Land Cover Mapping Using High-Resolution Satellite Imagery and a Comparative Machine Learning Approach to Enhance Regional Water Resource Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Workflow Description
2.2.1. Harmonization of Landsat 8 Imagery to the Sentinel-2 Scale
2.2.2. Spectral Indexing
2.2.3. Integration of Spectral Indices, Reference Data, and Machine Learning Classifiers
2.2.4. Overall and Interclass Accuracy Evaluation
2.3. Post Classification Analysis
3. Results
3.1. Dominant Land Use Categories in the Test Site
3.2. Land Cover Classification Performance Comparison
3.3. Land Cover Dynamics in the Test Site Between the Two Cropping Reference Periods of 2018 and 2022
3.4. Comparison of the Machine Learning Classification Results with the TIKEVIR Reference Data
4. Discussions
4.1. The Efficiency of Machine Learning Classifiers in Mapping Land Cover
4.2. Class-Specific Classification Challenges
4.3. Limitations of the Model and Class Imbalance
4.4. Dynamics of Land Use Change and Intensification of Agriculture
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Slade, R., Connors, S., van Diemen, R., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; Report released on 8 August 2019; Available online: https://www.ipcc.ch/site/assets/uploads/sites/4/2022/11/SRCCL_Full_Report.pdf (accessed on 1 January 2025).
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point (SOLAW 2021); FAO eBooks: Rome, Italy, 2021; Report released on 9 December 2021. [Google Scholar] [CrossRef]
- Van Daalen, K.R.; Tonne, C.; Semenza, J.C.; Rocklöv, J.; Markandya, A.; Dasandi, N.; Jankin, S.; Achebak, H.; Ballester, J.; Bechara, H.; et al. The 2024 Europe report of the Lancet Countdown on health and climate change: Unprecedented warming demands unprecedented action. Lancet Public Health 2024, 9, e495–e522. [Google Scholar] [CrossRef]
- Lovejoy, T.E.; Nobre, C. Amazon Tipping Point. Sci. Adv. 2018, 4, eaat2340. [Google Scholar] [CrossRef] [PubMed]
- Shah, T. Groundwater Governance and Irrigated Agriculture; (No. 19); Global Water Partnership (GWP): Stockholm, Sweden, 2014; pp. 1–68. [Google Scholar]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef] [PubMed]
- Shit, P.K.; Adhikary, P.P.; Bera, B.; Rajput, V.D. Resilient and sustainable water management in agriculture. Environ. Sci. Pollut. Res. 2024, 31, 54020–54025. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Tamás, J. Noninvasive water stress assessment methods in orchards. Communications in Soil Science and Plant Analysis 2012, 44, 366–376. [Google Scholar] [CrossRef]
- Magyar, T.; Fehér, Z.; Buday-Bódi, E.; Tamás, J.; Nagy, A. Modeling of soil moisture and water fluxes in a maize field for the optimization of irrigation. Comput. Electron. Agric. 2023, 213, 108159. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Luo, Y.; Luedeling, E.; Zhang, M. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J. Hydrol. 2009, 374, 16–29. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modelling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 619–620, 1394–1408. [Google Scholar] [CrossRef]
- Ronczyk, L.; Zelenka-Hegyi, A.; Török, G.; Orbán, Z.; Defilippi, M.; Kovács, I.P.; Kovács, D.M.; Burai, P.; Pasquali, P. Nationwide, operational Sentinel-1 based INSAR monitoring system in the cloud for strategic water facilities in Hungary. Remote Sens. 2022, 14, 3251. [Google Scholar] [CrossRef]
- Fehérváry, I.; Kiss, T. Identification of Riparian Vegetation Types with Machine Learning Based on LiDAR Point-Cloud Made Along the Lower Tisza’s Floodplain. J. Environ. Geogr. 2020, 13, 53–61. [Google Scholar] [CrossRef]
