Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (607)

Search Parameters:
Keywords = isogenic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6016 KiB  
Article
Role of Kindlin-2 in Cutaneous Squamous Carcinoma Cell Migration and Proliferation: Implications for Tumour Progression
by Anamika Dutta, Michele Calder and Lina Dagnino
Int. J. Mol. Sci. 2025, 26(15), 7426; https://doi.org/10.3390/ijms26157426 (registering DOI) - 1 Aug 2025
Abstract
The Kindlin family of scaffold proteins plays key roles in integrin-mediated processes. Kindlin-1 and -2, encoded by the FERMT1 and FERMT2 genes, respectively, are expressed in the epidermis. Kindlin-1 plays protective roles against the development of cutaneous squamous cell carcinomas (cSCCs) in epidermal [...] Read more.
The Kindlin family of scaffold proteins plays key roles in integrin-mediated processes. Kindlin-1 and -2, encoded by the FERMT1 and FERMT2 genes, respectively, are expressed in the epidermis. Kindlin-1 plays protective roles against the development of cutaneous squamous cell carcinomas (cSCCs) in epidermal keratinocytes. However, the role of Kindlin-2 in transformed epidermal keratinocytes has remained virtually unexplored. In this study, we used siRNA approaches to generate Kindlin-2-depleted cells in three isogenic transformed keratinocyte lines. PM1, MET1, and MET4 cells model, respectively, a precancerous lesion, a primary cSCC, and a metastatic lesion of the latter. MET1 cells express both Kindlin-1 and -2. However, Kindlin-1 was not detectable in PM1 and MET4 cells. FERMT2 silencing in PM1 and MET4, but not in MET1 cells, reduced proliferation and the ability to adhere to culture surfaces and spreading. Furthermore, Kindlin-2-depleted PM1 and MET4, but not MET1 cells, exhibited decreased numbers of focal adhesions, as well as an altered F-actin and microtubule cytoskeletal organization. Significantly, FERMT2 silencing reduced the directional migration in all three cell types. These findings are consistent with the concept that, in the absence of other Kindlin orthologues, Kindlin-2 plays a prominent role in the modulation of the proliferation, spreading, focal adhesion assembly, and motility of transformed keratinocytes, as exemplified by PM1 and MET4 cells. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

22 pages, 83520 KiB  
Article
The Kinase Inhibitor GNF-7 Is Synthetically Lethal in Topoisomerase 1-Deficient Ewing Sarcoma
by Carly M. Sayers, Morgan B. Carter, Haiyan Lei, Arnulfo Mendoza, Steven Shema, Xiaohu Zhang, Kelli Wilson, Lu Chen, Carleen Klumpp-Thomas, Craig J. Thomas, Christine M. Heske and Jack F. Shern
Cancers 2025, 17(15), 2475; https://doi.org/10.3390/cancers17152475 - 26 Jul 2025
Viewed by 284
Abstract
Background/Objectives: Ewing sarcoma (ES), a highly aggressive bone and soft tissue cancer occurring in children and young adults, is defined by the ETS fusion oncoprotein EWS::FLI1. Although event-free survival rates remain high in ES patients with localized disease, those with metastatic or relapsed [...] Read more.
Background/Objectives: Ewing sarcoma (ES), a highly aggressive bone and soft tissue cancer occurring in children and young adults, is defined by the ETS fusion oncoprotein EWS::FLI1. Although event-free survival rates remain high in ES patients with localized disease, those with metastatic or relapsed disease face poor long-term survival odds. Topoisomerase 1 (TOP1) inhibitors are commonly used therapeutics in ES relapse regimens. Methods: In this work, we used a genome-wide CRISPR knockout library screen to identify the deletion of the TOP1 gene as a mechanism for resistance to topoisomerase 1 inhibitors. Using isogenic cell line models, we performed a high-throughput small-molecule screen to discover a small molecule, GNF-7, which had an IC50 that was 10-fold lower in TOP1-deficient cells when compared to the wild-type cells. Results: The characterization of GNF-7 demonstrated the molecule was highly active in the inhibition of CSK, p38α, EphA2, Lyn, and ZAK and specifically downregulated genes induced by the EWS::FLI1 fusion oncoprotein. Conclusions: Together, these results suggest that GNF-7 or small molecules with a similar kinase profile could be effective treatments for ES patients in combination with TOP1 inhibitors or for those patients who have developed resistance to TOP1 inhibitors. Full article
(This article belongs to the Special Issue Targeted Therapies for Pediatric Solid Tumors (2nd Edition))
Show Figures

