Gene Expression Factors Associated with Rubella-Specific Humoral Immunity After a Third MMR Vaccine Dose
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Rubella Neutralizing Antibody Assay
2.3. Memory B Cell ELISpot Assay
2.4. Gene Expression
2.5. Statistical Analysis
3. Results and Discussion
3.1. Demographic and Immune Response Characterization of Study Subjects
3.2. The Impact of Baseline Gene Expression on Rubella-Specific Immune Outcomes
3.3. The Impact of (Day 28–Day 0) Gene Expression Change on Rubella-Specific Immune Outcomes
3.4. Strengths and Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRS | Congenital rubella syndrome |
ELISA | Enzyme-linked immunosorbent assay |
ICC | Intra-class correlation coefficient |
IgG | Immunoglobulin G |
lncRNA | Long non-coding RNA |
mc | Model coefficient |
mRNA | Messenger ribonucleic acid |
NGS | Next-generation sequencing |
PBMCs | Peripheral blood mononuclear cells |
Q1 | First quartile (25th percentile) |
Q3 | Third quartile (75th percentile) |
RNA | Ribonucleic acid |
RV | Rubella virus |
SFUs | Spot forming units |
TLR | Toll-like receptor |
Appendix A
Demographics and Immune Response Characterization of the Study Subjects
Low (n = 53) | High (n = 45) | Total (n = 98) | |
---|---|---|---|
Sex | |||
Female | 53 (100.0%) | 45 (100.0%) | 98 (100.0%) |
Race | |||
Asian | 0 (0.0%) | 1 (2.2%) | 1 (1.0%) |
White | 53 (100.0%) | 44 (97.8%) | 97 (99.0%) |
Ethnicity | |||
Non-Hispanic nor Latino | 51 (96.2%) | 44 (97.8%) | 95 (96.9%) |
Hispanic or Latino | 2 (3.8%) | 1 (2.2%) | 3 (3.1%) |
Age at enrollment/3rd MMR vaccine dose (years) | |||
Median | 35.7 | 33.9 | 35.2 |
Q1, Q3 | 31.4, 40.3 | 30.4, 40.9 | 30.7, 40.4 |
Range | 21.5–44.9 | 22.6–45.1 | 21.5–45.1 |
Age at 1st rubella vaccination (months) | |||
Median | 15.8 | 15.4 | 15.7 |
Q1, Q3 | 15.1, 18.0 | 14.9, 16.0 | 15.0, 17.0 |
Range | 11.9–352.9 | 4.6–312.3 | 4.6–352.9 |
Age at 2nd rubella vaccination (years) | |||
Median | 12.2 | 12.4 | 12.2 |
Q1, Q3 | 9.8, 16.6 | 11.0, 17.2 | 10.1, 17.0 |
Range | 4.3–35.1 | 1.5–28.3 | 1.5–35.1 |
Time from 2nd rubella vaccination to enrollment/3rd MMR vaccine dose (years) | |||
Median | 23.2 | 22.7 | 23.2 |
Q1, Q3 | 19.9, 25.1 | 18.0, 26.3 | 18.7, 25.5 |
Range | 1.9–39.0 | 3.9–40.6 | 1.9–40.6 |
Prior rubella ELISA Ab titers 1 | |||
Median | 0.2 | 1.3 | 0.3 |
Q1, Q3 | 0.1, 0.3 | 1.1, 1.6 | 0.2, 1.2 |
Range | 0.1–0.3 | 0.8–3.4 | 0.1–3.4 |
Low (n = 53) | High (n = 45) | Total (n = 98) | |
---|---|---|---|
Day 28–Day 0 Karber NT50 1 | |||
N-Miss | 1 | 3 | 4 |
Median | 153.9 | 122.8 | 136.8 |
Q1, Q3 | 75.1, 269.3 | 68.9, 216.5 | 70.7, 246.1 |
Day 28–Day 0 rubella IgG titer (IU/mL) | |||
N-Miss | 1 | 3 | 4 |
Median | 95.1 | 49.3 | 66.0 |
Q1, Q3 | 46.8, 176.7 | 24.7, 84.2 | 36.3, 123.9 |
Day 28-Day 0 avidity index (%) | |||
N-Miss | 4 | 3 | 7 |
Median | 11.2 | 5.6 | 7.9 |
Q1, Q3 | 6.2, 16.4 | 2.6, 8.1 | 4.2, 13.6 |
Day 28 memory B cell ELISpot (SFUs/200,000 cells/PBMCs) 2 | |||
N-Miss | 10 | 12 | 22 |
Median | 27.5 | 40.0 | 29.8 |
