Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (763)

Search Parameters:
Keywords = iron gene expression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1108 KB  
Article
Gene Expression Factors Associated with Rubella-Specific Humoral Immunity After a Third MMR Vaccine Dose
by Lara I. Teodoro, Iana H. Haralambieva, Inna G. Ovsyannikova, Krista M. Goergen, Diane E. Grill, Gregory A. Poland and Richard B. Kennedy
Viruses 2025, 17(9), 1154; https://doi.org/10.3390/v17091154 - 23 Aug 2025
Viewed by 155
Abstract
Rubella is typically a mild viral illness, but it can lead to severe complications when contracted during pregnancy, such as pregnancy loss or developmental defects in the fetus (congenital rubella syndrome). Therefore, it is crucial to develop and maintain protective immunity in women [...] Read more.
Rubella is typically a mild viral illness, but it can lead to severe complications when contracted during pregnancy, such as pregnancy loss or developmental defects in the fetus (congenital rubella syndrome). Therefore, it is crucial to develop and maintain protective immunity in women of childbearing age. In this study, we assessed the transcriptional factors associated with rubella-specific immune outcomes (IgG binding antibody and avidity, neutralizing antibody, and memory B cell ELISpot response) following a third MMR vaccine dose in women of reproductive age to identify key factors/signatures impacting the immune response. We identified baseline (Day 0) and differentially expressed (Day 28–Day 0) genes associated with several RV-specific immune outcomes, including the transferrin receptor 2 (TFR2), which is an important factor regulating iron homeostasis and macrophage functional activity, and a close functional homolog of TFR1, the cellular receptor of the New World hemorrhagic fever arenaviruses. We also identified enriched KEGG pathways, “cell adhesion molecules”, “antigen processing and presentation”, “natural killer cell-mediated cytotoxicity”, and “immune network for IgA production”, relevant to immune response priming and immune activation to be associated with RV-specific immune outcomes. This study provides novel insights into potential biomarkers of rubella-specific immunity in women of childbearing age. Full article
(This article belongs to the Special Issue Measles, Mumps, and Rubella)
Show Figures

Figure 1

21 pages, 4747 KB  
Article
Using Integrated Bioinformatics Analysis to Identify Saponin Formosanin C as a Ferroptosis Inducer in Colorectal Cancer with p53 and Oncogenic KRAS
by Hsin-Chih Chen, Ching-Ying Chen, Pao-Yuan Wang, Pin-Yu Su, Shu-Ping Tsai, Chi-Pei Hsu, Hsiao-Sheng Liu, Chi-Ying F. Huang, Wen-Hsing Cheng, Ming-Fen Lee and Chun-Li Su
Antioxidants 2025, 14(8), 1027; https://doi.org/10.3390/antiox14081027 - 21 Aug 2025
Viewed by 143
Abstract
Ferroptosis, a form of cell death, is characterized by lipid peroxidation and is dependent on iron and reactive oxygen species (ROS). Here, through bioinformatics analysis, formosanin C was predicted to be a ferroptosis inducer in colorectal cancer (CRC) by suppressing antioxidation capacity. Indeed, [...] Read more.
Ferroptosis, a form of cell death, is characterized by lipid peroxidation and is dependent on iron and reactive oxygen species (ROS). Here, through bioinformatics analysis, formosanin C was predicted to be a ferroptosis inducer in colorectal cancer (CRC) by suppressing antioxidation capacity. Indeed, formosanin C induced iron accumulation, lipid ROS formation, and ferroptosis in CRC. We found that TP53 and KRAS were the second and third most frequently mutated genes in CRC and were associated with a poor prognosis. Analyses of differentially expressed genes indicated that fatty acid and labile iron levels tended to be higher in CRC than in normal tissues, suggesting the predisposition of CRC cells to ferroptosis. Transcriptomic analyses in CRC patients further identified that wild-type TP53 and mutant KRAS separately favored ferroptosis. Likewise, p53 knockdown rendered HCT 116 cells less sensitive to ferroptosis, and KRAS HT-29 cells were more sensitive to ferroptosis compared with their parental counterparts. Moreover, formosanin C synergistically enhanced chemosensitivity to cisplatin, and this process was mediated by lipid ROS. Overall, our novel gene-expression screening platform allows for the efficient identification of the biological function of novel phytochemicals, and the data suggest that formosanin C is an effective ferroptosis inducer in CRC cells with p53 or oncogenic KRAS. Full article
(This article belongs to the Special Issue Redox Biomarkers in Cancer)
Show Figures