Figure 1

15 pages, 2118 KiB  
Article
Ribosomal Hibernation Factor Links Quorum-Sensing to Acid Resistance in EHEC
by Yang Yang, Xinyi Zhang, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microorganisms 2025, 13(8), 1730; https://doi.org/10.3390/microorganisms13081730 - 24 Jul 2025
Viewed by 217
Abstract
The mechanism by which quorum sensing (QS) enhances stress resistance in enterohemorrhagic Escherichia coli (E. coli) O157:H7 remains unclear. We employed optimized exogenous QS signal N-acyl-homoserinelactones (AHL) (100 μM 3-oxo-C6-AHL, 2 h) in EHEC O157:H7 strain EDL933, which was validated with [...] Read more.
The mechanism by which quorum sensing (QS) enhances stress resistance in enterohemorrhagic Escherichia coli (E. coli) O157:H7 remains unclear. We employed optimized exogenous QS signal N-acyl-homoserinelactones (AHL) (100 μM 3-oxo-C6-AHL, 2 h) in EHEC O157:H7 strain EDL933, which was validated with endogenous yenI-derived AHL, to investigate QS-mediated protection against acid stress. RNA-seq transcriptomics identified key upregulated genes (e.g., rmf). Functional validation using isogenic rmf knockout mutants generated via λ-Red demonstrated abolished stress resistance and pan-stress vulnerability. Mechanistic studies employing qRT-PCR and stress survival assays established Ribosomal Hibernation Factor (RMF) as a non-redundant executor in a SdiA–RMF–RpoS axis, which activates ribosomal dormancy and SOS response to enhance EHEC survival under diverse stresses. For the first time, we define ribosomal hibernation as the core adaptive strategy linking QS to pathogen resilience, providing crucial mechanistic insights for developing EHEC control measures against foodborne threats. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

23 pages, 2571 KiB  
Communication
Duchenne Muscular Dystrophy Patient iPSCs—Derived Skeletal Muscle Organoids Exhibit a Developmental Delay in Myogenic Progenitor Maturation
by Urs Kindler, Lampros Mavrommatis, Franziska Käppler, Dalya Gebrehiwet Hiluf, Stefanie Heilmann-Heimbach, Katrin Marcus, Thomas Günther Pomorski, Matthias Vorgerd, Beate Brand-Saberi and Holm Zaehres
Cells 2025, 14(13), 1033; https://doi.org/10.3390/cells14131033 - 7 Jul 2025
Viewed by 762
Abstract
Background: Duchenne muscular dystrophy (DMD), which affects 1 in 3500 to 5000 newborn boys worldwide, is characterized by progressive skeletal muscle weakness and degeneration. The reduced muscle regeneration capacity presented by patients is associated with increased fibrosis. Satellite cells (SCs) are skeletal muscle [...] Read more.
Background: Duchenne muscular dystrophy (DMD), which affects 1 in 3500 to 5000 newborn boys worldwide, is characterized by progressive skeletal muscle weakness and degeneration. The reduced muscle regeneration capacity presented by patients is associated with increased fibrosis. Satellite cells (SCs) are skeletal muscle stem cells that play an important role in adult muscle maintenance and regeneration. The absence or mutation of dystrophin in DMD is hypothesized to impair SC asymmetric division, leading to cell cycle arrest. Methods: To overcome the limited availability of biopsies from DMD patients, we used our 3D skeletal muscle organoid (SMO) system, which delivers a stable population of myogenic progenitors (MPs) in dormant, activated, and committed stages, to perform SMO cultures using three DMD patient-derived iPSC lines. Results: The results of scRNA-seq analysis of three DMD SMO cultures versus two healthy, non-isogenic, SMO cultures indicate reduced MP populations with constant activation and differentiation, trending toward embryonic and immature myotubes. Mapping our data onto the human myogenic reference atlas, together with primary SC scRNA-seq data, indicated a more immature developmental stage of DMD organoid-derived MPs. DMD fibro-adipogenic progenitors (FAPs) appear to be activated in SMOs. Conclusions: Our organoid system provides a promising model for studying muscular dystrophies in vitro, especially in the case of early developmental onset, and a methodology for overcoming the bottleneck of limited patient material for skeletal muscle disease modeling. Full article
(This article belongs to the Special Issue The Current Applications and Potential of Stem Cell-Derived Organoids)
Show Figures

