is currently ongoing and will be expanded in future work. Future efforts will focus on experimental validation using a physical prototype and further refinement of temperature-adaptive control strategies. Full article
Show Figures

Figure 1

29 pages, 9574 KiB  
Review
Bidirectional DC-DC Converter Topologies for Hybrid Energy Storage Systems in Electric Vehicles: A Comprehensive Review
by Yan Tong, Issam Salhi, Qin Wang, Gang Lu and Shengyu Wu
Energies 2025, 18(9), 2312; https://doi.org/10.3390/en18092312 - 1 May 2025
Cited by 1 | Viewed by 2110
Abstract
Electric Vehicles (EV) significantly contribute to reducing carbon emissions and promoting sustainable transportation. Among EV technologies, hybrid energy storage systems (HESS), which combine fuel cells, power batteries, and supercapacitors, have been widely adopted to enhance energy density, power density, and system efficiency. Bidirectional [...] Read more.
Electric Vehicles (EV) significantly contribute to reducing carbon emissions and promoting sustainable transportation. Among EV technologies, hybrid energy storage systems (HESS), which combine fuel cells, power batteries, and supercapacitors, have been widely adopted to enhance energy density, power density, and system efficiency. Bidirectional DC-DC converters are pivotal in HESS, enabling efficient energy management, voltage matching, and bidirectional energy flow between storage devices and vehicle systems. This paper provides a comprehensive review of bidirectional DC-DC converter topologies for EV applications, which focuses on both non-isolated and isolated designs. Non-isolated topologies, such as Buck-Boost, Ćuk, and interleaved converters, are featured for their simplicity, efficiency, and compactness. Isolated topologies, such as dual active bridge (DAB) and push-pull converters, are featured for their high voltage gain and electrical isolation. An evaluation framework is proposed, incorporating key performance metrics such as voltage stress, current stress, power density, and switching frequency. The results highlight the strengths and limitations of various converter topologies, offering insights into their optimization for EV applications. Future research directions include integrating wide-bandgap devices, advanced control strategies, and novel topologies to address challenges such as wide voltage gain, high efficiency, and compact design. This work underscores the critical role of bidirectional DC-DC converters in advancing energy-efficient and sustainable EV technologies. Full article
Show Figures

Figure 1

37 pages, 11540 KiB  
Article
Multibattery Charger System Based on a Multilevel Dual-Active-Bridge Power Converter
by José M. Campos-Salazar, Sergio Busquets-Monge, Alber Filba-Martinez and Salvador Alepuz
Electronics 2025, 14(8), 1659; https://doi.org/10.3390/electronics14081659 - 19 Apr 2025
Viewed by 558
Abstract
This work introduces a novel battery charger implemented with a four-level three-phase neutral-point-clamped converter and a four-level single-phase dual-active-bridge converter, which offers the intrinsic advantages of multilevel conversion, provides galvanic isolation and allows bidirectional power flow. A detailed and extensive modeling of the [...] Read more.
This work introduces a novel battery charger implemented with a four-level three-phase neutral-point-clamped converter and a four-level single-phase dual-active-bridge converter, which offers the intrinsic advantages of multilevel conversion, provides galvanic isolation and allows bidirectional power flow. A detailed and extensive modeling of the system is developed, together with the design of appropriate closed-loop control and modulation. The proposed system allows individual charging of each battery pack, ensuring that the full capacity of the battery bank is utilized, even when the battery packs have different state-of-charge levels, differ in nominal capacities, or use different chemistries. Furthermore, the proposed control system manages the overall DC-link voltage and ensures voltage balance across both DC-links in the system. The effectiveness of the proposed system configuration and control has been validated through simulations. The simulation results show good dynamic response in different operating scenarios, confirming the suitability, feasibility, and benefits of the proposed implementation and control approach. Full article
Show Figures