Q1, Q3 | 13.0, 43.8 | 18.5, 66.5 | 16.0, 50.6 |
References
- Plotkin, S.A.; Orenstein, W.; Offit, P.A. Vaccines, 6th ed; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Vynnycky, E.; Adams, E.J.; Cutts, F.T.; Reef, S.E.; Navar, A.M.; Simons, E.; Yoshida, L.-M.; Brown, D.W.J.; Jackson, C.; Strebel, P.M.; et al. Using Seroprevalence and Immunisation Coverage Data to Estimate the Global Burden of Congenital Rubella Syndrome, 1996–2010: A Systematic Review. PLoS ONE 2016, 11, e0149160. [Google Scholar] [CrossRef]
- Vynnycky, E.; Knapp, J.K.; Papadopoulos, T.; Cutts, F.T.; Hachiya, M.; Miyano, S.; Reef, S.E. Estimates of the global burden of Congenital Rubella Syndrome, 1996–2019. Int. J. Infect. Dis. 2023, 137, 49–156. [Google Scholar] [CrossRef]
- Otani, N.; Shima, M.; Ueda, T.; Nakajima, K.; Takesue, Y.; Yamamoto, T.; Okuno, T. Changes in the Epidemiology of Rubella: The Influence of Vaccine-Introducing Methods and COVID-19. Vaccines 2023, 11, 1358. [Google Scholar] [CrossRef]
- Rey-Benito, G.; Pastor, D.; Whittembury, A.; Durón, R.; Pacis-Tirso, C.; Bravo-Alcántara, P.; Ortiz, C.; Andrus, J. Sustaining the Elimination of Measles, Rubella and Congenital Rubella Syndrome in the Americas, 2019–2023: From Challenges to Opportunities. Vaccines 2024, 12, 690. [Google Scholar] [CrossRef]
- Popova, G.; Retallack, H.; Kim, C.N.; Wang, A.; Shin, D.; DeRisi, J.L.; Nowakowski, T. Rubella virus tropism and single-cell responses in human primary tissue and microglia-containing organoids. eLife 2023, 12, RP87696. [Google Scholar] [CrossRef]
- Perelygina, L.; Faisthalab, R.; Abernathy, E.; Chen, M.-H.; Hao, L.; Bercovitch, L.; Bayer, D.K.; Noroski, L.M.; Lam, M.T.; Cicalese, M.P.; et al. Rubella Virus Infected Macrophages and Neutrophils Define Patterns of Granulomatous Inflammation in Inborn and Acquired Errors of Immunity. Front. Immunol. 2021, 12, 796065. [Google Scholar] [CrossRef] [PubMed]
- Crooke, S.N.; Haralambieva, I.H.; Grill, D.E.; Ovsyannikova, I.G.; Kennedy, R.B.; Poland, G.A. Seroprevalence and durability of rubella virus antibodies in a highly immunized population. Vaccine 2019, 37, 3876–3882. [Google Scholar] [CrossRef]
- Crooke, S.N.; Riggenbach, M.M.; Ovsyannikova, I.G.; Warner, N.D.; Chen, M.-H.; Hao, L.; Icenogle, J.P.; Poland, G.A.; Kennedy, R.B. Durability of humoral immune responses to rubella following MMR vaccination. Vaccine 2020, 38, 8185–8193. [Google Scholar] [CrossRef] [PubMed]
- Haralambieva, I.H.; Ovsyannikova, I.G.; Kennedy, R.B.; Goergen, K.M.; Grill, D.E.; Chen, M.-H.; Hao, L.; Icenogle, J.; Poland, G.A. Rubella virus-specific humoral immune responses and their interrelationships before and after a third dose of measles-mumps-rubella vaccine in women of childbearing age. Vaccine 2020, 38, 1249–1257. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Serology Testing for Rubella. Rubella (German Measles, Three-Day Measles) 2024. 10 June 2024. Available online: https://www.cdc.gov/rubella/php/laboratories/serology-testing.html (accessed on 13 June 2025).