- Zlinszky, A.; Mücke, W.; Lehner, H.; Briese, C.; Pfeifer, N. Categorizing wetland vegetation by airborne laser scanning on Lake Balaton and Kis-Balaton, Hungary. Remote Sens. 2012, 4, 1617–1650. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2011, 67, 93–104. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.Q.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2010, 66, 247–259. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Zhang, H. The Optimality of Naive Bayes. In Proceedings of the 17th International Florida Artificial Intelligence Research Society Conference, Menlo Park, CA, USA, 12–14 May 2004; pp. 562–567. [Google Scholar]
- Rumelhart, D.E.; McClelland, J.L. Parallel Distributed Processing; The MIT Press: Cambridge, MA, USA, 1986. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Rezaee, M.; Mohammadimanesh, F.; Zhang, Y. Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery. Remote Sens. 2018, 10, 1119. [Google Scholar] [CrossRef]
- Ahmad, A.; Sakidin, H.; Sari, M.Y.A.; Amin, A.R.M.; Sufahani, S.F.; Rasib, A.W. Naïve Bayes Classification of High-Resolution aerial Imagery. Int. J. Adv. Comput. Sci. Appl. 2021, 12. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Guizani, D.; Tamás, J.; Pásztor, D.; Nagy, A. Refining Land Cover Classification and Change Detection for Urban Water Management using Comparative Machine Learning Approach. Environ. Chall. 2025, 19, 101118. [Google Scholar] [CrossRef]
- Csajbók, J.; Buday-Bódi, E.; Nagy, A.; Fehér, Z.Z.; Tamás, A.; Virág, I.C.; Bojtor, C.; Forgács, F.; Vad, A.M.; Kutasy, E. Multispectral Analysis of small Plots Based on Field and Remote Sensing Surveys—A Comparative Evaluation. Sustainability 2022, 14, 3339. [Google Scholar] [CrossRef]
- Cegielska, K.; Noszczyk, T.; Kukulska, A.; Szylar, M.; Hernik, J.; Dixon-Gough, R.; Jombach, S.; Valánszki, I.; Kovács, K.F. Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland. Land Use Policy 2018, 78, 1–18. [Google Scholar] [CrossRef]
- Túri, N.; Körösparti, J.; Kajári, B.; Kerezsi, G.; Zain, M.; Rakonczai, J.; Bozán, C. Spatial assessment of the inland excess water presence on subsurface drained areas in the Körös Interfluve (Hungary). Agrokémia És Talajt. 2022, 71, 23–42. [Google Scholar] [CrossRef]
- Tamás, J.; Nagy, A.; Kiss, N.É. Területi és települési vízgazdálkodás integrációs feladatainak áttekintése a Tisza-Körös völgyi Együttműködő Vízgazdálkodási Rendszer (TIKEVIR) hatásterületén. Hidrológiai Közlöny 2024, 104, 63–67. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Ding, Y.; Feng, H.; Zou, B. Remote Sensing-Based Estimation on hydrological response to land use and cover change. Forests 2022, 13, 1749. [Google Scholar] [CrossRef]
- Szabó, M.; Bozsoki, F. Városi barnamezős területek megújításának hatása környezeti, társadalmi és gazdasági szempontból. Environmental, Social, and Economic Impacts of the Renewal of Urban Brownfield Areas. Magyar Tudomány 2024. [Google Scholar] [CrossRef]
- Mizik, T.; Rádai, Z.M. The significance of the Hungarian wheat production in relation to the Common Agricultural Policy. Rev. Agric. Rural. Dev. 2021, 10, 44–51. [Google Scholar] [CrossRef]
- Lescesen, I.; Dolinaj, D.; Pantelic, M.; Telbisz, T.; Varga, G. Hydrological drought assessment of the Tisza River. J. Geogr. Inst. Jovan Cvijic SASA 2020, 70, 89–100. [Google Scholar] [CrossRef]
- Vizi, D.B. Hydrological aspects of the low-water period of 2022 on the lowland section of the Tisza River. Műszaki Katonai Közlöny 2023, 33, 103–112. [Google Scholar] [CrossRef]
- USGS Landsat 8 Collection 2 Tier 1 TOA Reflectance. Google for Developers. 2021. Available online: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_TOA (accessed on 1 January 2025).
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Image and Signal Processing for Remote Sensing XXIII; SPIE: Bellingham, WA, USA, 2017; Volume 10427, pp. 37–48. [Google Scholar]
- European Space Agency (ESA). Sentinel-2 MSI: Multispectral Instrument, Level 2A. 2017. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR (accessed on 1 January 2025).