Figure 1

15 pages, 7842 KiB  
Article
Role of BMPR2 Mutation in Lung Organoid Differentiation
by Simin Jiang, Dian Chen, Liangliang Tian, Zihang Pan, Huanyu Long, Lanhe Chu, Weijing Kong, Qiyang Yao, Xiaojing Ma, Yun Zhao, Kai Wang and Yahong Chen
Biomedicines 2025, 13(7), 1623; https://doi.org/10.3390/biomedicines13071623 - 2 Jul 2025
Viewed by 386
Abstract
Background: The bone morphogenetic protein (BMP) signaling pathway is essential for lung development. BMP4, a key regulator, binds to type I (BMPR1) and type II (BMPR2) receptors to initiate downstream signaling. While the inactivation of Bmpr1a and Bmpr1b leads to tracheoesophageal fistulae, [...] Read more.
Background: The bone morphogenetic protein (BMP) signaling pathway is essential for lung development. BMP4, a key regulator, binds to type I (BMPR1) and type II (BMPR2) receptors to initiate downstream signaling. While the inactivation of Bmpr1a and Bmpr1b leads to tracheoesophageal fistulae, the role of BMPR2 mutations in lung epithelial development remains unclear. Methods: We generated induced pluripotent stem cells (iPSCs) from a patient carrying a BMPR2 mutation (c.631C>T), and gene-corrected isogenic controls were created using CRISPR/Cas9. These iPSCs were differentiated into lung progenitor cells and subsequently cultured to generate alveolar and airway organoids. The differentiation efficiency and epithelial lineage specification were assessed using immunofluorescence, flow cytometry, and qRT-PCR. Results: BMPR2-mutant iPSCs showed no impairment in forming a definitive or anterior foregut endoderm. However, a significant reduction in lung progenitor cell differentiation was observed. Further, while alveolar epithelial differentiation remained largely unaffected, airway organoids derived from BMPR2-mutant cells exhibited impaired goblet and ciliated cell development, with an increase in basal and club cell markers, indicating skewing toward undifferentiated airway cell populations. Conclusions: BMPR2 dysfunction selectively impairs late-stage lung progenitor specification and disrupts airway epithelial maturation, providing new insights into the developmental impacts of BMPR2 mutations. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

12 pages, 743 KiB  
Article
Genetic Correlates of Synergy Mechanisms of Daptomycin Plus Fosfomycin in Daptomycin-Susceptible and -Resistant Methicillin-Resistant Staphylococcus aureus (MRSA)
by Warren E. Rose, Selvi C. Ersoy, Wessam Abdelhady, Alan R. Dominguez, Jedidiah Ndam Muyah Manna, Jorge N. Artaza, Reetakshi Mishra, Ahmed M. Elsayed, Richard A. Proctor, Sarah L. Baines, Benjamin P. Howden and Nagendra N. Mishra
Microorganisms 2025, 13(7), 1532; https://doi.org/10.3390/microorganisms13071532 - 30 Jun 2025
Viewed by 486
Abstract
This study elucidates potential genetic determinants and mechanisms involved in the synergistic effects of daptomycin (DAP) + fosfomycin (FOF) combination therapy. Among 33 clinically derived DAP-susceptible (S)/DAP-resistant (R) isogenic strain pairs, mutations in the mprF gene occurred in 30/33 DAP-R strains, including polymorphisms [...] Read more.
This study elucidates potential genetic determinants and mechanisms involved in the synergistic effects of daptomycin (DAP) + fosfomycin (FOF) combination therapy. Among 33 clinically derived DAP-susceptible (S)/DAP-resistant (R) isogenic strain pairs, mutations in the mprF gene occurred in 30/33 DAP-R strains, including polymorphisms of L826F (33%) or T345A/L/I (15%). Strain variants of DAP-S CB1483 serially passaged in vitro for 10 days in DAP +/− FOF identified a key non-synonymous mutation in mprF (L826F) only in the DAP monotherapy arm. Interestingly, passage in FOF alone or DAP + FOF prevented the emergence of this mprF mutation following 10-day passage. This L826F mprF polymorphism, associated with a “gain-in-function” phenotype, exhibited increased amounts of lysyl-phosphatidylglycerol (L-PG) in the cell membrane (CM). Transcriptomics revealed a relatively modest number (~10) of distinct genes that were significantly up- or downregulated (≥2 log fold) in both the DAP-S and DAP-R strain pairs upon DAP + FOF exposures (vs. DAP or FOF alone). Of note, DAP + FOF decreased expression of lrgAB and sdrE and increased the expression level of fosB. In a rabbit infective endocarditis (IE) model, the DAP-R CB185 strain treated with DAP +/− FOF showed significantly reduced lrgB expression in vegetations compared with DAP treatment alone. Overall, these findings indicate that DAP + FOF therapy impacts MRSA through multiple specific mechanisms, enhancing bacterial clearance. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