Figure 1

19 pages, 4023 KB  
Article
Ferroptosis as a Therapeutic Avenue in Triple-Negative Breast Cancer: Mechanistic Insights and Prognostic Potential
by Taimoor Riaz, Muhammad Ali Saleem, Muhammad Umar Muzafar Khan, Muhammad Abdul Rehman Rashid and Muhammad Zubair
Biomedicines 2025, 13(8), 2037; https://doi.org/10.3390/biomedicines13082037 - 21 Aug 2025
Viewed by 262
Abstract
Background and Aims: Triple-negative breast cancer (TNBC) is a clinically aggressive malignancy marked by rapid disease progression, limited therapeutic avenues, and high recurrence risk. Ferroptosis an iron-dependent, lipid peroxidation-driven form of regulated cell death that has emerged as a promising therapeutic vulnerability in [...] Read more.
Background and Aims: Triple-negative breast cancer (TNBC) is a clinically aggressive malignancy marked by rapid disease progression, limited therapeutic avenues, and high recurrence risk. Ferroptosis an iron-dependent, lipid peroxidation-driven form of regulated cell death that has emerged as a promising therapeutic vulnerability in oncology. This study delineates the ferroptosis-associated molecular architecture of TNBC to identify key regulatory genes with prognostic and translational significance. Methods: Transcriptomic profiles from the GSE103091 dataset (130 TNBC and 30 normal breast tissue samples) were analyzed to identify ferroptosis-related differentially expressed genes (DEGs) using GEO2R. Protein–protein interaction (PPI) networks were constructed via STRING and GeneMANIA, with functional enrichment performed through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome analyses. Prognostic relevance was evaluated using GEPIA, BC-GenExMiner, and Kaplan–Meier Plotter survival analyses. Results: Six ferroptosis drivers (MAPK1, TLR4, IFNG, ATM, ULK2, and ATF3) and five suppressors (NFS1, GCLC, TP63, CD44, and SRC) were identified alongside HMOX1, a bifunctional regulator with context-dependent pro- and anti-ferroptotic activity. Enrichment analyses revealed significant associations with oxidative stress regulation, autophagy, immune modulation, and tumor progression pathways. Elevated IFNG expression was consistently linked to improve overall, disease-free, and distant metastasis-free survival, underscoring its dual function in antitumor immunity and ferroptosis sensitization. Conclusions: Ferroptosis represents a critical axis in TNBC pathophysiology, with IFNG emerging as both a prognostic biomarker and a viable therapeutic target. These insights provide a mechanistic foundation for integrating ferroptosis-inducing agents with immunotherapeutic modalities to enhance clinical outcomes and overcome therapeutic resistance in TNBC. Full article
Show Figures

