Pharmacodynamic Evaluation of Adjuvant Targets: Low Molecular Weight PBP7/8 Effects on β-Lactam Activity Against Carbapenem-Resistant Acinetobacter Baumannii
Abstract
:1. Introduction
2. Results
2.1. Static Concentration Time-Kill Experiments
2.2. Mechanism-Based Model of PBP7/8 Effects
2.3. Hollow-Fiber Infection Model
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates and Media
4.2. Static Concentration Time-Kill Experiments
4.3. Mechanism-Based Mathematical Model
4.4. Prospective Simulation of PBP7/8 Inactivation Effects
4.5. Hollow-Fiber Infection Model Experiments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maragakis, L.L.; Perl, T.M. Acinetobacter baumannii: Epidemiology, antimicrobial resistance, and treatment options. Clin. Infect. Dis. 2008, 46, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Chen, W. Host Innate Immune Responses to Acinetobacter baumannii Infection. Front. Cell Infect. Microbiol. 2020, 10, 486. [Google Scholar] [CrossRef] [PubMed]
- CDC. COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022; U.S. Department of Health and Human Services: Washington, DC, USA; CDC: Atlanta, GA, USA, 2022. [CrossRef]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef]
- CDC. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services: Washington, DC, USA; CDC: Atlanta, GA, USA, 2019. [CrossRef]
- Hamidian, M.; Nigro, S.J. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb. Genom. 2019, 5, e000306. [Google Scholar] [CrossRef]
- Ouderkirk, J.P.; Nord, J.A.; Turett, G.S.; Kislak, J.W. Polymyxin B nephrotoxicity and efficacy against nosocomial infections caused by multiresistant gram-negative bacteria. Antimicrob. Agents Chemother. 2003, 47, 2659–2662. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Pogue, J.M.; Tran, T.B.; Nation, R.L.; Li, J. Agents of Last Resort: Polymyxin Resistance. Infect. Dis. Clin. N. Am. 2016, 30, 391–414. [Google Scholar] [CrossRef]
- Ko, K.S.; Suh, J.Y.; Kwon, K.T.; Jung, S.I.; Park, K.H.; Kang, C.I.; Chung, D.R.; Peck, K.R.; Song, J.H. High rates of resistance to colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea. J. Antimicrob. Chemother. 2007, 60, 1163–1167. [Google Scholar] [CrossRef]
- Doi, Y. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin. Infect. Dis. 2019, 69, S565–S575. [Google Scholar] [CrossRef]
- Isler, B.; Doi, Y.; Bonomo, R.A.; Paterson, D.L. New Treatment Options against Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrob. Agents Chemother. 2019, 63, e01110-18. [Google Scholar] [CrossRef]
- Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J.A.; Charlier, P. The penicillin-binding proteins: Structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 2008, 32, 234–258. [Google Scholar] [CrossRef]
- Denome, S.A.; Elf, P.K.; Henderson, T.A.; Nelson, D.E.; Young, K.D. Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: Viability, characteristics, and implications for peptidoglycan synthesis. J. Bacteriol. 1999, 181, 3981–3993. [Google Scholar] [CrossRef] [PubMed]
- Zapun, A.; Contreras-Martel, C.; Vernet, T. Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol. Rev. 2008, 32, 361–385. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; MacDonald, U.; Beanan, J.M.; Olson, R.; MacDonald, I.J.; Sauberan, S.L.; Luke, N.R.; Schultz, L.W.; Umland, T.C. Penicillin-binding protein 7/8 contributes to the survival of Acinetobacter baumannii in vitro and in vivo. J. Infect. Dis. 2009, 199, 513–521. [Google Scholar] [CrossRef]
- Russo, T.A.; Carlino-MacDonald, U.; Alvarado, C.L.; Davies, C.J.; Barnes, O.; Trivedi, G.; Mathur, P.; Hutson, A.; Adams, F.G.; Zang, M.; et al. Penicillin Binding Protein 7/8 Is a Potential Drug Target in Carbapenem-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2023, 67, e0103322. [Google Scholar] [CrossRef]
- Kimura, Y.; Matsunaga, H.; Vaara, M. Polymyxin B octapeptide and polymyxin B heptapeptide are potent outer membrane permeability-increasing agents. J. Antibiot. 1992, 45, 742–749. [Google Scholar] [CrossRef]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef]