19 pages, 2218 KiB  
Article
Phenotypic Validation of the Cotton Fiber Length QTL, qFL-Chr.25, and Its Impact on AFIS Fiber Quality
by Samantha J. Wan, Sameer Khanal, Nino Brown, Pawan Kumar, Dalton M. West, Edward Lubbers, Neha Kothari, Donald Jones, Lori L. Hinze, Joshua A. Udall, William C. Bridges, Christopher Delhom, Andrew H. Paterson and Peng W. Chee
Plants 2025, 14(13), 1937; https://doi.org/10.3390/plants14131937 - 24 Jun 2025
Viewed by 473
Abstract
Advances in spinning technology have increased the demand for upland cotton (Gossypium hirsutum L.) cultivars with superior fiber quality. However, progress in breeding for traits such as fiber length is constrained by limited phenotypic and genetic diversity within upland cotton. Introgression from [...] Read more.
Advances in spinning technology have increased the demand for upland cotton (Gossypium hirsutum L.) cultivars with superior fiber quality. However, progress in breeding for traits such as fiber length is constrained by limited phenotypic and genetic diversity within upland cotton. Introgression from Gossypium barbadense, a closely related species known for its superior fiber traits, offers a promising strategy. Sealand 883 is an obsolete upland germplasm developed through G. barbadense introgression and is known for its long and fine fibers. Previous studies have identified a fiber length quantitative trait locus (QTL) on Chromosome 25, designated qFL-Chr.25, in Sealand 883, conferred by an allele introgressed from G. barbadense. This study evaluated the effect of qFL-Chr.25 in near-isogenic introgression lines (NIILs) using Advanced Fiber Information System (AFIS) measurements. Across four genetic backgrounds, NIILs carrying qFL-Chr.25 consistently exhibited longer fibers, as reflected in multiple length parameters, including UHML, L(n), L(w), UQL(w), and L5%. Newly developed TaqMan SNP diagnostic markers flanking the QTL enable automated, reproducible, and scalable screening of large populations typical in commercial breeding programs. These markers will facilitate the incorporation of qFL-Chr.25 into commercial breeding pipelines, accelerating fiber quality improvement and enhancing the competitiveness of cotton against synthetic fibers. Full article
Show Figures

Figure 1

12 pages, 1265 KiB  
Article
Pharmacodynamic Evaluation of Adjuvant Targets: Low Molecular Weight PBP7/8 Effects on β-Lactam Activity Against Carbapenem-Resistant Acinetobacter Baumannii
by Brian M. Ho, Jingxiu Jin, Jacob T. Sanborn, Thomas D. Nguyen, Navaldeep Singh, Christina Cheng, Nader N. Nasief, Ulrike Carlino-MacDonald, Brian T. Tsuji, Yanan Zhao, Liang Chen, Bartolome Moya, Thomas A. Russo and Nicholas M. Smith
Pharmaceuticals 2025, 18(6), 918; https://doi.org/10.3390/ph18060918 - 18 Jun 2025
Viewed by 518
Abstract
Background/Objectives: The increasing occurrence of carbapenem resistance A. baumannii (CRAB) has forced clinicians to seek out alternative options with activity against CRAB. CRAB with inactivated PBP7/8 has been shown to result in an increased outer membrane permeability and could serve as a potential [...] Read more.
Background/Objectives: The increasing occurrence of carbapenem resistance A. baumannii (CRAB) has forced clinicians to seek out alternative options with activity against CRAB. CRAB with inactivated PBP7/8 has been shown to result in an increased outer membrane permeability and could serve as a potential new adjuvant target. Methods: Two isogenic clinical isolates of A. baumannii HUMC1 were utilized (WT and HUMC1 ΔPBP7/8). Static concentration time-kill assays were performed against both isolates with escalating exposures to antibiotics. The resulting data were modeled using the Monolix software suite to capture parameters related to bacterial killing and PBP7/8 synergism. The model results were used to prospectively simulate clinically relevant antibiotic dosing of three antibiotics under physiological conditions and were validated using a hollow-fiber infection model (HFIM). Results: Treatment with monotherapy or combination therapy resulted in concentration-dependent killing for both isolates. Bacterial killing was greater with HUMC1 ΔPBP7/8 for all tested antibiotic concentrations. The mean bacterial population reduction was 4.38 log10 CFU/mL for HUMC1 and 5.38 log10 CFU/mL for HUMC1ΔPBP7/8 knockout isolate. The final mechanism-based model demonstrated improved antibacterial activity with PBP7/8 inhibition through a decline in KC50 values of 59.7% across the beta-lactams in the PBP7/8 knockout. HFIM observations that were retrospectively compared to the simulated model-predicted bacterial concentration time course showed our final model was able to appropriately capture changes in bacterial population within a dynamic HFIM scenario. Conclusions: The quantification of KC50 decline and increase in effectiveness of previously sidelined antimicrobial therapies with PBP7/8 inhibition suggests PBP7/8 is a promising potential target for an antibacterial adjuvant. This lends further support to advance to next-stage studies for identifying compounds that specifically inhibit PBP7/8 activity. Full article
(This article belongs to the Special Issue Next-Generation Antibiotic Strategies Against Drug-Resistant Bacteria)
Show Figures