- Lambert, N.; Strebel, W.; Orenstein, J.; Icenogle; Poland, G.A. Rubella. Lancet 2015, 385, 2297–2307. [Google Scholar] [CrossRef] [PubMed]
- Lambert, N.D.; Haralambieva, I.H.; Kennedy, R.B.; Ovsyannikova, I.G.; Pankratz, V.S.; Poland, G.A. Polymorphisms in HLA-DPB1 are associated with differences in rubella virus-specific humoral immunity after vaccination. J. Infect. Dis. 2015, 211, 898–905. [Google Scholar] [CrossRef]
- Haralambieva, I.H.; Lambert, N.D.; Ovsyannikova, I.G.; Kennedy, R.B.; Larrabee, B.R.; Pankratz, V.S.; Poland, G.A.; Kimman, T. Associations between single nucleotide polymorphisms in cellular viral receptors and attachment factor-related genes and humoral immunity to rubella vaccination. PLoS ONE 2014, 9, e99997. [Google Scholar] [CrossRef]
- Kennedy, R.B.; Ovsyannikova, I.G.; Haralambieva, I.H.; Lambert, N.D.; Pankratz, V.S.; Poland, G.A. Genetic polymorphisms associated with rubella virus-specific cellular immunity following MMR vaccination. Hum. Genet. 2014, 133, 1407–1417. [Google Scholar] [CrossRef]
- Kennedy, R.B.; IOvsyannikova, G.; Haralambieva, I.H.; Lambert, N.D.; Pankratz, V.S.; Poland, G.A. Genome-wide SNP associations with rubella-specific cytokine responses in measles-mumps-rubella vaccine recipients. Immunogenetics 2014, 66, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Hansen, K.D.; Irizarry, R.A.; Wu, Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 2012, 13, 204–216. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef]
- Xu, S.; Hu, E.; Cai, Y.; Xie, Z.; Luo, X.; Zhan, L.; Tang, W.; Wang, Q.; Liu, B.; Wang, R.; et al. Using clusterProfiler to characterize multiomics data. Nat. Protoc. 2024, 19, 3292–3320. [Google Scholar] [CrossRef]
- Fiebelkorn, A.P.; Coleman, L.A.; Belongia, E.A.; Freeman, S.K.; York, D.; Bi, D.; Zhang, C.; Ngo, L.; Rubin, S. Mumps antibody response in young adults after a third dose of measles-mumps-rubella vaccine. Open Forum Infect. Dis. 2014, 1, ofu094. [Google Scholar] [CrossRef]
- Kaaijk, P.; Wijmenga-Monsuur, A.J.; Hulscher, H.I.T.; Kerkhof, J.; Smits, G.; Nicolaie, M.A.; van Houten, M.A.; van Binnendijk, R.S. Antibody Levels at 3-Years Follow-Up of a Third Dose of Measles-Mumps-Rubella Vaccine in Young Adults. Vaccines 2022, 10, 132. [Google Scholar] [CrossRef]
- Fiebelkorn, A.P.; Coleman, L.A.; Belongia, E.A.; Freeman, S.K.; York, D.; Bi, D.; Kulkarni, A.; Audet, S.; Mercader, S.; McGrew, M.; et al. Measles Virus Neutralizing Antibody Response, Cell-Mediated Immunity, and Immunoglobulin G Antibody Avidity Before and After Receipt of a Third Dose of Measles, Mumps, and Rubella Vaccine in Young Adults. J. Infect. Dis. 2016, 213, 1115–1123. [Google Scholar] [CrossRef]
- Cutolo, M.; Campitiello, R.; Gotelli, E.; Soldano, S. The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front. Immunol. 2022, 13, 867260. [Google Scholar] [CrossRef]
- Ledesma-Colunga, M.G.; Baschant, U.; Weidner, H.; Alves, T.C.; Mirtschink, P.; Hofbauer, L.C.; Rauner, M. Transferrin receptor 2 deficiency promotes macrophage polarization and inflammatory arthritis. Redox. Biol. 2023, 60, 102616. [Google Scholar] [CrossRef] [PubMed]
