Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,655)

Search Parameters:
Keywords = irrigated land

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3363 KiB  
Article
Spatial Heterogeneity of Heavy Metals in Arid Oasis Soils and Its Irrigation Input–Soil Nutrient Coupling Mechanism
by Jiang Liu, Chongbo Li, Jing Wang, Liangliang Li, Junling He and Funian Zhao
Sustainability 2025, 17(15), 7156; https://doi.org/10.3390/su17157156 (registering DOI) - 7 Aug 2025
Abstract
Soil environmental quality in arid oases is crucial for regional ecological security but faces multi-source heavy metal (HM) contamination risks. This study aimed to (1) characterize the spatial distribution of soil HMs (As, Cd, Cr, Cu, Hg, and Zn) in the Ka Shi [...] Read more.
Soil environmental quality in arid oases is crucial for regional ecological security but faces multi-source heavy metal (HM) contamination risks. This study aimed to (1) characterize the spatial distribution of soil HMs (As, Cd, Cr, Cu, Hg, and Zn) in the Ka Shi gar oasis, Xinjiang, (2) quantify the driving effect of irrigation water, and (3) elucidate interactions between HMs, soil properties, and land use types. Using 591 soil and 12 irrigation water samples, spatial patterns were mapped via inverse distance weighting interpolation, with drivers and interactions analyzed through correlation and land use comparisons. Results revealed significant spatial heterogeneity in HMs with no consistent regional trend: As peaked in arable land (5.27–40.20 μg/g) influenced by parent material and agriculture, Cd posed high ecological risk in gardens (max 0.29 μg/g), and Zn reached exceptional levels (412.00 μg/g) in gardens linked to industry/fertilizers. Irrigation water impacts were HM-specific: water contributed to soil As enrichment, whereas high water Cr did not elevate soil Cr (indicating industrial dominance), and Cd/Cu showed no significant link. Interactions with soil properties were regulated by land use: in arable land, As correlated positively with EC/TN and negatively with pH; in gardens, HMs generally decreased with pH, enhancing mobility risk; in forests, SOM adsorption immobilized HMs; in construction land, Hg correlated with SOM/TP, suggesting industrial-organic synergy. This study advances understanding by demonstrating that HM enrichment arises from natural and anthropogenic factors, with the spatial heterogeneity of irrigation water’s driving effect critically regulated by land use type, providing a spatially explicit basis for targeted pollution control and sustainable oasis management. Full article
Show Figures

Figure 1

19 pages, 9248 KiB  
Article
Irrigation Suitability and Interaction Between Surface Water and Groundwater Influenced by Agriculture Activities in an Arid Plain of Central Asia
by Chenwei Tu, Wanrui Wang, Weihua Wang, Farong Huang, Minmin Gao, Yanchun Liu, Peiyao Gong and Yuan Yao
Agriculture 2025, 15(15), 1704; https://doi.org/10.3390/agriculture15151704 - 7 Aug 2025
Abstract
Agricultural activities and dry climatic conditions promote the evaporation and salinization of groundwater in arid areas. Long-term irrigation alters the groundwater circulation and environment in arid plains, as well as its hydraulic connection with surface water. A comprehensive assessment of groundwater irrigation suitability [...] Read more.
Agricultural activities and dry climatic conditions promote the evaporation and salinization of groundwater in arid areas. Long-term irrigation alters the groundwater circulation and environment in arid plains, as well as its hydraulic connection with surface water. A comprehensive assessment of groundwater irrigation suitability and its interaction with surface water is essential for water–ecology–agriculture security in arid areas. This study evaluates the irrigation water quality and groundwater–surface water interaction influenced by agricultural activities in a typical arid plain region using hydrochemical and stable isotopic data from 51 water samples. The results reveal that the area of cultivated land increases by 658.9 km2 from 2000 to 2023, predominantly resulting from the conversion of bare land. Groundwater TDS (total dissolved solids) value exhibits significant spatial heterogeneity, ranging from 516 to 2684 mg/L. Cl, SO42−, and Na+ are the dominant ions in groundwater, with a widespread distribution of brackish water. Groundwater δ18O values range from −9.4‰ to −5.4‰, with the mean value close to surface water. In total, 86% of the surface water samples are good and suitable for agricultural irrigation, while 60% of shallow groundwater samples are marginally suitable or unsuitable for irrigation at present. Groundwater hydrochemistry is largely controlled by intensive evaporation, water–rock interaction, and agricultural activities (e.g., cultivated land expansion, irrigation, groundwater exploitation, and fertilizers). Agricultural activities could cause shallow groundwater salinization, even confined water deterioration, with an intense and frequent exchange between groundwater and surface water. In order to sustainably manage groundwater and maintain ecosystem stability in arid plain regions, controlling cultivated land area and irrigation water amount, enhancing water utilization efficiency, limiting groundwater exploitation, and fully utilizing floodwater resources would be the viable ways. The findings will help to deepen the understanding of the groundwater quality evolution mechanism in arid irrigated regions and also provide a scientific basis for agricultural water management in the context of extreme climatic events and anthropogenic activities. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