Figure 1

19 pages, 2824 KiB  
Article
Regulation of Stemness by NR1D2 in Colorectal Cancer
by Sandra Alonso-García, Paula Sánchez-Uceta, Sara Moreno-SanJuan, Jorge Casado, Jose D. Puentes-Pardo, Huda Khaldy, David Lopez-Pérez, María Sol Zurita-Saavedra, Cristina González-Puga, Angel Carazo and Josefa León
Biomedicines 2025, 13(6), 1500; https://doi.org/10.3390/biomedicines13061500 - 18 Jun 2025
Viewed by 603
Abstract
Background: Nuclear Receptor Subfamily 1 Group D Member 2 (NR1D2), a transcription factor that regulates the circadian clock, has been described as an oncogene in colorectal cancer (CRC). In several types of cancer, NR1D2 regulates cancer progression and relapse through cancer stem [...] Read more.
Background: Nuclear Receptor Subfamily 1 Group D Member 2 (NR1D2), a transcription factor that regulates the circadian clock, has been described as an oncogene in colorectal cancer (CRC). In several types of cancer, NR1D2 regulates cancer progression and relapse through cancer stem cells (CSCs), although this aspect has not been studied in CRC. On the other hand, p53 is a tumour suppressor gene that appears mutated in approximately a 50% CRCs. Interestingly, p53 is considered to be a crucial nexus between circadian clock deregulation and cancer. In addition, p53 regulates CSC phenotypes. Methods: We developed an in vitro model in which NR1D2 was silenced in three isogenic cell lines with different p53 status. In addition, we analysed the expression of NR1D2 in a cohort of patients and determined its relationship with the characteristics of patients and tumours. Results: In the in vitro model, NRID2 silencing reduces cell growth and decreases stemness, although only in cells harbouring a wild type p53. In contrast, in cells lacking a functional p53 or harbouring a mutated one, NR1D2 knockout increases cell growth and stemness. In patients, NR1D2 expression correlates with poorly differentiated tumours and high expression of CSCs markers, although only in tumours with a wild type p53, corroborating the results obtained in the in vitro model. Conclusions: Although more research is needed to analyse the mechanism by which NR1D2 regulates stemness in a p53-dependent manner, our results highlight the possibility of using NR1D2 antagonists for treating this type of patient and to develop personalised medicine. Full article
(This article belongs to the Special Issue New Insights in Gastric, Colorectal, and Pancreatic Cancer)
Show Figures