Figure 1

23 pages, 4542 KB  
Article
Targeting NRF2 and FSP1 to Overcome Ferroptosis Resistance in TSC2-Deficient and Cancer Cells
by Tasmia Tahsin, Darius K. McPhail, Jesse D. Champion, Mohammad A. M. Alzahrani, Madeleine L. Hilditch, Alexandre Faris-Orr, Brian L. Calver, James G. Cronin, Juan C. Mareque-Rivas, Darren W. Sexton, Stephen Fôn Hughes, Robert Steven Conlan, David Mark Davies and Andrew R. Tee
Cancers 2025, 17(16), 2714; https://doi.org/10.3390/cancers17162714 - 21 Aug 2025
Viewed by 527
Abstract
Background/Objectives: Ferroptosis is an iron-dependent form of regulated cell death driven by lipid peroxidation and holds promise as a therapeutic strategy against cancers with elevated iron metabolism. However, many tumors evade ferroptosis through the upregulation of specialized antioxidant defense mechanisms. Here, we [...] Read more.
Background/Objectives: Ferroptosis is an iron-dependent form of regulated cell death driven by lipid peroxidation and holds promise as a therapeutic strategy against cancers with elevated iron metabolism. However, many tumors evade ferroptosis through the upregulation of specialized antioxidant defense mechanisms. Here, we investigated ferroptosis susceptibility and resistance mechanisms in TSC models and in ovarian and breast cancer cell lines, aiming to identify potential therapeutic targets. Methods: Ferroptosis sensitivity was assessed using RSL3 and erastin. We explored the contribution of ferroptosis defense pathways using inhibitors of NRF2 (ML385) and FSP1 (iFSP1). RNA sequencing was performed to evaluate the expression of ferroptosis resistance genes and to explore NRF2-regulated transcriptional programs. Results: TSC2-deficient cells were resistant to RSL3- and erastin-induced ferroptosis. This resistance correlated with upregulation of ferroptosis defense genes, including NRF2 and its downstream targets. Pharmacological inhibition of NRF2 resensitized TSC2-deficient cells to ferroptosis, confirming a protective role for NRF2. However, FSP1 inhibition did not restore ferroptosis sensitivity in TSC2-deficient angiomyolipoma cells. In contrast, FSP1 knockdown significantly enhanced ferroptosis sensitivity in ovarian (PEO1, PEO4, OVCAR3) and breast (MDA-MB-436) cancer cells. Notably, in MDA-MB-436 cells, FSP1 knockdown was more effective than NRF2 inhibition to enhance ferroptosis sensitivity. FSP1 expression was not regulated by NRF2, suggesting that NRF2-targeted therapies alone may be insufficient to overcome ferroptosis resistance in certain cancer contexts. Conclusions: TSC2-deficient cells resist ferroptosis via an adaptive antioxidant response that protects against elevated iron-mediated lipid peroxidation. Our findings identify NRF2 and FSP1 as key, but mechanistically distinct, regulators of ferroptosis resistance. The differential efficacy of targeting these pathways across cancer types highlights the potential need for patient stratification. Dual targeting of NRF2 and FSP1 may offer an effective therapeutic strategy for iron-dependent, ferroptosis-resistant cancers. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

17 pages, 4158 KB  
Article
Exploring the Role of Ferroptosis in the Pathophysiology and Circadian Regulation of Restless Legs Syndrome
by Maria Paola Mogavero, Giovanna Marchese, Giovanna Maria Ventola, Giuseppe Lanza, Oliviero Bruni, Luigi Ferini-Strambi and Raffaele Ferri
Biomolecules 2025, 15(8), 1184; https://doi.org/10.3390/biom15081184 - 18 Aug 2025
Viewed by 202
Abstract
The study objectives were to investigate the role of ferroptosis, the mechanism linking iron accumulation, oxidative stress, and dopaminergic dysfunction, in restless legs syndrome (RLS), and to explore its connection with circadian regulation, a key feature of RLS and a known modulator of [...] Read more.
The study objectives were to investigate the role of ferroptosis, the mechanism linking iron accumulation, oxidative stress, and dopaminergic dysfunction, in restless legs syndrome (RLS), and to explore its connection with circadian regulation, a key feature of RLS and a known modulator of ferroptosis. We conducted pathway and gene expression analyses in 17 RLS patients and 39 controls, focusing on pathways related to ferroptosis, oxidative stress, iron metabolism, dopaminergic signaling, circadian rhythms, and immune responses. Enrichment analysis, differential gene expression, and cross-pathway gene overlaps were assessed. Ferroptosis and efferocytosis pathways were significantly upregulated in RLS, while oxidative phosphorylation, phosphatidylinositol signaling, PI3K-Akt, FoxO, and adipocytokine pathways were downregulated. The circadian rhythm pathway was markedly suppressed, with 12 circadian genes downregulated, suggesting that circadian disruption may drive ferroptosis activation. Decreased expression of protective pathways, including antioxidant responses and autophagy, was associated with increased iron accumulation, oxidative stress, and inflammation. Dopaminergic synapse genes were upregulated, possibly as a compensatory response to neuronal damage. Several genes overlapped across ferroptosis, circadian, and dopaminergic pathways, indicating a shared pathogenic mechanism. Our findings support a model in which circadian disruption promotes ferroptosis in RLS, contributing to iron overload, oxidative damage, and dopaminergic dysfunction. This pathogenic cascade may also enhance immune activation and inflammation. Circadian regulation and ferroptosis emerge as promising therapeutic targets in RLS. Further studies in larger cohorts are warranted to validate these mechanistic insights. Full article
Show Figures