7 pages, 1182 KiB  
Comment
Comment on Tzampoglou, P.; Loupasakis, C. Hydrogeological Hazards in Open Pit Coal Mines–Investigating Triggering Mechanisms by Validating the European Ground Motion Service Product with Ground Truth Data. Water 2023, 15, 1474
by Georgios Louloudis, Christos Roumpos, Eleni Mertiri and Petros Kostaridis
Water 2025, 17(15), 2343; https://doi.org/10.3390/w17152343 - 7 Aug 2025
Abstract
The commented paper uses arbitrary and unsubstantiated hypotheses to attribute land subsidence phenomena in the Amyntaion basin to the operations of the Public Power Corporation (PPC) surface coal mine, disregarding, or at least grossly underestimating, the effect of about 600 pumped deep wells [...] Read more.
The commented paper uses arbitrary and unsubstantiated hypotheses to attribute land subsidence phenomena in the Amyntaion basin to the operations of the Public Power Corporation (PPC) surface coal mine, disregarding, or at least grossly underestimating, the effect of about 600 pumped deep wells for irrigation purposes all over the basin. In addition to the huge difference in the pumped quantities of water from the aquifer, ground water table lowering due to the PPC mine has negligible influence at distances over 500 m from the edge of the mine, while the areas examined in the paper are at distances of several kilometers from the edge of the mine. Furthermore, the authors attribute the landslide that occurred in the mine in 2017 to the steep excavation slopes of the mine and the increased groundwater pore pressure due to reduced peripheral pumping, which is completely inaccurate. To build their case, the authors of the commented paper disregard multiple references in research publications on the above issues, as explained in the main text of this discussion. Full article
Show Figures