Figure 1

31 pages, 12256 KiB  
Article
Inter-Relationship Between Melanoma Vemurafenib Tolerance Thresholds and Metabolic Pathway Choice
by Pratima Nangia-Makker, Madison Ahrens, Neeraja Purandare, Siddhesh Aras, Jing Li, Katherine Gurdziel, Hyejeong Jang, Seongho Kim and Malathy P Shekhar
Cells 2025, 14(12), 923; https://doi.org/10.3390/cells14120923 - 18 Jun 2025
Viewed by 817
Abstract
Melanomas quickly acquire resistance to vemurafenib, an important therapeutic for BRAFV600 mutant melanomas. Although combating vemurafenib resistance (VemR) to counter mitochondrial metabolic shift using mitochondria-targeting therapies has promise, no studies have analyzed the relationship between vemurafenib tolerance levels and metabolic plasticity. To determine [...] Read more.
Melanomas quickly acquire resistance to vemurafenib, an important therapeutic for BRAFV600 mutant melanomas. Although combating vemurafenib resistance (VemR) to counter mitochondrial metabolic shift using mitochondria-targeting therapies has promise, no studies have analyzed the relationship between vemurafenib tolerance levels and metabolic plasticity. To determine how vemurafenib endurance levels drive metabolic plasticity, we developed isogenic BRAFV600E VemR melanoma models with variant vemurafenib tolerances and performed an integrative analysis of metabolomic and transcriptome alterations using metabolome, Mitoplate-S1, Seahorse, and RNA-seq assays. Regardless of drug tolerance differences, both VemR models display resistance to MEK inhibitor and sensitivity to Wnt/β-catenin inhibitor, ICG-001. β-catenin, MITF, and ABCB5 levels are upregulated in both VemR models, and ICG-001 treatment restored vemurafenib sensitivity with reductions in MITF, ABCB5, phospho-ERK1/2, and mitochondrial respiration. Whereas β-catenin signaling induced TCA cycle and OXPHOS in highly drug tolerant A2058VemR cells, it activated pentose phosphate pathway in M14VemR cells with low vemurafenib tolerance, both of which are inhibited by ICG-001. These data implicate an important role for Wnt/β-catenin signaling in VemR-induced metabolic plasticity. Our data demonstrate that drug tolerance thresholds play a direct role in driving metabolic shifts towards specific routes, thus providing a new basis for delineating VemR melanomas for metabolism-targeting therapies. Full article
(This article belongs to the Collection Pathometabolism: Understanding Disease through Metabolism)
Show Figures

Graphical abstract

20 pages, 2728 KiB  
Article
Conditional QTL Analysis and Fine Mapping for Thousand-Kernel Weight in Common Wheat
by Haoru Guo, Wei Liu, Geling Yan, Yifan Dong, Chongshuo Guan, Zhiyan Zhang, Changhao Zhao, Linxuan Xia, Da Zhu, Chunhua Zhao, Han Sun, Yongzhen Wu, Jianguo Wu, Ran Qin and Fa Cui
Plants 2025, 14(12), 1848; https://doi.org/10.3390/plants14121848 - 16 Jun 2025
Viewed by 468
Abstract
To elucidate the genetic basis of thousand-kernel weight (TKW) related to fundamental traits such as kernel length (KL), kernel width (KW), and kernel diameter ratio (KDR) at the individual quantitative trait loci (QTL) level, both unconditional QTL analysis and conditional QTL analysis for [...] Read more.
To elucidate the genetic basis of thousand-kernel weight (TKW) related to fundamental traits such as kernel length (KL), kernel width (KW), and kernel diameter ratio (KDR) at the individual quantitative trait loci (QTL) level, both unconditional QTL analysis and conditional QTL analysis for TKW were analyzed using a recombinant inbred line (RIL) population, along with a simplified physical map. A total of 37 unconditional QTLs and 34 conditional QTLs were identified. Six QTLs exhibited independent effects from individual traits (KL, KW, or KDR), while 18 QTLs showed common influences from two or three of these traits simultaneously. Additionally, 26 pairs of epistatically interacting QTLs involving 16 loci were detected. Subsequently, fine mapping of the stable and major-effect QTL QTkw1B was carried out using the derived near-isogenic lines (NILs), ultimately locating it within the interval of 698.15–700.19 Mb on chromosome 1B of the KN9204 genome. The conditional QTL analysis and genetic effect analysis based on NILs both indicated that the increase in TKW was primarily contributed by kernel length. The QTL identified in the present study through the combination of conditional and unconditional QTL mapping could increase the understanding of the genetic interrelationships between TKW and kernel size traits at the individual QTL level and provide a theoretical basis for subsequent candidate gene mining. Full article
Show Figures

