Role of BMPR2 Mutation in Lung Organoid Differentiation
Abstract
1. Introduction
2. Materials and Methods
2.1. Generation of iPSC Line with BMPR2 Mutation and Gene Editing
2.2. Differentiation of iPSCs into Lung Progenitor Cells
2.3. Isolation of Lung Progenitor Cells
2.4. Generation of Lung Organoids
2.5. Quantitative Real-Time PCR Analysis
2.6. Flow Cytometry Analysis
2.7. Immunofluorescence Staining
2.8. Three-Dimensional Organoid Clearing for 3D Fluorescence Imaging
2.9. Statistical Analysis
3. Results
3.1. Generation of Lung Progenitor Cells Using BMPR2-Mutated and Gene-Corrected iPSCs
3.2. BMPR2 Mutation Reduces the Differentiation Efficiency of Lung Progenitor Cells
3.3. BMPR2 Mutation Affected the Differentiation of Airway Organoids
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PH | Pulmonary hypertension |
AT1 | Alveolar type I cells |
AT2 | Alveolar type I cells |
AFE | Anterior foregut endoderm |
Ctrl | Control |
DE | Definitive endoderm |
EMT | Epithelial–mesenchymal transition |
EndMT | Endothelial–mesenchymal transition |
LP | Lung progenitor |
iPSC | Induced pluripotent stem cell |
References
- Herriges, M.; Morrisey, E.E. Lung development: Orchestrating the generation and regeneration of a complex organ. Development 2014, 141, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Hines, E.A.; Sun, X. Tissue Crosstalk in Lung Development. J. Cell. Biochem. 2014, 115, 1469–1477. [Google Scholar] [CrossRef]
- Frum, T.; Hsu, P.P.; Hein, R.F.C.; Conchola, A.S.; Zhang, C.J.; Utter, O.R.; Anand, A.; Zhang, Y.; Clark, S.G.; Glass, I.; et al. Opposing roles for TGFβ- and BMP-signaling during nascent alveolar differentiation in the developing human lung. NPJ Regen. Med. 2023, 8, 48. [Google Scholar] [CrossRef]
- Chung, M.I.; Bujnis, M.; Barkauskas, C.E.; Kobayashi, Y.; Hogan, B.L.M. Niche-mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation. Development 2018, 145, dev163014. [Google Scholar] [CrossRef]
- Zhao, L.; Yee, M.; O’Reilly, M.A. Transdifferentiation of alveolar epithelial type II to type I cells is controlled by opposing TGF-β and BMP signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L409–L418. [Google Scholar] [CrossRef]
- Smith, J.R.; Vallier, L.; Lupo, G.; Alexander, M.; Harris, W.A.; Pedersen, R.A. Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev. Biol. 2008, 313, 107–117. [Google Scholar] [CrossRef]
- Sui, L.; Bouwens, L.; Mfopou, J.K. Signaling pathways during maintenance and definitive endoderm differentiation of embryonic stem cells. Int. J. Dev. Biol. 2013, 57, 1–12. [Google Scholar] [CrossRef]
- Sui, L.N.; Mfopou, J.K.; Geens, M.; Sermon, K.; Bouwens, L. FGF signaling via MAPK is required early and improves Activin A-induced definitive endoderm formation from human embryonic stem cells. Biochem. Biophys. Res. Commun. 2012, 426, 380–385. [Google Scholar] [CrossRef]
- Teo, A.K.; Ali, Y.; Wong, K.Y.; Chipperfield, H.; Sadasivam, A.; Poobalan, Y.; Tan, E.K.; Wang, S.T.; Abraham, S.; Tsuneyoshi, N.; et al. Activin and BMP4 synergistically promote formation of definitive endoderm in human embryonic stem cells. Stem Cells 2012, 30, 631–642. [Google Scholar] [CrossRef]
- Matkovic Leko, I.; Schneider, R.T.; Thimraj, T.A.; Schrode, N.; Beitler, D.; Liu, H.-Y.; Beaumont, K.; Chen, Y.-W.; Snoeck, H.-W. A distal lung organoid model to study interstitial lung disease, viral infection and human lung development. Nat. Protoc. 2023, 18, 2283–2312. [Google Scholar] [CrossRef]