Figure 1

31 pages, 4260 KiB  
Article
Analysis of Spatiotemporal Characteristics of Global TCWV and AI Hybrid Model Prediction
by Longhao Xu, Kebiao Mao, Zhonghua Guo, Jiancheng Shi, Sayed M. Bateni and Zijin Yuan
Hydrology 2025, 12(8), 206; https://doi.org/10.3390/hydrology12080206 - 6 Aug 2025
Abstract
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall [...] Read more.
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall test, sliding change-point detection, wavelet transform, pixel-scale trend estimation, and linear regression to analyze the spatiotemporal dynamics of global TCWV from 1959 to 2023 and its impacts on agricultural systems, surpassing the limitations of single-method approaches. Results reveal a global TCWV increase of 0.0168 kg/m2/year from 1959–2023, with a pivotal shift in 2002 amplifying changes, notably in tropical regions (e.g., Amazon, Congo Basins, Southeast Asia) where cumulative increases exceeded 2 kg/m2 since 2000, while mid-to-high latitudes remained stable and polar regions showed minimal content. These dynamics escalate weather risks, impacting sustainable agricultural management with irrigation and crop adaptation. To enhance prediction accuracy, we propose a novel hybrid model combining wavelet transform with LSTM, TCN, and GRU deep learning models, substantially improving multidimensional feature extraction and nonstationary trend capture. Comparative analysis shows that WT-TCN performs the best (MAE = 0.170, R2 = 0.953), demonstrating its potential for addressing climate change uncertainties. These findings provide valuable applications for precision agriculture, sustainable water resource management, and disaster early warning. Full article
40 pages, 3335 KiB  
Article
Water User Associations in Drained and Irrigated Areas for More Sustainable Land and Water Management: Experiences from Poland and Ukraine
by Roman Kuryltsiv, Małgorzata Stańczuk-Gałwiaczek and Robert Łuczyński
Sustainability 2025, 17(15), 7100; https://doi.org/10.3390/su17157100 - 5 Aug 2025
Abstract
The level of participation and performance of water user associations (WUAs) in drained and irrigated areas is influenced by many factors. This paper aims to identify the main challenges to the functioning and performance of these associations in Poland and Ukraine using the [...] Read more.
The level of participation and performance of water user associations (WUAs) in drained and irrigated areas is influenced by many factors. This paper aims to identify the main challenges to the functioning and performance of these associations in Poland and Ukraine using the methodology of international comparative analysis. We examined legal, organizational, and financial framework of WUAs performance in Poland and Ukraine based on selected case study areas. The results of the study indicate that creation of WUAs in both countries can be assessed as beneficial for sustainable water development in general. However, it is found that the actions intended to bring benefits can actually exacerbate the problem of drought and water shortages. Research shows that the lack of complete documentation on the layout of the drainage networks plays a huge constraint factor that can lead to problems with controlling the reconstruction of drainage networks and significant deterioration of water relations. Another significant problem is the restriction of the scope of WUA activities in Poland to those types of actions subsidized by the state, while lacking financial resources for other necessary activities. Full article
(This article belongs to the Section Social Ecology and Sustainability)
Show Figures

Figure 1

13 pages, 3187 KiB  
Article
An Approach to Improve Land–Water Salt Flux Modeling in the San Francisco Estuary
by John S. Rath, Paul H. Hutton and Sujoy B. Roy
Water 2025, 17(15), 2278; https://doi.org/10.3390/w17152278 - 31 Jul 2025
Viewed by 261
Abstract
In this case study, we used the Delta Simulation Model II (DSM2) to study the salt balance at the land–water interface in the river delta of California’s San Francisco Estuary. Drainage, a source of water and salt for adjacent channels in the study [...] Read more.
In this case study, we used the Delta Simulation Model II (DSM2) to study the salt balance at the land–water interface in the river delta of California’s San Francisco Estuary. Drainage, a source of water and salt for adjacent channels in the study area, is affected by channel salinity. The DSM2 approach has been adopted by several hydrodynamic models of the estuary to enforce water volume balance between diversions, evapotranspiration and drainage at the land–water interface, but does not explicitly enforce salt balance. We found deviations from salt balance to be quite large, albeit variable in magnitude due to the heterogeneity of hydrodynamic and salinity conditions across the study area. We implemented a procedure that approximately enforces salt balance through iterative updates of the baseline drain salinity boundary conditions (termed loose coupling). We found a reasonable comparison with field measurements of drainage salinity. In particular, the adjusted boundary conditions appear to capture the range of observed interannual variability better than the baseline periodic estimates. The effect of the iterative adjustment procedure on channel salinity showed substantial spatial variability: locations dominated by large flows were minimally impacted, and in lower flow channels, deviations between baseline and adjusted channel salinity series were notable, particularly during the irrigation season. This approach, which has the potential to enhance the simulation of extreme salinity intrusion events (when high channel salinity significantly impacts drainage salinity), is essential for robustly modeling hydrodynamic conditions that pre-date contemporary water management infrastructure. We discuss limitations associated with this approach and recommend that—for this case study—further improvements could best be accomplished through code modification rather than coupling of transport and island water balance models. Full article
(This article belongs to the Special Issue Advances in Coastal Hydrological and Geological Processes)
Show Figures