Figure 1

12 pages, 1031 KiB  
Article
IDH1 Mutation Impacts DNA Repair Through ALKBH2 Rendering Glioblastoma Cells Sensitive to Artesunate
by Olivier Switzeny, Stefan Pusch, Markus Christmann and Bernd Kaina
Biomedicines 2025, 13(6), 1479; https://doi.org/10.3390/biomedicines13061479 - 16 Jun 2025
Viewed by 734
Abstract
Background: Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are enzymes that catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate (α-KG), which is essential for many metabolic processes, including some steps in DNA repair. In tumors, notably in gliomas, IDH1 and IDH2 [...] Read more.
Background: Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are enzymes that catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate (α-KG), which is essential for many metabolic processes, including some steps in DNA repair. In tumors, notably in gliomas, IDH1 and IDH2 are frequently mutated. The mutation found in different cancers is functionally active, causing, instead of α-KG, the formation of 2-hydroxyglutarate (2-HG), which inhibits α-KG-dependent enzymes. Gliomas harboring mutated IDH1/2 show a better prognosis than IDH1 wild-type (wt) tumors of the same grade, which might result from the inhibition of DNA repair functions. A DNA repair enzyme dependent on α-KG is alkB homolog 2 (ALKBH2), which removes several lesions from DNA. These findings prompted us to investigate the response of glioma cells to artesunate (ART), a plant ingredient with genotoxic and anticancer activity currently used in several trials. Materials and Methods: We used isogenic glioblastoma cell lines that express IDH1 wild-type or, based on a TET-inducible system, the IDH1 mutant (mt) protein, and treated them with increasing doses of artesunate. We also treated glioblastoma cells with 2-HG, generated ALKBH2 knockout cells, and checked their sensitivity to the cytotoxic effects of artesunate. Results: We show that the cell-killing effect of ART is enhanced if the IDH1 mutant (R132H) is expressed in glioblastoma cells. Further, we show that 2-HG imitates the effect of IDH1mt as 2-HG ameliorates the cytotoxicity of ART. Finally, we demonstrate that the knockout of ALKBH2 causes the sensitization of glioblastoma cells to ART. Conclusions: The data indicate that ALKBH2 protects against the anticancer effect of ART, and the mutation of IDH1/2 commonly occurring in low-grade gliomas sensitizes to ART via an ALKBH2-dependent mechanism. The data support the use of ART in the therapy of IDH1/2-mutated cancers both in combination with chemotherapy and adjuvant treatment. Full article
(This article belongs to the Special Issue Glioma Therapy: Current Status and Future Prospects)
Show Figures

Figure 1

32 pages, 5733 KiB  
Article
Metabolomic Profiling Identifies Key Metabolites and Defense Pathways in Rlm1-Mediated Blackleg Resistance in Canola
by Xiaohan Zhu, Peng Gao, Shuang Zhao, Xian Luo, Liang Li and Gary Peng
Int. J. Mol. Sci. 2025, 26(12), 5627; https://doi.org/10.3390/ijms26125627 - 12 Jun 2025
Viewed by 649
Abstract
Blackleg disease poses a major threat to global canola production. The resistance gene Rlm1, corresponding to the avirulence gene AvrLm1 in the pathogen Leptosphaeria maculans, has been widely used to mitigate the impact of the disease. To investigate the biochemical basis of [...] Read more.
Blackleg disease poses a major threat to global canola production. The resistance gene Rlm1, corresponding to the avirulence gene AvrLm1 in the pathogen Leptosphaeria maculans, has been widely used to mitigate the impact of the disease. To investigate the biochemical basis of Rlm1-mediated resistance against blackleg, we conducted an LC-MS–based analysis of a susceptible Topas double haploid (DH) line and its isogenic Rlm1-carrying resistant counterpart for metabolomic profiles during the infection process. Samples were labeled with 12C- and 13C for LC-MS analyses to enhance both chemical and physical properties of metabolites for improved quantification and detection sensitivity. Resistant plants showed early and sustained accumulation of several defense metabolites, notably pipecolic acid (PA, up to 326-fold), salicylic acid (SA), and gentisic acid (GA) in L. maculans-inoculated Topas–Rlm1 plants compared to mock-inoculated Topas–Rlm1 controls (adjusted p < 0.05), indicating activation of lysine degradation and hormonal defense pathways. Elevated glucosinolates (GLS), γ-aminobutyric acid (GABA), and melatonin precursors may further contribute to antimicrobial defense and cell-wall reinforcement. In contrast, flavonoid and phenylpropanoid pathways were down-regulated, suggesting metabolic reallocation during resistance. Exogenous application of PA, SA, GA, ferulic acid, and piperonylic acid (a known inhibitor of the phenylpropanoid pathway in plants) significantly reduced infection in susceptible canola varieties, validating their defense roles against blackleg. These results offer new insights into Rlm1-mediated resistance and support metabolic targets for breeding durable blackleg resistance in canola. Full article
(This article belongs to the Special Issue Advances in Brassica Crop Metabolism and Genetics (Second Edition))
Show Figures