- Zhou, J.; Qian, Y.; Lang, Y.; Zhang, Y.; Tao, X.; Moya, B.; Sayed, A.R.M.; Landersdorfer, C.B.; Shin, E.; Werkman, C.; et al. Comprehensive stability analysis of 13 beta-lactams and beta-lactamase inhibitors in in vitro media, and novel supplement dosing strategy to mitigate thermal drug degradation. Antimicrob. Agents Chemother. 2024, 68, e0139923. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhou, W.; Zhou, D.; Li, J.; Al-Huniti, N. Evaluation of Aztreonam Dosing Regimens in Patients With Normal and Impaired Renal Function: A Population Pharmacokinetic Modeling and Monte Carlo Simulation Analysis. J. Clin. Pharmacol. 2017, 57, 336–344. [Google Scholar] [CrossRef]
- Lodise, T.P.; Smith, N.M.; O’Donnell, N.; Eakin, A.E.; Holden, P.N.; Boissonneault, K.R.; Zhou, J.; Tao, X.; Bulitta, J.B.; Fowler, V.G.; et al. Determining the optimal dosing of a novel combination regimen of ceftazidime/avibactam with aztreonam against NDM-1-producing Enterobacteriaceae using a hollow-fibre infection model. J. Antimicrob. Chemother. 2020, 75, 2622–2632. [Google Scholar] [CrossRef]
- van Hasselt, J.G.; Rizk, M.L.; Lala, M.; Chavez-Eng, C.; Visser, S.A.; Kerbusch, T.; Danhof, M.; Rao, G.; van der Graaf, P.H. Pooled population pharmacokinetic model of imipenem in plasma and the lung epithelial lining fluid. Br. J. Clin. Pharmacol. 2016, 81, 1113–1123. [Google Scholar] [CrossRef]
- Turnidge, J.D. The pharmacodynamics of beta-lactams. Clin. Infect. Dis. 1998, 27, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.M.; Lenhard, J.R.; Boissonneault, K.R.; Landersdorfer, C.B.; Bulitta, J.B.; Holden, P.N.; Forrest, A.; Nation, R.L.; Li, J.; Tsuji, B.T. Using machine learning to optimize antibiotic combinations: Dosing strategies for meropenem and polymyxin B against carbapenem-resistant Acinetobacter baumannii. Clin. Microbiol. Infect. 2020, 26, 1207–1213. [Google Scholar] [CrossRef]
- Lenhard, J.R.; Bulman, Z.P. Inoculum effect of beta-lactam antibiotics. J. Antimicrob. Chemother. 2019, 74, 2825–2843. [Google Scholar] [CrossRef]
- Luna, B.M.; Ulhaq, A.; Yan, J.; Pantapalangkoor, P.; Nielsen, T.B.; Davies, B.W.; Actis, L.A.; Spellberg, B. Selectable Markers for Use in Genetic Manipulation of Extensively Drug-Resistant (XDR) Acinetobacter baumannii HUMC1. mSphere 2017, 2, e00140-17. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P.; Lomaestro, B.M.; Drusano, G.L.; Society of Infectious Diseases, P. Application of antimicrobial pharmacodynamic concepts into clinical practice: Focus on beta-lactam antibiotics: Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 2006, 26, 1320–1332. [Google Scholar] [CrossRef]
- Coleman, K.; Levasseur, P.; Girard, A.M.; Borgonovi, M.; Miossec, C.; Merdjan, H.; Drusano, G.; Shlaes, D.; Nichols, W.W. Activities of ceftazidime and avibactam against beta-lactamase-producing Enterobacteriaceae in a hollow-fiber pharmacodynamic model. Antimicrob. Agents Chemother. 2014, 58, 3366–3372. [Google Scholar] [CrossRef] [PubMed]
- Bulitta, J.B.; Ly, N.S.; Yang, J.C.; Forrest, A.; Jusko, W.J.; Tsuji, B.T. Development and qualification of a pharmacodynamic model for the pronounced inoculum effect of ceftazidime against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2009, 53, 46–56. [Google Scholar] [CrossRef]
- Gumbo, T.; Louie, A.; Deziel, M.R.; Parsons, L.M.; Salfinger, M.; Drusano, G.L. Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling. J. Infect. Dis. 2004, 190, 1642–1651. [Google Scholar] [CrossRef]
- Sandri, A.M.; Landersdorfer, C.B.; Jacob, J.; Boniatti, M.M.; Dalarosa, M.G.; Falci, D.R.; Behle, T.F.; Bordinhao, R.C.; Wang, J.; Forrest, A.; et al. Population pharmacokinetics of intravenous polymyxin B in critically ill patients: Implications for selection of dosage regimens. Clin. Infect. Dis. 2013, 57, 524–531. [Google Scholar] [CrossRef]
Parameter | Description | Unit | Value (RSE%) |
---|---|---|---|
LOGCFUmax | Maximum carrying capacity concentration | Log10CFU/mL | 8.20 (0.91%) |
LOGINOC | Starting inoculum concentration | Log10CFU/mL | 6.71 (0.38%) |
LOGMUTR | Population mutation frequency | - | 5.03 (0.21%) |
MGTS | Mean growth time of susceptible (S) subpopulation | min | 75.3 (0.51%) |
MGTR | Mean growth time of resistant (R) subpopulation | min | 46.4 (1.06%) |