Figure 1

21 pages, 10615 KiB  
Article
Cultivated Land Quality Evaluation and Constraint Factor Identification Under Different Cropping Systems in the Black Soil Region of Northeast China
by Changhe Liu, Yuzhou Sun, Xiangjun Liu, Shengxian Xu, Wentao Zhou, Fengkui Qian, Yunjia Liu, Huaizhi Tang and Yuanfang Huang
Agronomy 2025, 15(8), 1838; https://doi.org/10.3390/agronomy15081838 - 29 Jul 2025
Viewed by 199
Abstract
Cultivated land quality is a key factor in ensuring sustainable agricultural development. Exploring differences in cultivated land quality under distinct cropping systems is essential for developing targeted improvement strategies. This study takes place in Shenyang City—located in the typical black soil region of [...] Read more.
Cultivated land quality is a key factor in ensuring sustainable agricultural development. Exploring differences in cultivated land quality under distinct cropping systems is essential for developing targeted improvement strategies. This study takes place in Shenyang City—located in the typical black soil region of Northeast China—as a case area to construct a cultivated land quality evaluation system comprising 13 indicators, including organic matter, effective soil layer thickness, and texture configuration. A minimum data set (MDS) was separately extracted for paddy and upland fields using principal component analysis (PCA) to conduct a comprehensive evaluation of cultivated land quality. Additionally, an obstacle degree model was employed to identify the limiting factors and quantify their impact. The results indicated the following. (1) Both MDSs consisted of seven indicators, among which five were common: ≥10 °C accumulated temperature, available phosphorus, arable layer thickness, irrigation capacity, and organic matter. Parent material and effective soil layer thickness were unique to paddy fields, while landform type and soil texture were unique to upland fields. (2) The cultivated land quality index (CQI) values at the sampling point level showed no significant difference between paddy (0.603) and upland (0.608) fields. However, their spatial distributions diverged significantly; paddy fields were dominated by high-grade land (Grades I and II) clustered in southern areas, whereas uplands were primarily of medium quality (Grades III and IV), with broader spatial coverage. (3) Major constraint factors for paddy fields were effective soil layer thickness (21.07%) and arable layer thickness (22.29%). For upland fields, the dominant constraints were arable layer thickness (27.57%), organic matter (25.40%), and ≥10 °C accumulated temperature (23.28%). Available phosphorus and ≥10 °C accumulated temperature were identified as shared constraint factors affecting quality classification in both systems. In summary, cultivated land quality under different cropping systems is influenced by distinct limiting factors. The construction of cropping-system-specific MDSs effectively improves the efficiency and accuracy of cultivated land quality assessment, offering theoretical and methodological support for land resource management in the black soil regions of China. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

24 pages, 2710 KiB  
Article
Spatial and Economic-Based Clustering of Greek Irrigation Water Organizations: A Data-Driven Framework for Sustainable Water Pricing and Policy Reform
by Dimitrios Tsagkoudis, Eleni Zafeiriou and Konstantinos Spinthiropoulos
Water 2025, 17(15), 2242; https://doi.org/10.3390/w17152242 - 28 Jul 2025
Viewed by 338
Abstract
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective [...] Read more.
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective on irrigation water pricing and cost recovery. The findings reveal that organizations located on islands, despite high water costs due to limited rainfall and geographic isolation, tend to achieve relatively strong financial performance, indicating the presence of adaptive mechanisms that could inform broader policy strategies. In contrast, organizations managing extensive irrigable land or large volumes of water frequently show poor cost recovery, challenging assumptions about economies of scale and revealing inefficiencies in pricing or governance structures. The spatial coherence of the clusters underscores the importance of geography in shaping institutional outcomes, reaffirming that environmental and locational factors can offer greater explanatory power than algorithmic models alone. This highlights the need for water management policies that move beyond uniform national strategies and instead reflect regional climatic, infrastructural, and economic variability. The study suggests several policy directions, including targeted infrastructure investment, locally calibrated water pricing models, and performance benchmarking based on successful organizational practices. Although grounded in the Greek context, the methodology and insights are transferable to other European and Mediterranean regions facing similar water governance challenges. Recognizing the limitations of the current analysis—including gaps in data consistency and the exclusion of socio-environmental indicators—the study advocates for future research incorporating broader variables and international comparative approaches. Ultimately, it supports a hybrid policy framework that combines data-driven analysis with spatial intelligence to promote sustainability, equity, and financial viability in agricultural water management. Full article
(This article belongs to the Special Issue Balancing Competing Demands for Sustainable Water Development)
Show Figures