- Radoshitzky, S.R.; Abraham, J.; Spiropoulou, C.F.; Kuhn, J.H.; Nguyen, D.; Li, W.; Nagel, J.; Schmidt, P.J.; Nunberg, J.H.; Andrews, N.C.; et al. Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 2007, 446, 92–96. [Google Scholar] [CrossRef]
- Mazel-Sanchez, B.; Niu, C.; Williams, N.; Bachmann, M.; Choltus, H.; Silva, F.; Serre-Beinier, V.; Karenovics, W.; Iwaszkiewicz, J.; Zoete, V.; et al. Influenza A virus exploits transferrin receptor recycling to enter host cells. Proc. Natl. Acad. Sci. USA 2023, 120, e2214936120. [Google Scholar] [CrossRef]
- Wang, X.; Wen, Z.; Cao, H.; Luo, J.; Shuai, L.; Wang, C.; Ge, J.; Wang, X.; Bu, Z.; Wang, J.; et al. Transferrin Receptor Protein 1 Is an Entry Factor for Rabies Virus. J. Virol. 2023, 97, e0161222. [Google Scholar] [CrossRef]
- Martin, D.N.; Uprichard, S.L. Identification of transferrin receptor 1 as a hepatitis C virus entry factor. Proc. Natl. Acad. Sci. USA 2013, 110, 10777–11782. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Qian, C.; Wang, X.; Qian, Z.M. Transferrin receptors. Exp. Mol. Med. 2025, 57, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Claireaux, M.; Robinot, R.; Kervevan, J.; Patgaonkar, M.; Staropoli, I.; Brelot, A.; Nouël, A.; Gellenoncourt, S.; Tang, X.; Héry, M.; et al. Low CCR5 expression protects HIV-specific CD4+ T cells of elite controllers from viral entry. Nat. Commun. 2022, 13, 521. [Google Scholar] [CrossRef]
- Munoz-Alia, M.A.; Nace, R.A.; Zhang, L.; Russell, S.J. Serotypic evolution of measles virus is constrained by multiple co-dominant B cell epitopes on its surface glycoproteins. Cell Rep. Med. 2021, 2, 100225. [Google Scholar] [CrossRef] [PubMed]
- Ho-Terry, L.; Terry, G.M.; Cohen, A.; Londesborough, P. Immunological characterisation of the rubella E 1 glycoprotein. Brief report. Arch. Virol. 1986, 90, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Chaye, H.; Ou, D.; Chong, P.; Gillam, S. Human T- and B-cell epitopes of E1 glycoprotein of rubella virus. J. Clin. Immunol. 1993, 13, 93–100. [Google Scholar] [CrossRef]
- Dube, M.; Etienne, L.; Fels, M.; Kielian, M. Calcium-Dependent Rubella Virus Fusion Occurs in Early Endosomes. J. Virol. 2016, 90, 6303–6313. [Google Scholar] [CrossRef]
- DuBois, R.M.; Vaney, M.-C.; Tortorici, M.A.; Al Kurdi, R.; Barba-Spaeth, G.; Krey, T.; Rey, F.A. Functional and evolutionary insight from the crystal structure of rubella virus protein E1. Nature 2013, 493, 552–556. [Google Scholar] [CrossRef]
- Saffari, A.; Arno, M.; Nasser, E.; Ronald, A.; Wong, C.C.Y.; Schalkwyk, L.C.; Mill, J.; Dudbridge, F.; Meaburn, E.L. RNA sequencing of identical twins discordant for autism reveals blood-based signatures implicating immune and transcriptional dysregulation. Mol. Autism. 2019, 10, 38. [Google Scholar] [CrossRef]
- Pishesha, N.; Harmand, T.J.; Ploegh, H.L. A guide to antigen processing and presentation. Nat. Rev. Immunol. 2022, 22, 751–764. [Google Scholar] [CrossRef]
- Paolini, R.; Bernardini, G.; Molfetta, R.; Santoni, A. NK cells and interferons. Cytokine Growth Factor Rev. 2015, 26, 113–120. [Google Scholar] [CrossRef]
- Mackay, C.R.; Imhof, B.A. Cell adhesion in the immune system. Immunol. Today 1993, 14, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Lamm, M.E.; Nedrud, J.G.; Kaetzel, C.S.; Mazanec, M.B. IgA and mucosal defense. APMIS 1995, 103, 241–246. [Google Scholar] [CrossRef]