- Green, M.D.; Chen, A.; Nostro, M.C.; d’Souza, S.L.; Schaniel, C.; Lemischka, I.R.; Gouon-Evans, V.; Keller, G.; Snoeck, H.W. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol. 2011, 29, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Goss, A.M.; Tian, Y.; Tsukiyama, T.; Cohen, E.D.; Zhou, D.; Lu, M.M.; Yamaguchi, T.P.; Morrisey, E.E. Wnt2/2b and β-Catenin Signaling Are Necessary and Sufficient to Specify Lung Progenitors in the Foregut. Dev. Cell 2009, 17, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Cao, Y.; Qian, J.; Shao, F.; Niederreither, K.; Cardoso, W.V. A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J. Clin. Investig. 2010, 120, 2040–2048. [Google Scholar] [CrossRef]
- Yadin, D.; Knaus, P.; Mueller, T.D. Structural insights into BMP receptors: Specificity, activation and inhibition. Cytokine Growth Factor Rev. 2016, 27, 13–34. [Google Scholar] [CrossRef] [PubMed]
- Domyan, E.T.; Ferretti, E.; Throckmorton, K.; Mishina, Y.; Nicolis, S.K.; Sun, X. Signaling through BMP receptors promotes respiratory identity in the foregut via repression of. Development 2011, 138, 971–981. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, Z.; Hong, Z.; Sun, M.; Hong, Y.; Peng, X.; Li, X.; Wang, X.; Wang, K. Protocol for scarless genome editing of human pluripotent stem cell based on orthogonal selective reporters. STAR Protoc. 2024, 5, 103084. [Google Scholar] [CrossRef]
- Gotoh, S.; Ito, I.; Nagasaki, T.; Yamamoto, Y.; Konishi, S.; Korogi, Y.; Matsumoto, H.; Muro, S.; Hirai, T.; Funato, M.; et al. Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells. Stem Cell Rep. 2014, 3, 394–403. [Google Scholar] [CrossRef]
- Wong, A.P.; Chin, S.; Xia, S.; Garner, J.; Bear, C.E.; Rossant, J. Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nat. Protoc. 2015, 10, 363–381. [Google Scholar] [CrossRef]
- Kunisaki, S.M.; Jiang, G.; Biancotti, J.C.; Ho, K.K.Y.; Dye, B.R.; Liu, A.P.; Spence, J.R. Human induced pluripotent stem cell-derived lung organoids in an ex vivo model of the congenital diaphragmatic hernia fetal lung. Stem Cells Transl. Med. 2021, 10, 98–114. [Google Scholar] [CrossRef]
- McCauley, K.B.; Hawkins, F.; Serra, M.; Thomas, D.C.; Jacob, A.; Kotton, D.N. Efficient Derivation of Functional Human Airway Epithelium from Pluripotent Stem Cells via Temporal Regulation of Wnt Signaling. Cell Stem Cell 2017, 20, 844–857.e6. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension Developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Endorsed by the International Society for Heart and Lung Transplantation (ISHLT) and the European Reference Network on rare respiratory diseases (ERN-LUNG). Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; Robbins, I.M.; Beghetti, M.; Channick, R.N.; Delcroix, M.; Denton, C.P.; Elliott, C.G.; Gaine, S.P.; Gladwin, M.T.; Jing, Z.C.; et al. Updated Clinical Classification of Pulmonary Hypertension. J. Am. Coll. Cardiol. 2009, 54, S43–S54. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Q.Q.; Eyries, M.; Wu, W.H.; Yuan, P.; Zhang, R.; Soubrier, F.; Jing, Z.C. Molecular genetics and clinical features of Chinese idiopathic and heritable pulmonary arterial hypertension patients. Eur. Respir. J. 2012, 39, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Sa, S.L.; Gu, M.X.; Chappe, J.; Shao, N.Y.; Ameen, M.; Elliott, K.A.T.; Li, D.; Grubert, F.; Li, C.Y.G.; Taylor, S.; et al. Induced Pluripotent Stem Cell Model of Pulmonary Arterial Hypertension Reveals Novel Gene Expression and Patient Specificity. Am. J. Respir. Crit. Care Med. 2017, 195, 930–941. [Google Scholar] [CrossRef]