Figure 1

19 pages, 2278 KiB  
Article
Interplay Between Vegetation and Urban Climate in Morocco—Impact on Human Thermal Comfort
by Noura Ed-dahmany, Lahouari Bounoua, Mohamed Amine Lachkham, Mohammed Yacoubi Khebiza, Hicham Bahi and Mohammed Messouli
Urban Sci. 2025, 9(8), 289; https://doi.org/10.3390/urbansci9080289 - 25 Jul 2025
Viewed by 557
Abstract
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as [...] Read more.
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as a function of the surface urban heat island (SUHI) intensity. The analysis is based on outputs from a land surface model (LSM) for the year 2010, integrating high-resolution Landsat and MODIS data to characterize land cover and biophysical parameters across twelve land cover types. Our findings reveal moderate urban–vegetation temperature differences in coastal cities like Tangier (1.8 °C) and Rabat (1.0 °C), where winter vegetation remains active. In inland areas, urban morphology plays a more dominant role: Fes, with a 20% impervious surface area (ISA), exhibits a smaller SUHI than Meknes (5% ISA), due to higher urban heating in the latter. The Atlantic desert city of Dakhla shows a distinct pattern, with a nighttime SUHI of 2.1 °C and a daytime urban cooling of −0.7 °C, driven by irrigated parks and lawns enhancing evapotranspiration and shading. At the regional scale, summer UTIR values remain below one in Tangier-Tetouan-Al Hoceima, Rabat-Sale-Kenitra, and Casablanca-Settat, suggesting that urban conditions generally stay within thermal comfort thresholds. In contrast, higher UTIR values in Marrakech-Safi, Beni Mellal-Khénifra, and Guelmim-Oued Noun indicate elevated heat discomfort. At the city scale, the UTIR in Tangier, Rabat, and Casablanca demonstrates a clear diurnal pattern: it emerges around 11:00 a.m., peaks at 1:00 p.m., and fades by 3:00 p.m. This study highlights the critical role of vegetation in regulating urban surface temperatures and modulating urban–rural thermal contrasts. The UTIR provides a practical, scalable indicator of urban heat stress, particularly valuable in data-scarce settings. These findings carry significant implications for climate-resilient urban planning, optimized energy use, and the design of public health early warning systems in the context of climate change. Full article
Show Figures

Figure 1

20 pages, 7640 KiB  
Article
Land Cover Mapping Using High-Resolution Satellite Imagery and a Comparative Machine Learning Approach to Enhance Regional Water Resource Management
by János Tamás, Angura Louis, Zsolt Zoltán Fehér and Attila Nagy
Remote Sens. 2025, 17(15), 2591; https://doi.org/10.3390/rs17152591 - 25 Jul 2025
Viewed by 275
Abstract
Accurate land cover classification is vital for informed water resource management, especially in irrigation-dependent regions facing increased climate variability. Using fused multi-sensor remote sensing imagery from Landsat 8 and Sentinel-2, this study assesses the effectiveness of three machine learning classifiers: Random Forest (RF), [...] Read more.
Accurate land cover classification is vital for informed water resource management, especially in irrigation-dependent regions facing increased climate variability. Using fused multi-sensor remote sensing imagery from Landsat 8 and Sentinel-2, this study assesses the effectiveness of three machine learning classifiers: Random Forest (RF), Gradient Tree Boosting (GTB), and Naive Bayes (NB) in creating land cover maps for the Tisza-Körös Valley Irrigation System (TIKEVIR) in Hungary. Water bodies, built-up areas, forests, grasslands, and major crops were among the important land cover categories that were classified for the two agricultural seasons (2018 and 2022). RF performed consistently in 2022 and reached its best accuracy in 2018 (OA = 0.87, KC = 0.83, PI = 0.94). While NB’s performance in 2022 remained less consistent, GTB’s performance increased. The findings show that RF works effectively for generating accurate land cover data, providing useful information for regional monitoring, and assisting in water and environmental management decision-making. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