- D’Andrimont, R.; Verhegghen, A.; Lemoine, G.; Kempeneers, P.; Meroni, M.; Van Der Velde, M. From parcel to continental scale—A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations. Remote Sens. Environ. 2021, 266, 112708. [Google Scholar] [CrossRef]
- Ghassemi, B.; Dujakovic, A.; Żółtak, M.; Immitzer, M.; Atzberger, C.; Vuolo, F. Designing a European-Wide crop type mapping approach based on machine learning algorithms using LUCAS field survey and Sentinel-2 data. Remote Sens. 2022, 14, 541. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.E.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the 3rd ERTS Symposium, NASA SP-351, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Kaufman, Y.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Zhen, Z.; Chen, S.; Yin, T.; Chavanon, E.; Lauret, N.; Guilleux, J.; Henke, M.; Qin, W.; Cao, L.; Li, J.; et al. Using the negative soil adjustment Factor of Soil Adjusted Vegetation Index (SAVI) to resist saturation effects and estimate leaf area Index (LAI) in dense vegetation areas. Sensors 2021, 21, 2115. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Van Rijsbergen, C.J. Information Retrieval, 2nd ed.; Butterworths: Waltham, MA, USA, 1979. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Pontius, R.; Schneider, L.C. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 239–248. [Google Scholar] [CrossRef]
- Feinstein, A.R.; Cicchetti, D.V. High agreement but low Kappa: I. the problems of two paradoxes. J. Clin. Epidemiol. 1990, 43, 543–549. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Foerster, S.; Kaden, K.; Foerster, M.; Itzerott, S. Crop type mapping using spectral–temporal profiles and phenological information. Comput. Electron. Agric. 2012, 89, 30–40. [Google Scholar] [CrossRef]
- He, N.H.; Garcia, E. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Zhang, L.; Wang, Z. Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: A comprehensive review. Wiley Interdiscip. Rev. Water 2020, 8, e1487. [Google Scholar] [CrossRef]
Sensor | Band | Color Description | Wavelength (µm) | Resolution (m) |
---|---|---|---|---|
Landsat 8 | B2 | Blue | 0.482 | 30 |
B3 | Green | 0.561 | 30 | |
B4 | Red | 0.655 | 30 | |
B5 | Near-Infrared (NIR) | 0.865 | 30 | |
B6 | Shortwave infrared 1 (SWIR—1) | 1.609 | 30 | |
B7 | Shortwave infrared 2 (SWIR—2) | 2.201 | 30 | |
Sentinel-2 | B2 | Blue | 0.49 | 10 |
B3 | Green | 0.56 | 10 | |
B4 | Red | 0.665 | 10 | |
B8 | Near-Infrared (NIR) | 0.842 | 10 | |
B11 | Shortwave infrared 1 (SWIR—1) | 1.61 | 20 | |
B12 | Shortwave infrared 2 (SWIR—2) | 2.19 | 20 |
Band | Conversion | Scale Factor (Fx) |
---|---|---|
Blue | OLI(B2)—MSI (B2) | 1.05 |
Green | OLI(B3)—MSI (B3) | 1.03 |
Red | OLI(B4)—MSI (B4) | 1 |
NIR | OLI(B5)—MSI (B8) | 0.98 |
SWIR I | OLI(B6)—MSI (B11) | 0.97 |