Figure 1

16 pages, 6563 KiB  
Article
Two-Stage Isolated Bidirectional DC-DC Converter with Low Profile and Double Heat Sink for Battery Charging/Discharging System
by Seong-Yong Hong, Sang-Gyun Ryu, Chan-Bae Park, Hyung-Woo Lee and Jae-Bum Lee
Electronics 2025, 14(2), 283; https://doi.org/10.3390/electronics14020283 - 12 Jan 2025
Viewed by 1443
Abstract
This paper proposes an isolated bidirectional dc-dc converter (IBDC) without a cooling fan with a low profile for a direct connection between a battery and the IBDC. To implement the low-profile IBDC, a dual active bridge (DAB) and two interleaved buck/boost converters are [...] Read more.
This paper proposes an isolated bidirectional dc-dc converter (IBDC) without a cooling fan with a low profile for a direct connection between a battery and the IBDC. To implement the low-profile IBDC, a dual active bridge (DAB) and two interleaved buck/boost converters are adopted in the proposed system. For the IBDC with a low profile and high efficiency, two transformers in the DAB converter are separated in series on their primary side and in parallel on their secondary side. In addition, in two interleaved buck/boost converters, their inputs and outputs are connected in parallel, and interleaving control is applied for a small total of inductor current ripple. Finally, a double heat sink is designed for excellent heat dissipation performance. A 500 W low-profile and fanless prototype with 650 V input and 1 (60 W)~5 V (500 W) output was made to verify its performance of operation, efficiency, and saturation temperature. Full article
(This article belongs to the Special Issue Advanced DC-DC Converter Topology Design, Control, Application)
Show Figures

Figure 1

24 pages, 8060 KiB  
Article
A Modular Step-Up DC–DC Converter Based on Dual-Isolated SEPIC/Cuk for Electric Vehicle Applications
by Ahmed Darwish and George A. Aggidis
Energies 2025, 18(1), 146; https://doi.org/10.3390/en18010146 - 2 Jan 2025
Viewed by 1156
Abstract
Fuel cells (FCs) offer several operational advantages when integrated as a power source in electric vehicles (EVs). Since the voltage of these cells is typically low, usually less than 1 V, the power conversion system requires a DC–DC converter capable of providing a [...] Read more.
Fuel cells (FCs) offer several operational advantages when integrated as a power source in electric vehicles (EVs). Since the voltage of these cells is typically low, usually less than 1 V, the power conversion system requires a DC–DC converter capable of providing a high voltage conversion ratio to match the input voltage of the motor propulsion system, which can exceed 400 V and reach up to 800 V. The modular DC–DC boost converter proposed in this paper is designed to achieve a high voltage step-up ratio for the input FC voltages through the use of isolated series-connecting boosting submodules connected. The power electronic topology employed in the submodules (SMs) is designed to provide a flexible output voltage while maintaining a continuous input current from the fuel cells with minimal current ripple to improve the FC’s performance. The proposed step-up modular converter provides several benefits including scalability, better controllability, and improved reliability, especially in the presence of partial faults. Computer simulations using MATLAB/SIMULINK® software (R2024a) have been used to study the feasibility of the proposed converter when connected to a permanent magnet synchronous motor (PMSM). Also, experimental results using a 1 kW prototype composed of four SMs have been obtained to validate the performance of the proposed converter. Full article
(This article belongs to the Special Issue Design and Control Strategies for Wide Input Range DC-DC Converters)
Show Figures

Figure 1

25 pages, 9795 KiB  
Article
Research on the Integrated Converter and Its Control for Fuel Cell Hybrid Electric Vehicles with Three Power Sources
by Yuang Ma and Wenguang Luo
Electronics 2025, 14(1), 29; https://doi.org/10.3390/electronics14010029 - 25 Dec 2024
Cited by 1 | Viewed by 1033
Abstract
Separate DC-DC converters for each energy source are typically configured in fuel-cell hybrid vehicles. This results in a complex control structure of the powertrain system, low energy density of the converter, and high cost due to the large number of components. Conducting research [...] Read more.
Separate DC-DC converters for each energy source are typically configured in fuel-cell hybrid vehicles. This results in a complex control structure of the powertrain system, low energy density of the converter, and high cost due to the large number of components. Conducting research on DC-DC converters with good energy flow management and high integration is a trend to solve such problems. Based on the analysis of the basic functional structure of the converter, this paper designs a buffering unit circuit with energy collection and distribution functions and appropriately connects it with the pulse unit circuit of the converter. Through device optimization reuse and power transmission path integration, a class of non-isolated four-port DC-DC converters is constructed, which consists of an auxiliary energy charging module, input energy source control module, braking energy feedback module and forward bootstrap boost circuit. This converter has two bi-directional ports, a uni-directional input and a bi-directional output, for separate connection to the power batteries, supercapacitors, fuel cells and DC bus. It can adapt to the fluctuation of the vehicle’s driving condition while achieving dynamic and flexible regulation of power flow and can flexibly allocate power according to the load current and voltage level of energy. It can realize a total of 14 operation modes, including six output power supply operation modes, five auxiliary power charging operation modes, and three braking energy regeneration operation modes. Furthermore, the mathematical model of this converter is constructed using the state-average method and the small-signal modeling method in order to achieve the responsiveness and stability of switching multiple operating modalities. The PI control parameters are optimized using the particle swarm optimization algorithm to achieve optimized control of the converter. The simulation system is set up using MATLAB R2024a to verify that the proposed converter topology and algorithm can dynamically allocate appropriate current paths to manipulate the power flow under various operating conditions, effectively improving the utilization rate and efficiency of energy. The converter has the characteristics of high gain and high power density, which is suitable for three-energy fuel cell hybrid electric vehicles. Full article
Show Figures