22 pages, 6134 KiB  
Article
The Evaluation of Small-Scale Field Maize Transpiration Rate from UAV Thermal Infrared Images Using Improved Three-Temperature Model
by Xiaofei Yang, Zhitao Zhang, Qi Xu, Ning Dong, Xuqian Bai and Yanfu Liu
Plants 2025, 14(14), 2209; https://doi.org/10.3390/plants14142209 - 17 Jul 2025
Viewed by 313
Abstract
Transpiration is the dominant process driving water loss in crops, significantly influencing their growth, development, and yield. Efficient monitoring of transpiration rate (Tr) is crucial for evaluating crop physiological status and optimizing water management strategies. The three-temperature (3T) model has potential for rapid [...] Read more.
Transpiration is the dominant process driving water loss in crops, significantly influencing their growth, development, and yield. Efficient monitoring of transpiration rate (Tr) is crucial for evaluating crop physiological status and optimizing water management strategies. The three-temperature (3T) model has potential for rapid estimation of transpiration rates, but its application to low-altitude remote sensing has not yet been further investigated. To evaluate the performance of 3T model based on land surface temperature (LST) and canopy temperature (TC) in estimating transpiration rate, this study utilized an unmanned aerial vehicle (UAV) equipped with a thermal infrared (TIR) camera to capture TIR images of summer maize during the nodulation-irrigation stage under four different moisture treatments, from which LST was extracted. The Gaussian Hidden Markov Random Field (GHMRF) model was applied to segment the TIR images, facilitating the extraction of TC. Finally, an improved 3T model incorporating fractional vegetation coverage (FVC) was proposed. The findings of the study demonstrate that: (1) The GHMRF model offers an effective approach for TIR image segmentation. The mechanism of thermal TIR segmentation implemented by the GHMRF model is explored. The results indicate that when the potential energy function parameter β value is 0.1, the optimal performance is provided. (2) The feasibility of utilizing UAV-based TIR remote sensing in conjunction with the 3T model for estimating Tr has been demonstrated, showing a significant correlation between the measured and the estimated transpiration rate (Tr-3TC), derived from TC data obtained through the segmentation and processing of TIR imagery. The correlation coefficients (r) were 0.946 in 2022 and 0.872 in 2023. (3) The improved 3T model has demonstrated its ability to enhance the estimation accuracy of crop Tr rapidly and effectively, exhibiting a robust correlation with Tr-3TC. The correlation coefficients for the two observed years are 0.991 and 0.989, respectively, while the model maintains low RMSE of 0.756 mmol H2O m−2 s−1 and 0.555 mmol H2O m−2 s−1 for the respective years, indicating strong interannual stability. Full article
Show Figures

Figure 1

30 pages, 12494 KiB  
Article
Satellite-Based Approach for Crop Type Mapping and Assessment of Irrigation Performance in the Nile Delta
by Samar Saleh, Saher Ayyad and Lars Ribbe
Earth 2025, 6(3), 80; https://doi.org/10.3390/earth6030080 - 16 Jul 2025
Viewed by 500
Abstract
Water scarcity, exacerbated by climate change, population growth, and competing sectoral demands, poses a major threat to agricultural sustainability, particularly in irrigated regions such as the Nile Delta in Egypt. Addressing this challenge requires innovative approaches to evaluate irrigation performance despite the limitations [...] Read more.
Water scarcity, exacerbated by climate change, population growth, and competing sectoral demands, poses a major threat to agricultural sustainability, particularly in irrigated regions such as the Nile Delta in Egypt. Addressing this challenge requires innovative approaches to evaluate irrigation performance despite the limitations in ground data availability. Traditional assessment methods are often costly, labor-intensive, and reliant on field data, limiting their scalability, especially in data-scarce regions. This paper addresses this gap by presenting a comprehensive and scalable framework that employs publicly accessible satellite data to map crop types and subsequently assess irrigation performance without the need for ground truthing. The framework consists of two parts: First, crop mapping, which was conducted seasonally between 2015 and 2020 for the four primary crops in the Nile Delta (rice, maize, wheat, and clover). The WaPOR v2 Land Cover Classification layer was used as a substitute for ground truth data to label the Landsat-8 images for training the random forest algorithm. The crop maps generated at 30 m resolution had moderate to high accuracy, with overall accuracy ranging from 0.77 to 0.80 in summer and 0.87–0.95 in winter. The estimated crop areas aligned well with national agricultural statistics. Second, based on the mapped crops, three irrigation performance indicators—adequacy, reliability, and equity—were calculated and compared with their established standards. The results reveal a good level of equity, with values consistently below 10%, and a relatively reliable water supply, as indicated by the reliability indicator (0.02–0.08). Average summer adequacy ranged from 0.4 to 0.63, indicating insufficient supply, whereas winter values (1.3 to 1.7) reflected a surplus. A noticeable improvement gradient was observed for all indicators toward the north of the delta, while areas located in the delta’s new lands consistently displayed unfavorable conditions in all indicators. This approach facilitates the identification of regions where agricultural performance falls short of its potential, thereby offering valuable insights into where and how irrigation systems can be strategically improved to enhance overall performance sustainably. Full article
Show Figures