- Gu, M.X.; Shao, N.Y.; Sa, S.L.; Li, D.; Termglinchan, V.; Ameen, M.; Karakikes, I.; Sosa, G.; Grubert, F.; Lee, J.; et al. Patient-Specific iPSC-Derived Endothelial Cells Uncover Pathways that Protect against Pulmonary Hypertension in BMPR2 Mutation Carriers. Cell Stem Cell 2017, 20, 490–504.e5. [Google Scholar] [CrossRef]
- Gu, M.X.; Donato, M.; Guo, M.Z.; Wary, N.; Miao, Y.F.; Mao, S.; Saito, T.; Otsuki, S.; Wang, L.L.; Harper, R.L.; et al. iPSC-endothelial cell phenotypic drug screening and in silico analyses identify tyrphostin-AG1296 for pulmonary arterial hypertension. Sci. Transl. Med. 2021, 13, eaba6480. [Google Scholar] [CrossRef] [PubMed]
- Stenmark, K.R.; Frid, M.; Perros, F. Endothelial-to-Mesenchymal Transition: An Evolving Paradigm and a Promising Therapeutic Target in PAH. Circulation 2016, 133, 1734–1737. [Google Scholar] [CrossRef]
- Hopper, R.K.; Moonen, J.R.; Diebold, I.; Cao, A.; Rhodes, C.J.; Tojais, N.F.; Hennigs, J.K.; Gu, M.; Wang, L.; Rabinovitch, M. In Pulmonary Arterial Hypertension, Reduced BMPR2 Promotes Endothelial-to-Mesenchymal Transition via HMGA1 and Its Target Slug. Circulation 2016, 133, 1783–1794. [Google Scholar] [CrossRef]
- Sánchez-Duffhues, G.; García de Vinuesa, A.; van de Pol, V.; Geerts, M.E.; de Vries, M.R.; Janson, S.G.; van Dam, H.; Lindeman, J.H.; Goumans, M.J.; Ten Dijke, P. Inflammation induces endothelial-to-mesenchymal transition and promotes vascular calcification through downregulation of BMPR2. J. Pathol. 2019, 247, 333–346. [Google Scholar] [CrossRef]
- Gorelova, A.; Berman, M.; Al Ghouleh, I. Endothelial-to-Mesenchymal Transition in Pulmonary Arterial Hypertension. Antioxid. Redox Signal 2021, 34, 891–914. [Google Scholar] [CrossRef]
- Beck, T.N.; Korobeynikov, V.A.; Kudinov, A.E.; Georgopoulos, R.; Solanki, N.R.; Andrews-Hoke, M.; Kistner, T.M.; Pépin, D.; Donahoe, P.K.; Nicolas, E.; et al. Anti-Müllerian Hormone Signaling Regulates Epithelial Plasticity and Chemoresistance in Lung Cancer. Cell Rep. 2016, 16, 657–671. [Google Scholar] [CrossRef]
- Song, Y.; Lv, S.; Wang, F.; Liu, X.; Cheng, J.; Liu, S.; Wang, X.; Chen, W.; Guan, G.; Liu, G.; et al. Overexpression of BMP-7 reverses TGF-β1-induced epithelial-mesenchymal transition by attenuating the Wnt3/β-catenin and TGF-β1/Smad2/3 signaling pathways in HK-2 cells. Mol. Med. Rep. 2020, 21, 833–841. [Google Scholar] [CrossRef] [PubMed]
- De Wever, O.; Pauwels, P.; De Craene, B.; Sabbah, M.; Emami, S.; Redeuilh, G.; Gespach, C.; Bracke, M.; Berx, G. Molecular and pathological signatures of epithelial-mesenchymal transitions at the cancer invasion front. Histochem. Cell Biol. 2008, 130, 481–494. [Google Scholar] [CrossRef]
- Koli, K.; Myllärniemi, M.; Vuorinen, K.; Salmenkivi, K.; Ryynänen, M.J.; Kinnula, V.L.; Keski-Oja, J. Bone morphogenetic protein-4 inhibitor gremlin is overexpressed in idiopathic pulmonary fibrosis. Am. J. Pathol. 2006, 169, 61–71. [Google Scholar] [CrossRef]