- Zilliox, M.J.; Parmigiani, G.; Griffin, D.E. Gene expression patterns in dendritic cells infected with measles virus compared with other pathogens. Proc. Natl. Acad. Sci. USA 2006, 103, 3363–3368. [Google Scholar] [CrossRef] [PubMed]
- Haralambieva, I.H.; Zimmermann, M.T.; Ovsyannikova, I.G.; Grill, D.E.; Oberg, A.L.; Kennedy, R.B.; Poland, G.A.; Tregoning, J.S. Whole Transcriptome Profiling Identifies CD93 and Other Plasma Cell Survival Factor Genes Associated with Measles-Specific Antibody Response after Vaccination. PLoS ONE 2016, 11, e0160970. [Google Scholar] [CrossRef]
- Haralambieva, I.H.; Chen, J.; Quach, H.Q.; Ratishvili, T.; Warner, N.D.; Ovsyannikova, I.G.; Poland, G.A.; Kennedy, R.B. Early B cell transcriptomic markers of measles-specific humoral immunity following a 3(rd) dose of MMR vaccine. Front. Immunol. 2024, 15, 1358477. [Google Scholar] [CrossRef]
- Haralambieva, I.H.; Ovsyannikova, I.G.; Kennedy, R.B.; Larrabee, B.R.; Zimmermann, M.T.; Grill, D.E.; Schaid, D.J.; Poland, G.A. Genome-wide associations of CD46 and IFI44L genetic variants with neutralizing antibody response to measles vaccine. Hum. Genet. 2017, 136, 421–435. [Google Scholar] [CrossRef]
- Tian, C.; Hromatka, B.S.; Kiefer, A.K.; Eriksson, N.; Noble, S.M.; Tung, J.Y.; Hinds, D.A. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat. Commun. 2017, 8, 599. [Google Scholar] [CrossRef]
- Coombes, B.J.; Ovsyannikova, I.G.; Schaid, D.J.; Warner, N.D.; Poland, G.A.; Kennedy, R.B. Polygenic prediction of cellular immune responses to mumps vaccine. Genes Immun. 2025, 26, 413–417. [Google Scholar] [CrossRef]
- Ovsyannikova, I.G.; Haralambieva, I.H.; Schaid, D.J.; Warner, N.D.; Poland, G.A.; Kennedy, R.B. Genome-wide determinants of cellular immune responses to mumps vaccine. Vaccine 2023, 41, 6579–6588. [Google Scholar] [CrossRef] [PubMed]
- Palm, A.E.; Henry, C. Remembrance of Things Past: Long-Term B Cell Memory After Infection and Vaccination. Front. Immunol. 2019, 10, 1787. [Google Scholar] [CrossRef]
- De La Cruz-Rivera, P.C.; Kanchwala, M.; Liang, H.; Kumar, A.; Wang, L.F.; Xing, C.; Schoggins, W.J. The IFN Response in Bats Displays Distinctive IFN-Stimulated Gene Expression Kinetics with Atypical RNASEL Induction. J. Immunol. 2018, 200, 209–217. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, S.M.; Rafnar, T.; Langdon, J.; Lichtenstein, L.M. Molecular identification of an IgE-dependent histamine-releasing factor. Science 1995, 269, 688–690. [Google Scholar] [CrossRef]
- Kang, H.S.; Lee, M.J.; Song, H.; Han, S.H.; Kim, Y.M.; Im, J.Y.; Choi, I. Molecular identification of IgE-dependent histamine-releasing factor as a B cell growth factor. J. Immunol. 2001, 166, 6545–6554. [Google Scholar] [CrossRef] [PubMed]
- Atianand, M.K.; Fitzgerald, K.A. Fitzgerald. Long non-coding RNAs and control of gene expression in the immune system. Trends Mol. Med. 2014, 20, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Heward, J.A.; Lindsay, M.A. Long non-coding RNAs in the regulation of the immune response. Trends Immunol. 2014, 35, 408–419. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol | Gene Description | Coefficient 1 | |
---|---|---|---|