Graphical abstract

14 pages, 3593 KB  
Article
Spontaneous Emergence of Cefiderocol Resistance in Klebsiella pneumoniae KPC-163: Genomic and Transcriptomic Insights
by Irene Luu, Vyanka Mezcord, Jenny Escalante, German M. Traglia, Marisel R. Tuttobene, Cecilia Rodriguez, Chun Fu Cheng, Quentin Valle, Rajnikant Sharma, Marcelo E. Tolmasky, Robert A. Bonomo, Gauri Rao, Fernando Pasteran and Maria Soledad Ramirez
Antibiotics 2025, 14(8), 832; https://doi.org/10.3390/antibiotics14080832 - 15 Aug 2025
Viewed by 402
Abstract
Background/Objectives: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an urgent public health threat due to its rapid dissemination and resistance to last-line antibiotics. Cefiderocol (FDC), a novel siderophore cephalosporin, targets resistant Gram-negative pathogens by exploiting bacterial iron uptake mechanisms. However, resistance to FDC is emerging [...] Read more.
Background/Objectives: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is an urgent public health threat due to its rapid dissemination and resistance to last-line antibiotics. Cefiderocol (FDC), a novel siderophore cephalosporin, targets resistant Gram-negative pathogens by exploiting bacterial iron uptake mechanisms. However, resistance to FDC is emerging among Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains. This study characterizes a spontaneous FDC-resistant subpopulation (IHC216) derived from a KPC-producing strain (KPNMA216) using comprehensive genomic, transcriptional, and phenotypic analyses. Methods: Given the whole-genome sequencing results, where mutations were identified in genes involved in transcriptional regulation and membrane permeability (ompC) among others, in the present work we further explore their potential implications and conduct a more detailed analysis of the IHC216 genome. A qRT-PCR analysis highlighted significant downregulation of classical siderophore-mediated iron acquisition systems (fepA, cirA, iroN) and upregulation of alternative iron uptake pathways (iucA, fiU), reflecting a switch in iron acquisition strategies. Results: A notable downregulation of blaKPC-163 correlated with restored susceptibility to carbapenems, indicating collateral susceptibility. Altered expressions of pbp2 and pbp3 implicated adaptive changes in cell wall synthesis, potentially affecting FDC resistance mechanisms. Furthermore, enhanced oxidative stress responses via upregulated sodC expression and increased capsule production were observed. Conclusions: These findings underscore the complex interplay of genetic and transcriptional adaptations underlying FDC resistance, highlighting potential therapeutic vulnerabilities. Full article
Show Figures

Figure 1

14 pages, 2952 KB  
Article
Euphorbia hypericifolia Attenuates Citrinin-Induced Oxidative Stress and Maintains Tight Junction Integrity in Porcine Intestinal Epithelial Cells
by Seung Joon Lim, Sangsu Shin, Tae Hyun Kim and Sang In Lee
Int. J. Mol. Sci. 2025, 26(16), 7773; https://doi.org/10.3390/ijms26167773 - 12 Aug 2025
Viewed by 269
Abstract
Citrinin (CTN), a mycotoxin commonly found in contaminated food and animal feed, impairs intestinal barrier integrity through oxidative stress and cytotoxicity. However, its link to ferroptosis, an iron-dependent form of regulated cell death, remains unclear. This study investigated whether CTN induces ferroptosis in [...] Read more.
Citrinin (CTN), a mycotoxin commonly found in contaminated food and animal feed, impairs intestinal barrier integrity through oxidative stress and cytotoxicity. However, its link to ferroptosis, an iron-dependent form of regulated cell death, remains unclear. This study investigated whether CTN induces ferroptosis in intestinal epithelial cells and evaluated the protective role of Euphorbia hypericifolia (EH) against CTN-induced oxidative damage and tight junction (TJ) disruption. Using IPEC-J2 cells exposed to CTN, intracellular ferrous ion (Fe2+) levels, reactive oxygen species (ROS) accumulation, and TJ integrity were assessed using FerroOrange and DCFH-DA staining, RT-qPCR, immunofluorescence, and WST-1 assays. Additionally, a high-throughput screen of 459 natural products identified EH extract as a top candidate in mitigating CTN toxicity. The CTN treatment significantly elevated intracellular Fe2+ and ROS levels, downregulated antioxidant genes (notably CAT), and disrupted ZO-1 expression and TJ morphology in IPEC-J2 cells, all hallmarks of ferroptosis-like cell death. Co-treatment with EH extract effectively reversed these effects, restoring antioxidant gene expression, reducing Fe2+ and ROS accumulation, and preserving TJ structure. Phytochemical profiling of EH extract revealed several bioactive compounds potentially responsible for its protective effects. These findings suggest that CTN induces ferroptosis-related cytotoxicity in IPEC-J2 cells, but EH alleviates this toxicity by modulating oxidative stress and iron homeostasis, supporting its potential use as a natural feed additive for intestinal protection Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