- Dong, Y.; Geng, Y.; Li, L.; Li, X.; Yan, X.; Fang, Y.; Li, X.; Dong, S.; Liu, X.; Li, X.; et al. Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. J. Exp. Med. 2015, 212, 235–252. [Google Scholar] [CrossRef]
- Li, X.; Fang, Y.; Jiang, D.; Dong, Y.; Liu, Y.; Zhang, S.; Guo, J.; Qi, C.; Zhao, C.; Jiang, F.; et al. Targeting FSTL1 for Multiple Fibrotic and Systemic Autoimmune Diseases. Mol. Ther. 2021, 29, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Farkas, L.; Farkas, D.; Gauldie, J.; Warburton, D.; Shi, W.; Kolb, M. Transient overexpression of Gremlin results in epithelial activation and reversible fibrosis in rat lungs. Am. J. Respir. Cell Mol. Biol. 2011, 44, 870–878. [Google Scholar] [CrossRef]
- McCormack, N.; Molloy, E.L.; O’Dea, S. Bone morphogenetic proteins enhance an epithelial-mesenchymal transition in normal airway epithelial cells during restitution of a disrupted epithelium. Respir. Res. 2013, 14, 36. [Google Scholar] [CrossRef]
- Moreira, A.; Müller, M.; Costa, P.F.; Kohl, Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv. Biol. 2022, 6, e2101139. [Google Scholar] [CrossRef]
- Fernandes, R.; Barbosa-Matos, C.; Borges-Pereira, C.; Carvalho, A.; Costa, S. Glycogen Synthase Kinase-3 Inhibition by CHIR99021 Promotes Alveolar Epithelial Cell Proliferation and Lung Regeneration in the Lipopolysaccharide-Induced Acute Lung Injury Mouse Model. Int. J. Mol. Sci. 2024, 25, 1279. [Google Scholar] [CrossRef]
- Hu, Y.; Ng-Blichfeldt, J.P.; Ota, C.; Ciminieri, C.; Ren, W.; Hiemstra, P.S.; Stolk, J.; Gosens, R.; Königshoff, M. Wnt/β-catenin signaling is critical for regenerative potential of distal lung epithelial progenitor cells in homeostasis and emphysema. Stem Cells 2020, 38, 1467–1478. [Google Scholar] [CrossRef] [PubMed]
- Morrell, N.W.; Aldred, M.A.; Chung, W.K.; Elliott, C.G.; Nichols, W.C.; Soubrier, F.; Trembath, R.C.; Loyd, J.E. Genetics and genomics of pulmonary arterial hypertension. Eur. Respir. J. 2019, 53, 1801899. [Google Scholar] [CrossRef] [PubMed]
- White, R.J.; Morrell, N.W. Understanding the Low Penetrance of Bone Morphogenetic Protein Receptor 2 Gene Mutations. Circulation 2012, 126, 1818–1820. [Google Scholar] [CrossRef] [PubMed]
- Larkin, E.K.; Newman, J.H.; Austin, E.D.; Hemnes, A.R.; Wheeler, L.; Robbins, I.M.; West, J.D.; Phillips, J.A., 3rd; Hamid, R.; Loyd, J.E. Longitudinal analysis casts doubt on the presence of genetic anticipation in heritable pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2012, 186, 892–896. [Google Scholar] [CrossRef]
- Cuthbertson, I.; Morrell, N.W.; Caruso, P. BMPR2 Mutation and Metabolic Reprogramming in Pulmonary Arterial Hypertension. Circ. Res. 2023, 132, 109–126. [Google Scholar] [CrossRef]
- Wang, Y.X.; Li, X.M.; Niu, W.; Chen, J.; Zhang, B.; Zhang, X.M.; Wang, Y.M.; Dang, S.K.; Li, Z.C. The alveolar epithelial cells are involved in pulmonary vascular remodeling and constriction of hypoxic pulmonary hypertension. Respir. Res. 2021, 22, 134. [Google Scholar] [CrossRef]
Primer List | Forward Sequence (5′ to 3′) | Reverse Sequence (5′ to 3′) |
---|---|---|
GAPDH | GGTGTGAACCATGAGAAGTATGA | GAGTCCTTCCACGATACCAAAG |
NKX2.1 | CGGCATGAACATGAGCGGCAT | GCCGACAGGTACTTCTGTTGCTTG |
SOX17 | GTGGACCGCACGGAATTTG | GGAGATTCACACCGGAGTCA |
SOX2 | TGGACAGTTACGCGCACAT | CGAGTAGGACATGCTGTAGGT |