A. Baseline genes associated with Day 28–Day 0 rubella IgG titer | SPSB1 | splA/ryanodine receptor domain and SOCS box containing 1 | 0.1024 |
RP1-292B18.1 | RP1-292B18.4 | 0.0800 | |
SLC25A1P5 | solute carrier family 25 member 1 pseudogene 5 | 0.0686 | |
SLC6A16 | solute carrier family 6, member 16 | 0.0678 | |
LRRC32 | leucine rich repeat containing 32 | 0.0605 | |
HLA-DQB1 | major histocompatibility complex, class II, DQ beta 1 | 0.0602 | |
DEGS1 | delta 4-desaturase, sphingolipid 1 | 0.0519 | |
ZSCAN21 | zinc finger and SCAN domain containing 21 | 0.0473 | |
MTSS1 | MTSS I-BAR domain containing 1 | 0.0383 | |
CCNG2 | cyclin G2 | 0.0303 | |
PPIAP29 | peptidylprolyl isomerase A pseudogene 29 | 0.0293 | |
MEF2C | myocyte enhancer factor 2C | 0.0290 | |
L3MBTL4 | L3MBTL histone methyl-lysine binding protein 4 | 0.0187 | |
DUS2 | dihydrouridine synthase 2 | 0.0178 | |
HILPDA | hypoxia inducible lipid droplet associated | 0.0174 | |
CDKL1 | cyclin-dependent kinase-like 1 | 0.0167 | |
VAV2 | vav guanine nucleotide exchange factor 2 | 0.0158 | |
UBXN2A | UBX domain protein 2A | 0.0144 | |
KIF20B | kinesin family member 20B | 0.0126 | |
H2AFY2 | H2A histone family, member Y2 | 0.0109 | |
POMZP3 | POM121 and ZP3 fusion | 0.0094 | |
SDK2 | sidekick cell adhesion molecule 2 | 0.0058 | |
TIMM22 | translocase of inner mitochondrial membrane 22 | 0.0031 | |
NUDT4 | nudix hydrolase 4 | 0.0023 | |
TPM3P6 | tropomyosin 3 pseudogene 6 | −0.0007 | |
LDOC1 | LDOC1 regulator of NFKB signaling | −0.0010 | |
HSPA6 | heat shock protein family A (Hsp70) member 6 | −0.0031 | |
AL390877.1 | AL390877.1 | −0.0048 | |
DHCR24 | 24-dehydrocholesterol reductase | −0.0049 | |
MSC | musculin | −0.0100 | |
GZMB | granzyme B | −0.0103 | |
RHOBTB3 | Rho related BTB domain containing 3 | −0.0133 | |
RNF5P1 | ring finger protein 5 pseudogene 1 | −0.0150 | |
CPA3 | carboxypeptidase A3 | −0.0221 | |
GBP5 | guanylate binding protein 5 | −0.0271 | |
RAB38 | RAB38, member RAS oncogene family | −0.0412 | |
HLA-DQB2 | major histocompatibility complex, class II, DQ beta 2 | −0.0504 | |
ALOX5AP | arachidonate 5-lipoxygenase activating protein | −0.0641 | |
NOC4L | nucleolar complex associated 4 homolog | −0.0650 | |
RP11−209A2.1 | RP11-209A2.1 | −0.0754 | |
TFR2 | transferrin receptor 2 | −0.0988 | |
SARS2 | seryl-tRNA synthetase 2, mitochondrial | −0.0997 | |
ZDHHC4 | zinc finger DHHC-type palmitoyltransferase 4 | −0.1141 | |
HLA-C | major histocompatibility complex, class I, C | −0.1158 | |
PRR13P5 | proline rich 13 pseudogene 5 | −0.1370 | |
RP11-216M21.1 | RP11-216M21.1 | −0.1529 | |
B. Baseline genes associated with Day 28–Day 0 rubella neut. Ab titer | ZNF829 | zinc finger protein 829 | 0.1104 |
MTSS1 | MTSS I-BAR domain containing 1 | 0.0860 | |
TBX19 | T-box transcription factor 19 | 0.0855 | |
NUDT19 | nudix hydrolase 19 | 0.0434 | |
C12orf5 | TP53 induced glycolysis regulatory phosphatase | 0.0297 | |
DUSP7 | dual specificity phosphatase 7 | 0.0274 | |
GPRC5B | G protein-coupled receptor class C group 5 member B | 0.0246 | |
SPSB1 | splA/ryanodine receptor domain and SOCS box containing 1 | 0.0211 | |
SLC6A16 | solute carrier family 6 member 16 | 0.0203 | |
SYCE1L | synaptonemal complex central element protein 1 like | 0.0201 | |
BIRC2 | baculoviral IAP repeat containing 2 | 0.0113 | |