Kmax,S,MER | Maximal killing of (S) subpopulation by meropenem | h−1 | 2.09 (2.96%) |
Kmax,S,IMI | Maximal killing of (S) subpopulation by imipenem | h−1 | 1.56 (2.54%) |
Kmax,S,ATM | Maximal killing of (S) subpopulation by aztreonam | h−1 | 1.12 (0.98%) |
Kmax,S,CEF | Maximal killing of (S) subpopulation by ceftazidime/avibactam | h−1 | 1.52 (3.12%) |
Kmax,S,PMB | Maximal killing of (S) subpopulation by polymyxin B | h−1 | 2.98 (1.11%) |
Kmax,R,MER | Maximal killing of (R) subpopulation by meropenem | h−1 | 1.13 (2.01%) |
Kmax,R,IMI | Maximal killing of (R) subpopulation by imipenem | h−1 | 0.83 (1.90%) |
Kmax,R,ATM | Maximal killing of (R) subpopulation by aztreonam | h−1 | 0.76 (1.60%) |
Kmax,R,CEF | Maximal killing of (R) subpopulation by ceftazidime/avibactam | h−1 | 0.89 (1.97%) |
Kmax,R,PMB | Maximal killing of (R) subpopulation by polymyxin B | h−1 | 1.12 (0.84%) |
KC50,MER | Meropenem concentration for 50% of maximal killing of population | mg/L | 47.6 (9.42%) |
KC50,IMI | Imipenem concentration for 50% of maximal killing of population | mg/L | 16.8 (10.6%) |
KC50,ATM | Aztreonam concentration for 50% of maximal killing of population | mg/L | 78.6 (14.4%) |
KC50,CEF | Ceftazidime/avibactam concentration for 50% of maximal killing of population | mg/L | 76.0 (10.8%) |
KC50,PMB | Polymyxin B concentration for 50% of maximal killing of population | mg/L | 1.00 (0.34%) |
βKC50,MER | Effect of PBP7/8 knockout on KC50 for meropenem | - | −0.80 (13.0%) |
Calculated KC50 of meropenem in PBP7/8 knockout | mg/L | 21.4 | |
βKC50,IMI | Effect of PBP7/8 knockout on KC50 for imipenem | - | −1.10 (10.4%) |
Calculated KC50 of imipenem in PBP7/8 knockout | mg/L | 6.6 | |
βKC50,ATM | Effect of PBP7/8 knockout on KC50 for aztreonam | - | −1.02 (19.1%) |
Calculated KC50 of aztreonam in PBP7/8 knockout | mg/L | 28.3 | |
βKC50,CEF | Effect of PBP7/8 knockout on KC50 for ceftazidime/avibactam | - | −0.89 (17.2%) |
Calculated KC50 of ceftazidime/avibactam in PBP7/8 knockout | mg/L | 31.2 | |
βKC50,PMB | Effect of PBP7/8 knockout on KC50 for polymyxin B | - | −0.50 (5.25%) |
Calculated KC50 of polymyxin B in PBP7/8 knockout | mg/L | 0.61 | |
HillMER | Shape parameter on meropenem killing | - | 0.91 (1.46%) |
HillIMI | Shape parameter on imipenem killing | - | 0.88 (1.19%) |
HillATM | Shape parameter on aztreonam killing | - | 0.51 (4.08%) |
HillCER | Shape parameter on ceftazidime/avibactam killing | - | 0.90 (1.99%) |
HillPMB | Shape parameter on polymyxin B killing | - | 0.93 (0.35%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, B.M.; Jin, J.; Sanborn, J.T.; Nguyen, T.D.; Singh, N.; Cheng, C.; Nasief, N.N.; Carlino-MacDonald, U.; Tsuji, B.T.; Zhao, Y.; et al. Pharmacodynamic Evaluation of Adjuvant Targets: Low Molecular Weight PBP7/8 Effects on β-Lactam Activity Against Carbapenem-Resistant Acinetobacter Baumannii. Pharmaceuticals 2025, 18, 918. https://doi.org/10.3390/ph18060918
Ho BM, Jin J, Sanborn JT, Nguyen TD, Singh N, Cheng C, Nasief NN, Carlino-MacDonald U, Tsuji BT, Zhao Y, et al. Pharmacodynamic Evaluation of Adjuvant Targets: Low Molecular Weight PBP7/8 Effects on β-Lactam Activity Against Carbapenem-Resistant Acinetobacter Baumannii. Pharmaceuticals. 2025; 18(6):918. https://doi.org/10.3390/ph18060918
Chicago/Turabian StyleHo, Brian M., Jingxiu Jin, Jacob T. Sanborn, Thomas D. Nguyen, Navaldeep Singh, Christina Cheng, Nader N. Nasief, Ulrike Carlino-MacDonald, Brian T. Tsuji, Yanan Zhao, and et al. 2025. "Pharmacodynamic Evaluation of Adjuvant Targets: Low Molecular Weight PBP7/8 Effects on β-Lactam Activity Against Carbapenem-Resistant Acinetobacter Baumannii" Pharmaceuticals 18, no. 6: 918. https://doi.org/10.3390/ph18060918
APA StyleHo, B. M., Jin, J., Sanborn, J. T., Nguyen, T. D., Singh, N., Cheng, C., Nasief, N. N., Carlino-MacDonald, U., Tsuji, B. T., Zhao, Y., Chen, L., Moya, B., Russo, T. A., & Smith, N. M. (2025). Pharmacodynamic Evaluation of Adjuvant Targets: Low Molecular Weight PBP7/8 Effects on β-Lactam Activity Against Carbapenem-Resistant Acinetobacter Baumannii. Pharmaceuticals, 18(6), 918. https://doi.org/10.3390/ph18060918