FOXA2 | GGAACACCACTACGCCTTCAAC | AGTGCATCACCTGTTCGTAGGC |
POU5F1 | GGGCTCTCCCATGCATTCAAAC | CACCTTCCCTCCAACCAGTTGC |
SPC | CACCTGAAACGCCTTCTTATCG | TTTCTGGCTCATGTGGAGACC |
SPB | TGTCCTCCGATGTTCCACTGAG | AGCCTGTTCACTGGTGTTCCAG |
MUC5AC | CATCTGCCAGCTGATTCTGA | AAGACGCAGCCCTCATAGAA |
FOXJ1 | CCTGTCGGCCATCTACAAGT | AGACAGGTTGTGGCGGATT |
PDPN | TCCAGGAACCAGCGAAGAC | CGTGGACTGTGCTTTCTGA |
TP63 | ACTGCCAAATTGCAAAGACA | TGACTAGGAGGGGCAATCTG |
KRT5 | GAGCTGAGAAACATGCAGGA | TCTCAGCAGTGGTACGCTTG |
SCGB3A2 | GGCTAAGGAAGTGTGTAAATGAGC | CCATCCACCTCCGCTCTTTATC |
Primary Antibody | Company | Location | CAT |
---|---|---|---|
Mouse anti-OCT4 | Cell Signaling Technology | Danvers, MA, USA | 75463 |
Rabbit anti-NANOG | Cell Signaling Technology | Danvers, MA, USA | 4903 |
Rabbit anti-SOX2 | Santa Cruz Biotechnology | Dallas, TX, USA | sc-8344 |
Mouse anti-SPC | Santa Cruz Biotechnology | Dallas, TX, USA | sc-518029 |
Rabbit anti-SPB | Abcam | Cambridge, UK | Ab271345 |
Rabbit anti-SPA1 | Abclonal | Wuhan, China | A3133 |
Mouse anti-SOX2 | Thermo Fisher Scientific | Waltham, MA, USA | MA1-014 |
Rabbit anti-HOPX | Abclonal | Wuhan, China | A15537PM |
Rabbit anti-FOXA2 | Abcam | Cambridge, UK | ab108422 |
Mouse anti-MUC5AC | Thermo Fisher Scientific | Waltham, MA, USA | MA5-12178 |
Rabbit anti-SCGB3A2 | Abcam | Cambridge, UK | ab181853 |
Rabbit anti-KRT5 | Cell Signaling Technology | Danvers, MA, USA | 71536S |
Rabbit anti-NKX2.1 | Abcam | Cambridge, UK | ab76013 |
Mouse anti-ACT | Santa Cruz Biotechnology | Dallas, TX, USA | sc-8432 |
Mouse anti-CPM | Novus Biologicals | Littleton, CO, USA | DDX0520P |
PE anti-SOX17 | BD Biosciences | Franklin Lakes, NJ, USA | 561591 |
APC anti-CXCR4 | BD Biosciences | Franklin Lakes, NJ, USA | 555976 |
Secondary Antibody | Company | Location | CAT |
Donkey anti-rabbit IgG, Alexa Fluor 568 | Thermo Fisher Scientific | Waltham, MA, USA | A10042 |
Donkey anti-rabbit IgG, Alexa Fluor 647 | Thermo Fisher Scientific | Waltham, MA, USA | A-31573 |
Donkey anti-goat IgG, Alexa Fluor 488 | Thermo Fisher Scientific | Waltham, MA, USA | A-11055 |
Donkey anti-goat IgG, Alexa Fluor 594 | Thermo Fisher Scientific | Waltham, MA, USA | A-11058 |
Donkey anti- goat IgG, Alexa Fluor 647 | Thermo Fisher Scientific | Waltham, MA, USA | A-21447 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Chen, D.; Tian, L.; Pan, Z.; Long, H.; Chu, L.; Kong, W.; Yao, Q.; Ma, X.; Zhao, Y.; et al. Role of BMPR2 Mutation in Lung Organoid Differentiation. Biomedicines 2025, 13, 1623. https://doi.org/10.3390/biomedicines13071623
Jiang S, Chen D, Tian L, Pan Z, Long H, Chu L, Kong W, Yao Q, Ma X, Zhao Y, et al. Role of BMPR2 Mutation in Lung Organoid Differentiation. Biomedicines. 2025; 13(7):1623. https://doi.org/10.3390/biomedicines13071623
Chicago/Turabian StyleJiang, Simin, Dian Chen, Liangliang Tian, Zihang Pan, Huanyu Long, Lanhe Chu, Weijing Kong, Qiyang Yao, Xiaojing Ma, Yun Zhao, and et al. 2025. "Role of BMPR2 Mutation in Lung Organoid Differentiation" Biomedicines 13, no. 7: 1623. https://doi.org/10.3390/biomedicines13071623
APA StyleJiang, S., Chen, D., Tian, L., Pan, Z., Long, H., Chu, L., Kong, W., Yao, Q., Ma, X., Zhao, Y., Wang, K., & Chen, Y. (2025). Role of BMPR2 Mutation in Lung Organoid Differentiation. Biomedicines, 13(7), 1623. https://doi.org/10.3390/biomedicines13071623