QDPR | quinoid dihydropteridine reductase | 0.0039 | |
GAN | gigaxonin | 0.0018 | |
ARHGAP9 | Rho GTPase activating protein 9 | −0.0002 | |
ADCK4 | coenzyme Q8B | −0.0012 | |
CBY1 | chibby 1, beta catenin antagonist | −0.0029 | |
RAB38 | RAB38, member RAS oncogene family | −0.0052 | |
DTNBP1 | dystrobrevin binding protein 1 | −0.0125 | |
KIR2DL4 | killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 4 | −0.0143 | |
SERPINH1 | serpin family H member 1 | −0.0166 | |
CCNB1 | cyclin B1 | −0.0222 | |
TMC4 | transmembrane channel like 4 | −0.0235 | |
DNASE1L3 | deoxyribonuclease 1L3 | −0.0242 | |
RUVBL2 | RuvB like AAA ATPase 2 | −0.0253 | |
TPRA1 | transmembrane protein adipocyte associated 1 | −0.0312 | |
TPM3P6 | tropomyosin 3 pseudogene 6 | −0.0344 | |
LGALS9B | galectin 9B | −0.0503 | |
RP11-360D2.2 | RP11-360D2.2 | −0.0509 | |
CLSTN3 | calsyntenin 3 | −0.0644 | |
TFR2 | transferrin receptor 2 | −0.0890 | |
PRUNE2 | prune homolog 2 with BCH domain | −0.1028 | |
SARS2 | seryl-tRNA synthetase 2, mitochondrial | −0.1043 | |
CHCHD2 | coiled-coil-helix-coiled-coil-helix domain containing 2 | −0.1125 | |
ABCG1 | ATP binding cassette subfamily G member 1 | −0.1149 | |
PRR13P5 | proline rich 13 pseudogene 5 | −0.1629 | |
C. Baseline genes associated with Day 28 RV-specific MBC frequencies | C17orf89 | NADH: ubiquinone oxidoreductase complex assembly factor 8 | 0.1308 |
TPT1P6 | TPT1 pseudogene 6 | 0.0968 | |
MTPAP | mitochondrial poly(A) polymerase | 0.0594 | |
RP11-100N21.1 | RP11-100N21.1 | 0.0388 | |
SLC35E2 | solute carrier family 35 member E2A (pseudogene) | 0.0256 | |
EGLN3 | egl-9 family hypoxia inducible factor 3 | 0.0074 | |
IMMT | inner membrane mitochondrial protein | −0.0004 | |
ARHGEF19 | Rho guanine nucleotide exchange factor 19 | −0.0021 | |
MTHFSD | Methenyltetrahydrofolate synthetase domain containing | −0.0063 | |
FUZ | fuzzy planar cell polarity protein | −0.0152 | |
C16orf93 | cilia and flagella associated protein 119 | −0.0177 | |
FAM47E-STBD1 | FAM47E-STBD1 readthrough | −0.0212 | |
IGFLR1 | IGF like family receptor 1 | −0.0279 | |
SLC24A1 | solute carrier family 24 member 1 | −0.0317 | |
SDK2 | sidekick cell adhesion molecule 2 | −0.0534 | |
TFR2 | transferrin receptor 2 | −0.0773 | |
ENOX2 | ecto-NOX disulfide-thiol exchanger 2 | −0.0922 | |
SLC25A20 | solute carrier family 25 member 20 | −0.0948 | |
RP11-51F16.9 | RP11-51F16.9 | −0.1371 |
Gene | Coefficient 1 | Prediction |
---|---|---|
MTSS1 | 0.038 | Baseline gene predictive of change (Day 28–Day 0) in rubella IgG titer |
0.086 | Baseline gene predictive of change (Day 28–Day 0) in neutralizing antibodies | |
PRR13P5 | −0.137 | Baseline gene predictive of change (Day 28–Day 0) in rubella IgG titer |
−0.163 | Baseline gene predictive of change (Day 28–Day 0) in neutralizing antibodies | |
RAB38 | −0.041 | Baseline gene predictive of change (Day 28–Day 0) in rubella IgG titer |
−0.005 | Baseline gene predictive of change (Day 28–Day 0) in neutralizing antibodies | |
SARS2 | −0.100 | Baseline gene predictive of change (Day 28–Day 0) in rubella IgG titer |
−0.104 | Baseline gene predictive of change (Day 28–Day 0) in neutralizing antibodies | |
SDK2 | 0.006 | Baseline gene predictive of change (Day 28–Day 0) in rubella IgG titer |