SWIR 2 | OLI(B7)—MSI (B12) | 0.96 |
Index | Description | Formulae Used | References |
---|---|---|---|
NDVI | Normalized Difference Vegetation Index | (NIR − Red)/(NIR + Red) | Rouse et al. [48] |
GNDVI | Green Normalized Difference Vegetation Index | (NIR − Green)/(NIR + Green) | Gitelson et al. [45] |
ARVI | Atmospheric Resistant Vegetation Index | (NIR − (Red − (1 ∗ (Blue − Red))))/(NIR + (Red − (1 ∗ (Blue − Red)))) | Kaufman and Tanre [50] |
SAVI | Soil-Adjusted Vegetation Index | ((NIR − Red) ∗ (1 + 0.5)/(NIR + Red + 0.5) | Huete [51] |
NDWI | Normalized Difference Water Index | (NIR − SWIR1)/(NIR + SWIR1) | Mcfeeters [52] |
Abbreviation | Accuracy Metric | Formulae Used | References | |
---|---|---|---|---|
PA | Producers’ Accuracy/Recall | = | Congalton [55] | (3) |
UA | Users’ Accuracy/Precision | = | Congalton [55] | (4) |
F1 score | F1 score | = 2 · | Van Rijsbergen [56] | (5) |
OA | Overall Accuracy | = | Foody [57] | (6) |
KC | Kappa Coefficient | = | Cohen [58] | (7) |
PI | Pontius Index | = 1 − | Pontius and Schneider [59] | (8) |
2018 | 2022 | |||||
---|---|---|---|---|---|---|
OA | KC | PI | OA | KC | PI | |
RF | 0.87 | 0.83 | 0.94 | 0.82 | 0.78 | 0.86 |
GTB | 0.81 | 0.76 | 0.97 | 0.84 | 0.8 | 0.90 |
NB | 0.61 | 0.52 | 0.82 | 0.75 | 0.69 | 0.95 |
2018 | 2022 | ||||||
---|---|---|---|---|---|---|---|
Class | PA | UA | F1 Score | PA | UA | F1 Score | |
RF | Water bodies | 1 | 1 | 1 | 1 | 1 | 1 |
Built- up | 0.72 | 0.87 | 0.79 | 0.69 | 1 | 0.82 | |
Mixed Forests | 1 | 0.89 | 0.94 | 1 | 1 | 1 | |
Corn | 0.8 | 0.89 | 0.76 | 1 | 0.71 | 0.83 | |
Sunflower | 0.67 | 0.67 | 0.8 | 0 | 0 | 0 | |
Winter wheat | 1 | 1 | 1 | 0.75 | 0.75 | 0.75 | |
Grassland | 1 | 0.88 | 0.94 | 0.93 | 0.7 | 0.8 | |
Others | 1 | 1 | 1 | 0.5 | 1 | 0.67 | |
GTB | Water bodies | 1 | 1 | 1 | 1 | 0.83 | 0.91 |
Built- up | 0.72 | 0.76 | 0.74 | 0.85 | 1 | 0.92 | |
Mixed Forests | 1 | 1 | 1 | 1 | 1 | 1 | |
Corn | 0.8 | 0.89 | 0.84 | 1 | 0.71 | 0.83 | |
Sunflower | 0.5 | 0.38 | 0.43 | 0 | 0 | 0 | |
Autumn wheat | 0.5 | 1 | 0.67 | 0.5 | 1 | 0.67 | |
Grassland | 0.91 | 0.91 | 0.91 | 0.87 | 0.76 | 0.81 | |
Others | 1 | 0.5 | 0.67 | 0.67 | 0.8 | 0.73 | |
NB | Water bodies | 1 | 1 | 1 | 1 | 1 | 1 |
Built- up | 0.61 | 0.79 | 0.69 | 0.77 | 0.83 | 0.8 | |
Mixed Forests | 0.88 | 0.78 | 0.83 | 0.67 | 0.33 | 0.44 | |
Corn | 0.7 | 0.88 | 0.78 | 0.4 | 0.67 | 0.5 | |
Sunflower | 0.33 | 0.13 | 0.19 | 0 | 0 | 0 | |
Winter wheat | 0.5 | 1 | 0.67 | 0.75 | 0.75 | 0.75 | |
Grassland | 0.57 | 0.81 | 0.67 | 0.73 | 0.73 | 0.73 | |
Others | 0 | 0 | 0 | 0.83 | 0.83 | 0.83 |
2018 | 2022 | ||||||
---|---|---|---|---|---|---|---|
RF | GTB | NB | RF | GTB | NB | ||
Area (Sq. Km) | Water Bodies | 57.0 | 59.1 | 52.7 | 57.8 | 109.0 | 52.8 |
Built-up | 397.2 | 533.1 | 282.3 | 433.7 | 375.3 | 626.4 | |