Figure 1

16 pages, 6381 KiB  
Article
A Bidirectional Isolated DC-to-DC Converter with Hybrid Control of Pulse Width Modulation and Pulse Frequency Modulation
by Chih-Chiang Hua and Jian-Bin Lai
Processes 2024, 12(12), 2866; https://doi.org/10.3390/pr12122866 - 13 Dec 2024
Viewed by 1327
Abstract
This paper proposes a modified bidirectional isolated DC/DC converter with hybrid control, which can be applied to bidirectional power transfer between energy storage systems and DC microgrids. Batteries are usually applied to energy storage systems. The battery lifespan may be shortened if the [...] Read more.
This paper proposes a modified bidirectional isolated DC/DC converter with hybrid control, which can be applied to bidirectional power transfer between energy storage systems and DC microgrids. Batteries are usually applied to energy storage systems. The battery lifespan may be shortened if the converter has large current ripple during the battery charging process. The proposed topology consists of a CLLC converter and an interleaved buck converter. The first stage is an isolated full bridge CLLC converter, and the second stage is an interleaved buck converter with hybrid control of pulse width modulation (PWM) and pulse frequency modulation (PFM). Additionally, the proposed topology achieves zero voltage switching (ZVS) for all switches and reduces the output current ripple. The operational principles of bidirectional power flow in both directions are described in detail. Finally, a 1.5 kW experimental prototype, rated with a high side voltage of 380 V and low side voltage range of 40–58 V, was constructed and tested to investigate the system performance. The measured highest efficiency for the proposed converter is 90% in charging mode, and 94% in discharging mode. Full article
Show Figures

Figure 1

21 pages, 7393 KiB  
Article
An Isolated Bidirectional Soft-Switching DC-DC Converter for Wide Input/Output Voltage Range
by Giorgio Spiazzi, Leopoldo Rossetto, Paolo Mattavelli, Ezio Gallo and Filip Cvejic
Energies 2024, 17(23), 6121; https://doi.org/10.3390/en17236121 - 5 Dec 2024
Viewed by 1159
Abstract
This paper presents the analysis and design of an isolated bidirectional DC-DC converter for applications where both input and output voltages may vary in a wide range. The proposed topology is derived from the integration of an isolated Current-Fed Dual-Active-Bridge (CF-DAB) stage with [...] Read more.
This paper presents the analysis and design of an isolated bidirectional DC-DC converter for applications where both input and output voltages may vary in a wide range. The proposed topology is derived from the integration of an isolated Current-Fed Dual-Active-Bridge (CF-DAB) stage with a Four-Switch Buck-Boost cell (4SBB), sharing one switching leg. Detailed design procedures are outlined for both CF-DAB and 4SBB stages, allowing to achieve Zero-Voltage turn-on of all devices while minimizing the inductor current RMS values. An optimized design of the CF-DAB coupled inductors allowed to achieve the desired leakage inductance value without the need for an additional magnetic component. Experimental results taken on a 5 kW prototype interfacing two voltage ports with VL ∈ [42 V, 72 V], VH ∈ [225 V, 435 V] validate the proposed design procedure. Full article
Show Figures

Figure 1

14 pages, 4252 KiB  
Article
Vector Reconfiguration on a Bidirectional Multilevel LCL-T Resonant Converter
by Jie Shi, Zhongyi Zhang, Yi Xu, Dandan Zou and Hui Cao
Electronics 2024, 13(22), 4557; https://doi.org/10.3390/electronics13224557 - 20 Nov 2024
Viewed by 628
Abstract
With the development of distributed energy technology, the establishment of the energy internet has become a general trend, and relevant research about the core component, energy router, has also become a hotspot. Therefore, the bidirectional isolated DC–DC converter (BIDC) is widely used in [...] Read more.
With the development of distributed energy technology, the establishment of the energy internet has become a general trend, and relevant research about the core component, energy router, has also become a hotspot. Therefore, the bidirectional isolated DC–DC converter (BIDC) is widely used in AC–DC–AC energy router systems, because it can flexibly support the DC bus voltage ratio and achieve bidirectional power flow. This paper proposes a novel vector reconfiguration on a bidirectional multilevel LCL-T resonant converter in which an NPC (neutral-point clamped) multilevel structure with a flying capacitor is introduced to form a novel active bridge, and a coupling transformer is specially added into the active bridge to achieve multilevel voltage output under hybrid modulation. In addition, an LCL-T two-port vector analysis is adopted to elaborate bidirectional power flow which can generate some reactive power to realize zero-voltage switching (ZVS) on active bridges to improve the efficiency of the converter. Meanwhile, due to the symmetry of the LCL-T structure, the difficulty of the bidirectional operation analysis of the power flow is reduced. Finally, a simulation study is designed with a rated voltage of 200 V on front and rear input sources which has a rated power of 450 W with an operational efficiency of 93.8%. Then, the feasibility of the proposed converter is verified. Full article
Show Figures