Graphical abstract

12 pages, 1201 KiB  
Article
Genetic Variation in the blaZ Gene Leading to the BORSA Phenotype in Staphylococcus aureus
by Mia Aarris, Frederik Boëtius Hertz, Karen Leth Nielsen, Alexander Sato, Helle Krogh Johansen, Henrik Westh, Michael Kemp, Svend Ellermann-Eriksen, Anders Løbner-Olesen, Niels Frimodt-Møller and Godefroid Charbon
Antibiotics 2025, 14(5), 449; https://doi.org/10.3390/antibiotics14050449 - 29 Apr 2025
Viewed by 1085
Abstract
Background/Objectives: Staphylococcus aureus is a leading cause of bacteraemia in Danish hospitals. Approximately 70% of clinical S. aureus isolates are penicillin-resistant, which is predominantly due to blaZ-mediated β-lactamase production. Methods: A collection of 489 S. aureus strains derived from bacteraemia were cultured [...] Read more.
Background/Objectives: Staphylococcus aureus is a leading cause of bacteraemia in Danish hospitals. Approximately 70% of clinical S. aureus isolates are penicillin-resistant, which is predominantly due to blaZ-mediated β-lactamase production. Methods: A collection of 489 S. aureus strains derived from bacteraemia were cultured and their genomes sequenced. Results: From this collection, 71% of isolates were methicillin-susceptible S. aureus (MSSA) harbouring blaZ. While most isolates contained the blaZ gene belonging to the well-characterised A, B, C and D variants, three strains (1%) produced a BlaZ protein characterised by having threonine residues on both positions 128 and 216 and, therefore, belonged to neither of the established blaZ variants. We named this variant, variant F. We report that clinical isolates expressing blaZ variant F were resistant to oxacillin. The β-lactamase production phenotype in isolates carrying either of the A, B, C or D variants was only weakly discernible on MIC gradient strip and disk diffusion tests. When the β-lactamases were expressed either from a T7 promoter or from their endogenous promoters in Escherichia coli, variant F was significantly better at degrading ampicillin than variant A. We also showed that variant F conferred oxacillin resistance when expressed in an isogenic S. aureus strain, while variant A did not. Finally, we demonstrated that the F variant threonine 216 played a role in the enzyme’s superior activity. Conclusions: Our findings demonstrate that the new F variant of BlaZ is sufficient to render S. aureus a BORSA strain, which is superior in the degradation of common anti-staphylococcal β-lactam antibiotics, such as benzylpenicillin, cloxacillin, and oxacillin. It is sensitive to β-lactamase inhibitors and rapidly degrades nitrocefin. We provide a genetic explanation for the borderline oxacillin-resistant S. aureus (BORSA) phenotype. Full article
Show Figures

Graphical abstract

14 pages, 2668 KiB  
Article
Effects of LMW-GS Allelic Variations at the Glu-A3 Locus on Fresh Wet Noodle and Frozen Cooked Noodle Quality
by Xiaohong Chen, Hongwei Zhou, Yufei Zou, Jinfu Ban, Huizhi Zhang, Xiaoke Zhang, Boli Guo and Yingquan Zhang
Foods 2025, 14(9), 1546; https://doi.org/10.3390/foods14091546 - 28 Apr 2025
Viewed by 368
Abstract
Low molecular weight glutenin subunits (LMW-GSs) in wheat are critical functional proteins that regulate the processing quality of flour-based products. This study utilized two sets of near-isogenic lines (NILs) derived from the wheat cultivars Zhoumai 22 and Zhoumai 23 to investigate the effects [...] Read more.
Low molecular weight glutenin subunits (LMW-GSs) in wheat are critical functional proteins that regulate the processing quality of flour-based products. This study utilized two sets of near-isogenic lines (NILs) derived from the wheat cultivars Zhoumai 22 and Zhoumai 23 to investigate the effects of allelic variations at the Glu-A3 locus—specifically Glu-A3a, Glu-A3b, Glu-A3c, Glu-A3d, Glu-A3e, Glu-A3f, and Glu-A3g—on protein content, gluten properties, dough farinograph properties, cooking properties of fresh wet noodles (FWNs), and textural properties of FWNs and frozen cooked noodles (FZNs). The results demonstrated that Glu-A3f exhibited superior grain protein content. Glu-A3e negatively impacted the gluten index, and Glu-A3g showed favorable dry gluten content. Glu-A3b displayed enhanced dough mixing tolerance. Importantly, Glu-A3b was associated with improved hardness in FWNs, while Glu-A3g contributed to higher hardness and chewiness in FZNs. These findings provide critical insights for breeding elite wheat cultivars tailored for noodle production and optimizing specialty flour development. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

Back to TopTop