Mixed Forests | 226.0 | 210.9 | 272.3 | 193.4 | 131.1 | 348.8 | |
Corn | 774.4 | 807.1 | 607.7 | 996.5 | 660.8 | 656.6 | |
Sunflower | 164.0 | 234.7 | 873.3 | 83.8 | 70.8 | 206.1 | |
Winter Wheat | 335.8 | 317.5 | 270.8 | 510.5 | 427.8 | 653.2 | |
Grassland | 2150.2 | 1928.8 | 1357.4 | 1693.8 | 2128.3 | 941.8 | |
Others | 7.2 | 20.5 | 395.1 | 142.1 | 208.6 | 625.9 | |
Total (4111.6) | |||||||
% cover | Water Bodies | 1.4 | 1.4 | 1.3 | 1.4 | 2.7 | 1.3 |
Built-up | 9.7 | 13.0 | 6.9 | 10.5 | 9.1 | 15.2 | |
Mixed Forests | 5.5 | 5.1 | 6.6 | 4.7 | 3.2 | 8.5 | |
Corn | 18.8 | 19.6 | 14.8 | 24.2 | 16.1 | 16.0 | |
Sunflower | 4 | 5.7 | 21.2 | 2.0 | 1.7 | 5.0 | |
Winter Wheat | 8.2 | 7.7 | 6.6 | 12.4 | 10.4 | 15.9 | |
Grassland | 52.3 | 46.9 | 33.0 | 41.2 | 51.8 | 22.9 | |
Others | 0.2 | 0.5 | 9.6 | 3.5 | 5.1 | 15.2 |
S/No. | Land Use Class | Area (Sq. Km) | % Cover | ||||||
---|---|---|---|---|---|---|---|---|---|
2018 | 2022 | 2018 | 2022 | ||||||
HU-CRI | EU-Crop | HU-CRI | EU-Crop | HU-CRI | EU-Crop | HU-CRI | EU-Crop | ||
1 | Water Bodies | - | - | - | - | - | - | - | - |
2 | Built-up | - | - | - | - | - | - | - | - |
3 | Mixed Forests | 16.53 | - | 29.5 | - | 0.4 | - | 0.7 | - |
4 | Corn | 866.81 | 1053 | 894.9 | 1144.1 | 22.1 | 27.1 | 22.8 | 28.8 |
5 | Sunflower | 458 | 314.4 | 538.7 | 333 | 11.7 | 8.1 | 13.7 | 8.4 |
6 | Winter Wheat | 472 | 431.5 | 483.6 | 598.8 | 12 | 11.1 | 12.3 | 15.1 |
7 | Grassland | 1142.11 | 1244.2 | 1155.3 | 1105.3 | 29.1 | 32.0 | 29.4 | 27.8 |
8 | Others | 972.5 | 843.4 | 829.2 | 792 | 24.8 | 21.7 | 21.1 | 19.9 |
Total Cropped Area | 3928 | 3886.5 | 3931.1 | 3973.2 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamás, J.; Louis, A.; Fehér, Z.Z.; Nagy, A. Land Cover Mapping Using High-Resolution Satellite Imagery and a Comparative Machine Learning Approach to Enhance Regional Water Resource Management. Remote Sens. 2025, 17, 2591. https://doi.org/10.3390/rs17152591
Tamás J, Louis A, Fehér ZZ, Nagy A. Land Cover Mapping Using High-Resolution Satellite Imagery and a Comparative Machine Learning Approach to Enhance Regional Water Resource Management. Remote Sensing. 2025; 17(15):2591. https://doi.org/10.3390/rs17152591
Chicago/Turabian StyleTamás, János, Angura Louis, Zsolt Zoltán Fehér, and Attila Nagy. 2025. "Land Cover Mapping Using High-Resolution Satellite Imagery and a Comparative Machine Learning Approach to Enhance Regional Water Resource Management" Remote Sensing 17, no. 15: 2591. https://doi.org/10.3390/rs17152591
APA StyleTamás, J., Louis, A., Fehér, Z. Z., & Nagy, A. (2025). Land Cover Mapping Using High-Resolution Satellite Imagery and a Comparative Machine Learning Approach to Enhance Regional Water Resource Management. Remote Sensing, 17(15), 2591. https://doi.org/10.3390/rs17152591