Figure 1

27 pages, 9266 KiB  
Article
Design and Analysis of a Three-Phase High-Frequency Transformer for Three-Phase Bidirectional Isolated DC-DC Converter Using Superposition Theorem
by Yasir S. Dira, Ahmad Q. Ramli, Ungku Anisa Ungku Amirulddin, Nadia M. L. Tan and Giampaolo Buticchi
Sustainability 2024, 16(21), 9227; https://doi.org/10.3390/su16219227 - 24 Oct 2024
Cited by 1 | Viewed by 2346
Abstract
Battery energy storage systems based on bidirectional isolated DC-DC converters (BIDCs) have been employed to level the output power of intermittent renewable energy generators and to supply power to electric vehicles. Moreover, BIDCs use high-frequency transformers (HFTs) to achieve voltage matching and galvanic [...] Read more.
Battery energy storage systems based on bidirectional isolated DC-DC converters (BIDCs) have been employed to level the output power of intermittent renewable energy generators and to supply power to electric vehicles. Moreover, BIDCs use high-frequency transformers (HFTs) to achieve voltage matching and galvanic isolation. Various studies have recently been conducted using soft magnetic materials, such as nanocrystalline, amorphous solids, and ferrite, to develop more compact and effective transformers with superior power densities. The HFTs in three-phase BIDCs are composed of three magnetic cores. However, this leads to low power density and high cost. Besides, the three-phase (3P) ferrite core has not been investigated for high-power converters such as 3P-BIDCs. This paper presents the design and development of a 3P-EE ferrite magnetic core for 3P-BIDCs. The area product design method was used to determine the core and winding design. The paper also proposes the use of the superposition theorem in conducting a magnetic circuit analysis to predict the flux density and magnetising inductance of the transformer core. Moreover, the use of the superposition theorem allowed the required air-gap length for balancing the distribution of flux density and magnetizing inductance in the transformer core to be determined. The balanced flux distribution and magnetizing inductance resulted in a uniform core loss and temperature in the transformer. This paper also presents the experimental results of the designed HFT operated in a 300-V, 3-kW 3P-BIDC. The experimental results showed that the proposed HFT achieved a balanced flux density and magnetizing inductance with a high power density and low cost. Moreover, the transformer performed at a maximum efficiency of 98.67%, with a decrease of 3.33 °C in the overall temperature of the transformer as compared to the transformer without air gaps. Full article
Show Figures

Figure 1

25 pages, 6995 KiB  
Article
The Control Strategies for Charging and Discharging of Electric Vehicles in the Vehicle–Grid Interaction Modes
by Tao Wang, Jihui Zhang, Xin Li, Shenhui Chen, Jinhao Ma and Honglin Han
World Electr. Veh. J. 2024, 15(10), 468; https://doi.org/10.3390/wevj15100468 - 14 Oct 2024
Cited by 3 | Viewed by 1757
Abstract
In response to the challenges posed by large-scale, uncoordinated electric vehicle charging on the power grid, Vehicle-to-Grid (V2G) technology has been developed. This technology seeks to synchronize electric vehicles with the power grid, improving the stability of their connections and fostering positive energy [...] Read more.
In response to the challenges posed by large-scale, uncoordinated electric vehicle charging on the power grid, Vehicle-to-Grid (V2G) technology has been developed. This technology seeks to synchronize electric vehicles with the power grid, improving the stability of their connections and fostering positive energy exchanges between them. The key component for implementing V2G technology is the bidirectional AC/DC converter. This study concentrates on the non-isolated bidirectional AC/DC converter, providing a detailed analysis of its two-stage operation and creating a mathematical model. A dual closed-loop control structure for voltage and current is designed based on nonlinear control theory, along with a constant current charge–discharge control strategy. Furthermore, midpoint potential balance is achieved through zero-sequence voltage injection control, and power signals for the switching devices are generated using Space Vector Pulse Width Modulation (SVPWM) technology. A simulation model of the V2G system is then constructed in MATLAB/Simulink for analysis and validation. The findings demonstrate that the control strategy proposed in this paper improves the system’s robustness, dynamic performance, and resistance to interference, thus reducing the effects of large-scale, uncoordinated electric vehicle charging on the power grid. Full article
(This article belongs to the Special Issue Intelligent Electric Vehicle Control, Testing and Evaluation)
Show Figures