−0.053 | Baseline gene predictive of Day 28 memory B cell frequency | |
SPSB1 | 0.102 | Baseline gene predictive of change (Day 28–Day 0) in rubella IgG titer |
0.021 | Baseline gene predictive of change (Day 28–Day 0) in neutralizing antibodies | |
TPM3P6 | −0.001 | Baseline gene predictive of change (Day 28–Day 0) in rubella IgG titer |
−0.034 | Baseline gene predictive of change (Day 28–Day 0) in neutralizing antibodies | |
SLC6A16 | 0.068 | Baseline gene predictive of change (Day 28–Day 0) in rubella IgG titer |
0.020 | Baseline gene predictive of change (Day 28–Day 0) in neutralizing antibodies | |
−0.001 | (Day 28–Day 0) gene expression associated with Day 28 memory B cell frequency | |
TFR2 | −0.099 | Baseline gene predictive of change (Day 28–Day 0) in rubella IgG titer |
−0.089 | Baseline gene predictive of change (Day 28–Day 0) in neutralizing antibodies | |
−0.077 | Baseline gene predictive of Day 28 memory B cell frequency | |
0.003 | (Day 28–Day 0) gene expression associated with Day 28 memory B cell frequency |
Gene Symbol | Gene Description | Coefficient 1 |
---|---|---|
RP11-51F16.9 | RP11-51F16.9 | 0.1909 |
KATNB1 | katanin regulatory subunit B1 | 0.0375 |
TIGIT | T cell immunoreceptor with Ig and ITIM domains | 0.0271 |
SLC24A1 | solute carrier family 24 member 1 | 0.0265 |
FBXO4 | F-box protein 4 | 0.0177 |
ALG8 | ALG8 alpha-1,3-glucosyltransferase | 0.0176 |
RP11-886H22.1 | RP11-886H22.1 | 0.0099 |
SERBP1P5 | SERPINE1 mRNA binding protein 1 pseudogene 5 | 0.0074 |
TFR2 | transferrin receptor 2 | 0.0031 |
SLC6A16 | solute carrier family 6 member 16 | −0.0013 |
PEX11G | peroxisomal biogenesis factor 11 gamma | −0.0031 |
PPAP2A | phospholipid phosphatase 1 | −0.0108 |
CSAD | cysteine sulfinic acid decarboxylase | −0.0237 |
IRF1 | interferon regulatory factor 1 | −0.0282 |
FBRS | fibrosin | −0.0430 |
TPT1P6 | TPT1 pseudogene 6 | −0.0435 |
RECQL4 | RecQ like helicase 4 | −0.0671 |
EFCAB10 | EF-hand calcium binding domain 10 | −0.0734 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teodoro, L.I.; Haralambieva, I.H.; Ovsyannikova, I.G.; Goergen, K.M.; Grill, D.E.; Poland, G.A.; Kennedy, R.B. Gene Expression Factors Associated with Rubella-Specific Humoral Immunity After a Third MMR Vaccine Dose. Viruses 2025, 17, 1154. https://doi.org/10.3390/v17091154
Teodoro LI, Haralambieva IH, Ovsyannikova IG, Goergen KM, Grill DE, Poland GA, Kennedy RB. Gene Expression Factors Associated with Rubella-Specific Humoral Immunity After a Third MMR Vaccine Dose. Viruses. 2025; 17(9):1154. https://doi.org/10.3390/v17091154
Chicago/Turabian StyleTeodoro, Lara I., Iana H. Haralambieva, Inna G. Ovsyannikova, Krista M. Goergen, Diane E. Grill, Gregory A. Poland, and Richard B. Kennedy. 2025. "Gene Expression Factors Associated with Rubella-Specific Humoral Immunity After a Third MMR Vaccine Dose" Viruses 17, no. 9: 1154. https://doi.org/10.3390/v17091154
APA StyleTeodoro, L. I., Haralambieva, I. H., Ovsyannikova, I. G., Goergen, K. M., Grill, D. E., Poland, G. A., & Kennedy, R. B. (2025). Gene Expression Factors Associated with Rubella-Specific Humoral Immunity After a Third MMR Vaccine Dose. Viruses, 17(9), 1154. https://doi.org/10.3390/v17091154