17 pages, 14969 KB  
Article
HO-1 Suppression by Co-Culture-Derived IL-6 Alleviates Ferritinophagy-Dependent Oxidative Stress to Potentiate Myogenic Differentiation
by Mengyuan Zhang, Siyu Liu, Yongheng Wang, Shan Shan and Ming Cang
Cells 2025, 14(16), 1234; https://doi.org/10.3390/cells14161234 - 10 Aug 2025
Viewed by 342
Abstract
Fibro-adipogenic progenitor cells (FAPs) support muscle tissue homeostasis, regulate muscle growth, injury repair, and fibrosis, and activate muscle progenitor cell differentiation to promote regeneration. We aimed to investigate the effects of co-culturing FAPs with muscle satellite cells (MuSCs) on myogenic differentiation. Proteomic profiling [...] Read more.
Fibro-adipogenic progenitor cells (FAPs) support muscle tissue homeostasis, regulate muscle growth, injury repair, and fibrosis, and activate muscle progenitor cell differentiation to promote regeneration. We aimed to investigate the effects of co-culturing FAPs with muscle satellite cells (MuSCs) on myogenic differentiation. Proteomic profiling of co-culture supernatants identified significant DCX, IMP2A, NUDT16L1, SLC38A2, and IL-6 upregulation. Comparative transcriptomics of mono-cultured versus co-cultured MuSCs revealed differential expression of oxidative stress-related genes (HMOX1, ALOX5, GSTM3, TRPM2, PADI1, and CTSL). Pathway enrichment analyses highlighted cell cycle regulation, TNF signaling, and ferroptosis. Gene ontology analysis of MuSCs indicated significant gene enrichment in myosin-related components. Combined transcriptomic and proteomic analyses demonstrated HO-1 downregulation at the transcriptional and translational levels, with altered pathways being predominantly related to myosin filament, muscle system process, and muscle contraction cellular components. HO-1 knockdown reduced intracellular iron accumulation in MuSCs, suppressing iron-dependent autophagy. This alleviated oxidative stress and promoted myogenic differentiation. Exogenous IL-6 (0.1 ng/mL) downregulated HO-1 expression, initiating an identical regulatory cascade, while HO-1 overexpression reversed the IL-6-mediated reduction in the expression of the autophagy markers LC3 and ATG5, suppressing myogenic enhancement. This establishes the co-culture-induced IL-6/HO-1 axis as a core regulator of iron-dependent oxidative stress and autophagy during myogenic differentiation. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Graphical abstract