Figure 1

24 pages, 7521 KiB  
Article
Developing a Remote Sensing-Based Approach for Agriculture Water Accounting in the Amman–Zarqa Basin
by Raya A. Al-Omoush, Jawad T. Al-Bakri, Qasem Abdelal, Muhammad Rasool Al-Kilani, Ibraheem Hamdan and Alia Aljarrah
Water 2025, 17(14), 2106; https://doi.org/10.3390/w17142106 - 15 Jul 2025
Viewed by 464
Abstract
In water-scarce regions such as Jordan, accurate tracking of water flows is critical for informed water management. This study applied the Water Accounting Plus (WA+) framework using open-source remote sensing data from the FAO WaPOR portal to develop agricultural water accounting (AWA) for [...] Read more.
In water-scarce regions such as Jordan, accurate tracking of water flows is critical for informed water management. This study applied the Water Accounting Plus (WA+) framework using open-source remote sensing data from the FAO WaPOR portal to develop agricultural water accounting (AWA) for the Amman–Zarqa Basin (AZB) during 2014–2022. Inflows, outflows, and water consumption were quantified using WaPOR and other open datasets. The results showed a strong correlation between WaPOR precipitation (P) and rainfall station data, while comparisons with other remote sensing sources were weaker. WaPOR evapotranspiration (ET) values were generally lower than those from alternative datasets. To improve classification accuracy, a correction of the WaPOR-derived land cover map was performed. The revised map achieved a producer’s accuracy of 15.9% and a user’s accuracy of 86.6% for irrigated areas. Additionally, ET values over irrigated zones were adjusted, resulting in a fivefold improvement in estimates. These corrections significantly enhanced the reliability of key AWA indicators such as basin closure, ET fraction, and managed fraction. The findings demonstrate that the accuracy of P and ET data strongly affects AWA outputs, particularly the estimation of percolation and beneficial water use. Therefore, calibrating remote sensing data is essential to ensure reliable water accounting, especially in agricultural settings where data uncertainty can lead to misleading conclusions. This study recommends the use of open-source datasets such as WaPOR—combined with field validation and calibration—to improve agricultural water resource assessments and support decision making at basin and national levels. Full article
Show Figures