Figure 1

19 pages, 4186 KiB  
Article
Comparison of Configurable Modular Two-Level and Three-Level Isolated Bidirectional DC–DC Converters for Super-Capacitor Charging in DC Shore Power Systems
by Wenqiang Xie, Mingming Shi, Yuying He, Chenyu Zhang and Ruihuang Liu
Energies 2024, 17(18), 4630; https://doi.org/10.3390/en17184630 - 15 Sep 2024
Cited by 1 | Viewed by 1116
Abstract
Compared to the AC counterpart, the DC shore power system provides a significant advantage of efficient power supply from renewable sources to ships and onshore loads. Super-capacitors serve as key energy storage units in such a system to buffer the power fluctuations and [...] Read more.
Compared to the AC counterpart, the DC shore power system provides a significant advantage of efficient power supply from renewable sources to ships and onshore loads. Super-capacitors serve as key energy storage units in such a system to buffer the power fluctuations and collect the regenerative energy. However, the ultra-wide voltage range of super-capacitors imposes a significant challenge in the topology selection and efficiency optimization of the interfacing isolated bidirectional DC–DC converter. To tackle this challenge, this paper analyzes and compares two promising converter topologies, which are a configurable modular two-level dual-active bridge (CM-2L-DAB) and a three-level dual-active bridge (3L-DAB). To facilitate an ultra-wide voltage range, extended phase-shift (EPS) modulation in conjunction with the topology reconfiguration is analyzed for the CM-2L-DAB, while a hybrid modulation scheme is proposed for the 3L-DAB. A unified design approach is provided for both topologies, which also yields to the power loss modeling. On this basis, the CM-2L-DAB and 3L-DAB are thoroughly compared in terms of the modulation schemes, current stress, soft-switching operation, power conversion efficiency, material usage, closed-loop control scheme, and reliability. A prominent conclusion can be drawn that the CM-2L-DAB provides a higher efficiency than the 3L-DAB over the whole voltage range, but it relies on additional relays to reconfigure its topology which results in lower reliability and dynamic performance than the 3L-DAB. Full article
(This article belongs to the Special Issue Optimization of DC Power Converter and the Applications)
Show Figures

Figure 1

22 pages, 11286 KiB  
Article
Advancing Dual-Active-Bridge DC–DC Converters with a New Control Strategy Based on a Double Integral Super Twisting Sliding Mode Control
by Irfan Sami, Waleed Alhosaini, Danish Khan and Emad M. Ahmed
World Electr. Veh. J. 2024, 15(8), 348; https://doi.org/10.3390/wevj15080348 - 1 Aug 2024
Cited by 5 | Viewed by 2644
Abstract
Dual-Active-Bridge (DAB) DC–DC converters are becoming increasingly favored for their efficiency in transferring electrical power across varying voltage levels. They are crucial in enhancing safety and reliability in various fields, such as renewable energy systems, electric vehicles, and the power supplies of electronic [...] Read more.
Dual-Active-Bridge (DAB) DC–DC converters are becoming increasingly favored for their efficiency in transferring electrical power across varying voltage levels. They are crucial in enhancing safety and reliability in various fields, such as renewable energy systems, electric vehicles, and the power supplies of electronic devices. This paper introduces a new control strategy for bidirectional isolated DAB DC–DC converters, implementing a Double Integral Super Twisting Sliding Mode Control (DI-STSMC) to accurately regulate the output voltage and current. The approach starts with a state-space representation to mathematically model the DAB converter. In light of model uncertainties and external disturbances, a robust DI-STSMC controller has been formulated to optimize the DAB converter’s output performance. This method achieves zero steady-state error without chattering and provides a quick response to fluctuations in load and reference changes. The validity of the proposed technique is demonstrated through simulation results and a control hardware-in-the-loop (CHIL) experimental setup, using Typhoon HIL 606 and Imperix B-Box RCP 3.0 on a 230 W DAB converter. Furthermore, the paper offers a comparative analysis of the DI-STSMC with other control strategies, such as the proportional-integral (PI) controller, standard sliding mode control (SMC), and integral sliding mode control (ISMC). Full article
(This article belongs to the Special Issue Power Electronics for Electric Vehicles)
Show Figures

Figure 1

Back to TopTop