13 pages, 2351 KB  
Article
Desulfitobacterium elongatum sp. nov. NIT-TF6 Isolated from Trichloroethene-Dechlorinating Culture with Formate
by Udaratta Bhattacharjee, Ryuya Tomita, Li Xie and Naoko Yoshida
Microorganisms 2025, 13(8), 1863; https://doi.org/10.3390/microorganisms13081863 - 9 Aug 2025
Viewed by 423
Abstract
A strictly anaerobic bacterium denoted as strain NIT-TF6 of the genus Desulfitobacterium was isolated from a trichloroethene-dechlorinating culture with formate. Cells were straight rods of 1.6–6 µm long and 0.25–0.5 µm in diameter and used H2, lactate, pyruvate, and malate as [...] Read more.
A strictly anaerobic bacterium denoted as strain NIT-TF6 of the genus Desulfitobacterium was isolated from a trichloroethene-dechlorinating culture with formate. Cells were straight rods of 1.6–6 µm long and 0.25–0.5 µm in diameter and used H2, lactate, pyruvate, and malate as electron donors and thiosulfate and Fe (III)-citrate as electron acceptors. The genome of strain NIT-TF6 was 4.8 Mbp in size and included nine 16S rRNA genes. Phylogenetic analysis based on 16S rRNA sequences showed that NIT-TF6 shared the highest sequence similarity (96.39%) with Desulfitobacterium hafniense DCB-2ᵀ, forming an independent clade in the phylogenetic tree. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain NIT-TF6 and other Desulfitobacterium species ranged from 15.9 to 16.9% and from 71.68 to 72.51%, respectively. These are well below the thresholds for species delineation. A distinguishing feature of strain NIT-TF6 was its possession of both L-lactate dehydrogenase (L-LDH) and D-lactate dehydrogenase (D-LDH), in contrast to other Desulfitobacterium strains that exclusively express D-LDH. Based on the dDDH and ANI results, combined with physiological, phylogenetic, morphological, biochemical, genomic, and metabolic iron-related characteristics, strain NIT-TF6 has been proposed as a novel species within the genus Desulfitobacterium. The name Desulfitobacterium elongatum sp. nov. has been proposed for this strain, with NIT-TF6ᵀ designated as the type strain. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

31 pages, 2319 KB  
Review
Biopharming of Lactoferrin: Current Strategies and Future Prospects
by Rajaravindra Konadaka Sri, Parthasarathi Balasamudram Chandrasekhar, Architha Sirisilla, Qudrathulla Khan Quadri Mohammed, Thejasri Jakkoju, Rajith Reddy Bheemreddy, Tarun Kumar Bhattacharya, Rajkumar Ullengala and Rudra Nath Chatterjee
Pharmaceutics 2025, 17(8), 1023; https://doi.org/10.3390/pharmaceutics17081023 - 7 Aug 2025
Viewed by 652
Abstract
Lactoferrin (LF) is an 80 kDa iron-binding glycoprotein primarily found in milk, saliva, tears, and nasal secretions. LF is well known for its antibacterial and immunomodulatory effects. However, the extraction of LF from milk is inadequate for large-scale therapeutic applications, presenting a challenge [...] Read more.
Lactoferrin (LF) is an 80 kDa iron-binding glycoprotein primarily found in milk, saliva, tears, and nasal secretions. LF is well known for its antibacterial and immunomodulatory effects. However, the extraction of LF from milk is inadequate for large-scale therapeutic applications, presenting a challenge for economic mass production. Recombinant protein expression systems offer a solution to overcome this challenge and efficient production of LF. This review discusses recent progress in the translational research of LF gene transfer and biopharming, focusing on different expression systems such as bacteria, yeast, filamentous fungi, transgenic crops, and animals as well as purification methods. The optimization of expression yields, prospects for genetic engineering, and biotechnology to enhance LF production for biomedical applications are emphasized. This review systematically sourced the literature from 1987 to 2025 from leading scientific databases, including PubMed, Scopus, Web of Science, and Google Scholar. Despite ongoing debates, progress in this field indicates a viable path towards the effective use of LF in therapeutic settings. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

27 pages, 1619 KB  
Review
Epigenetic Mechanisms Governing Nrf2 Expression and Its Role in Ferroptosis
by Linbo Li, Xinjun Liu, Zizhen Si and Xidi Wang
Biomedicines 2025, 13(8), 1913; https://doi.org/10.3390/biomedicines13081913 - 5 Aug 2025
Viewed by 842
Abstract
Ferroptosis is a distinct form of regulated cell death driven by iron-dependent lipid peroxidation participating in various diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a central regulator of cellular redox homeostasis and a key determinant of ferroptosis resistance. Nrf2 activates [...] Read more.
Ferroptosis is a distinct form of regulated cell death driven by iron-dependent lipid peroxidation participating in various diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a central regulator of cellular redox homeostasis and a key determinant of ferroptosis resistance. Nrf2 activates the expression of downstream antioxidant genes to protect cells from oxidative stress and ferroptosis. Consequently, precise regulation of Nrf2 expression is crucial. Recent studies have revealed that complex epigenetic mechanisms involving DNA methylation, histone modifications, and non-coding RNA networks regulate Nrf2 expression. DNA methylation usually suppresses while histone acetylation promotes Nrf2 expression. The influences of histone methylation on NFE2L2 are site- and methylation degree-dependent. m6A modification stabilizes NFE2L2 mRNA to promote Nrf2 expression and thereby inhibit ferroptosis. This article summarizes current understanding of the epigenetic mechanisms controlling Nrf2 expression and Nrf2-mediated ferroptosis pathways and their implications in disease models. The challenges associated with the epigenetic regulation of Nrf2 and future research directions are also discussed. A comprehensive understanding of this regulatory interplay could open new avenues for intervention in ferroptosis-related diseases by fine-tuning cellular redox balance through the epigenetic modulation of Nrf2. Full article
(This article belongs to the Special Issue Oxidative Stress in Health and Disease)
Show Figures