Figure 1

15 pages, 1051 KiB  
Article
Land Use Land Cover (LULC) Mapping for Assessment of Urbanization Impacts on Cropping Patterns and Water Availability in Multan, Pakistan
by Khawaja Muhammad Zakariya, Tahir Sarwar, Hafiz Umar Farid, Raffaele Albano, Muhammad Azhar Inam, Muhammad Shoaib, Abrar Ahmad and Matlob Ahmad
Earth 2025, 6(3), 79; https://doi.org/10.3390/earth6030079 - 14 Jul 2025
Viewed by 974
Abstract
Urbanization is causing a decrease in agricultural land. This leads to changes in cropping patterns, irrigation water availability, and water allowance. Therefore, change in cropping pattern, irrigation water availability, and water allowance were investigated in the Multan region of Pakistan using remote sensing [...] Read more.
Urbanization is causing a decrease in agricultural land. This leads to changes in cropping patterns, irrigation water availability, and water allowance. Therefore, change in cropping pattern, irrigation water availability, and water allowance were investigated in the Multan region of Pakistan using remote sensing and GIS techniques. The multi-temporal Landsat images with 30 m resolution were acquired for both Rabi (winter) and Kharif (summer) seasons for the years of 1988, 1999 and 2020. The image processing tasks including layer stacking, sub-setting, land use/land cover (LULC) classification, and accuracy assessment were performed using ERDAS Imagine (2015) software. The LULC maps showed a considerable shift of orchard area to urban settlements and other crops. About 82% of orchard areas have shifted to urban settlements and other crops from 1988 to 2020. The LULC maps for Kharif season indicated that cropped areas for cotton have decreased by 42.5% and the cropped areas for rice have increased by 718% in the last 32 years (1988–2020). During the rabi season, the cropped areas for wheat (Triticum aestivum L.) have increased by 27% from 1988 to 2020. The irrigation water availability and water allowance have increased up to 125 and 110% due to decrease in agricultural land, respectively. The overall average accuracies were found as 87 and 89% for Rabi and Kharif crops, respectively. The LULC mapping technique may be used to develop a decision support system for evaluating the changes in cropping pattern and their impacts on net water availability and water allowances. Full article
Show Figures

Figure 1

23 pages, 10215 KiB  
Article
A Simplified Sigmoid-RH Model for Evapotranspiration Estimation Across Mainland China from 2001 to 2018
by Jiahui Fan, Yunjun Yao, Yajie Li, Lu Liu, Zijing Xie, Xiaotong Zhang, Yixi Kan, Luna Zhang, Fei Qiu, Jingya Qu and Dingqi Shi
Forests 2025, 16(7), 1157; https://doi.org/10.3390/f16071157 - 13 Jul 2025
Viewed by 274
Abstract
Accurate terrestrial evapotranspiration (ET) estimation is crucial for understanding land–atmosphere interactions, evaluating ecosystem functions, and supporting water resource management, particularly across climatically diverse regions. To address the limitations of traditional ET models, we propose a simple yet robust Sigmoid-RH model that characterizes the [...] Read more.
Accurate terrestrial evapotranspiration (ET) estimation is crucial for understanding land–atmosphere interactions, evaluating ecosystem functions, and supporting water resource management, particularly across climatically diverse regions. To address the limitations of traditional ET models, we propose a simple yet robust Sigmoid-RH model that characterizes the nonlinear relationship between relative humidity and ET. Unlike conventional approaches such as the Penman–Monteith or Priestley–Taylor models, the Sigmoid-RH model requires fewer inputs and is better suited for large-scale applications where data availability is limited. In this study, we applied the Sigmoid-RH model to estimate ET over mainland China from 2001 to 2018 by using satellite remote sensing and meteorological reanalysis data. Key driving inputs included air temperature (Ta), net radiation (Rn), relative humidity (RH), and the normalized difference vegetation index (NDVI), all of which are readily available from public datasets. Validation at 20 flux tower sites showed strong performance, with R-square (R2) ranging from 0.26 to 0.93, Root Mean Squard Error (RMSE) from 0.5 to 1.3 mm/day, and Kling-Gupta efficiency (KGE) from 0.16 to 0.91. The model performed best in mixed forests (KGE = 0.90) and weakest in shrublands (KGE = 0.27). Spatially, ET shows a clear increasing trend from northwest to southeast, closely aligned with climatic zones, with national mean annual ET of 560 mm/yr, ranging from less than 200 mm/yr in arid zones to over 1100 mm/yr in the humid south. Seasonally, ET peaked in summer due to monsoonal rainfall and vegetation growth, and was lowest in winter. Temporally, ET declined from 2001 to 2009 but increased from 2009 to 2018, influenced by changes in precipitation and NDVI. These findings confirm the applicability of the Sigmoid-RH model and highlight the importance of hydrothermal conditions and vegetation dynamics in regulating ET. By improving the accuracy and scalability of ET estimation, this model can provide practical implications for drought early warning systems, forest ecosystem management, and agricultural irrigation planning under changing climate conditions. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

Back to TopTop