Figure 1

18 pages, 1684 KB  
Article
Data Mining and Biochemical Profiling Reveal Novel Biomarker Candidates in Alzheimer’s Disease
by Annamaria Vernone, Ilaria Stura, Caterina Guiot, Federico D’Agata and Francesca Silvagno
Int. J. Mol. Sci. 2025, 26(15), 7536; https://doi.org/10.3390/ijms26157536 - 4 Aug 2025
Viewed by 296
Abstract
The search for the biomarkers of Alzheimer’s disease (AD) may prove essential in the diagnosis and prognosis of the pathology, and the differential expression of key proteins may assist in identifying new therapeutic targets. In this proof-of-concept (POC) study, a new approach of [...] Read more.
The search for the biomarkers of Alzheimer’s disease (AD) may prove essential in the diagnosis and prognosis of the pathology, and the differential expression of key proteins may assist in identifying new therapeutic targets. In this proof-of-concept (POC) study, a new approach of data mining and matching combined with the biochemical analysis of proteins was applied to AD investigation. Three influential online open databases (UniProt, AlzGene, and Allen Human Brain Atlas) were explored to identify the genes and encoded proteins involved in AD linked to mitochondrial and iron dysmetabolism. The databases were searched using specific keywords to collect information about protein composition, and function, and meta-analysis data about their correlation with AD. The extracted datasets were matched to yield a list of relevant proteins in AD. The biochemical analysis of their amino acid content suggested a defective synthesis of these proteins in poorly oxygenated brain tissue, supporting their relevance in AD progression. The result of our POC study revealed several potential new markers of AD that deserve further molecular and clinical investigation. This novel database search approach can be a valuable strategy for biomarker search that can be exploited in many diseases. Full article
Show Figures

Figure 1

20 pages, 1376 KB  
Review
Molecular Mechanisms of Cadmium-Induced Toxicity and Its Modification
by Jin-Yong Lee, Maki Tokumoto and Masahiko Satoh
Int. J. Mol. Sci. 2025, 26(15), 7515; https://doi.org/10.3390/ijms26157515 - 4 Aug 2025
Viewed by 510
Abstract
Cadmium (Cd) is a toxic environmental heavy metal that exerts harmful effects on multiple tissues, including the kidney, liver, lung, and bone, and is also associated with the development of anemia. However, the precise molecular mechanisms underlying Cd-induced toxicity remain incompletely understood. In [...] Read more.
Cadmium (Cd) is a toxic environmental heavy metal that exerts harmful effects on multiple tissues, including the kidney, liver, lung, and bone, and is also associated with the development of anemia. However, the precise molecular mechanisms underlying Cd-induced toxicity remain incompletely understood. In this paper, we review the recent molecular mechanisms of Cd-induced toxicity and its modification, with a particular emphasis on our recent findings. Using a combination of DNA microarray analysis, protein–DNA binding assays, and siRNA-mediated gene silencing, we identified several transcription factors, YY1, FOXF1, ARNT, and MEF2A, as novel molecular targets of Cd. The downregulation of their downstream genes, including UBE2D2, UBE2D4, BIRC3, and SLC2A4, was directly associated with the expression of cytotoxicity. In addition, PPARδ plays a pivotal role in modulating cellular susceptibility to Cd-induced renal toxicity, potentially by regulating apoptosis-related signaling pathways. In addition to apoptosis pathways, Cd toxicity through ROS generation, ferroptosis and pyroptosis were summarized. Furthermore, it has been revealed that Cd suppresses the expression of iron transport-related genes in duodenal epithelial cells leading to impaired intestinal iron absorption as well as decreased hepatic iron levels. These findings provide a mechanistic basis for Cd-induced iron deficiency anemia, implicating disrupted iron homeostasis as a contributing factor. Full article
(This article belongs to the Special Issue Mechanisms of Heavy Metal Toxicity: 3rd Edition)
Show Figures

Figure 1

13 pages, 3032 KB  
Article
Combined Bioinformatic and Experimental Approaches to Analyze miR-182-3p and miR-24-3p Expression and Their Target Genes in Gestational Diabetes Mellitus and Iron Deficiency Anemia During Pregnancy
by Badr Alzahrani, Bisma Rauff, Aqsa Ikram and Mariya Azam
Curr. Issues Mol. Biol. 2025, 47(8), 610; https://doi.org/10.3390/cimb47080610 - 2 Aug 2025
Viewed by 298
Abstract
Gestational diabetes mellitus (GDM) and iron deficiency anemia (IDA) are the most common pregnancy-related conditions resulting in adverse maternal and fetal complications. MicroRNAs (miRNAs), particularly miR-182-3p and miR-24-3p, are promising biomarkers as they act as regulatory elements in various diseases; however, their roles [...] Read more.
Gestational diabetes mellitus (GDM) and iron deficiency anemia (IDA) are the most common pregnancy-related conditions resulting in adverse maternal and fetal complications. MicroRNAs (miRNAs), particularly miR-182-3p and miR-24-3p, are promising biomarkers as they act as regulatory elements in various diseases; however, their roles in GDM and IDA are unclear. The present study aimed to analyze the expression and functional relevance of miR-182-3p and miR-24-3p in GDM and IDA. Experimental validation via RT-PCR revealed significant upregulation of both miRNAs in GDM and IDA samples. We identified common target genes and signaling pathways associated with these miRNAs, using a combination of data mining, bioinformatic tools (miRDB, TargetScan, miRTarBase, and miRWalk), and differentially expressed gene (DEGs) analysis using the GEO, OMIM, MalaCards, and GeneCards datasets. GO and KEGG pathway analyses revealed that the shared miRNA–mRNA in target genes were enriched in insulin signaling, apoptosis, and inflammatory pathways—key mechanisms implicated in GDM and IDA. Furthermore, hub genes such as IRS1, PIK3CA, CASP3, MAPK7, and PDGFRB were identified, supporting their central role in metabolic dysregulation during pregnancy. These findings demonstrate the potential of miR-182-3p and miR-24-3p as diagnostic biomarkers and therapeutic targets in managing GDM and IDA, offering new insights into the molecular interplay underlying pregnancy complications. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Graphical abstract

11 pages, 1106 KB  
Article
The Role of clbF in the Pathogenicity of Avian Pathogenic Escherichia coli
by Meng Wu, Haitao Wu, Ling Li, Pan Hao and Peili Wang
Vet. Sci. 2025, 12(8), 727; https://doi.org/10.3390/vetsci12080727 - 1 Aug 2025
Viewed by 272
Abstract
The genotoxin colibactin, a complex secondary metabolite, targets eukaryotic cell cycle machinery and contributes to neonatal sepsis and meningitis. Avian pathogenic Escherichia coli (APEC) XM, which produces this genotoxin, is an agent of poultry diseases with zoonotic potential. In this study, we confirmed [...] Read more.
The genotoxin colibactin, a complex secondary metabolite, targets eukaryotic cell cycle machinery and contributes to neonatal sepsis and meningitis. Avian pathogenic Escherichia coli (APEC) XM, which produces this genotoxin, is an agent of poultry diseases with zoonotic potential. In this study, we confirmed that clbF was necessary for the APEC XM strain to produce colibactin, but it did not affect the growth, adhesion, or invasion of cells. Deletion of clbF substantially diminished both virulence and systemic dissemination, but it also changed the gene expression of the antiserum survival factor, adherence and invasion, iron acquisition genes, and the secretion system. In conclusion, clbF is necessary for the synthesis of the genotoxin colibactin and affects the development of APEC meningitis in mice. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

Back to TopTop