Molecular Mechanisms of Cadmium-Induced Toxicity and Its Modification
Abstract
1. Introduction
2. Identification of Target Genes in Cd Renal Toxicity
3. Apoptosis-Related Cd Toxicity and Modification
3.1. p53-Dependent Apoptosis via the Suppression of UBE2D Family Genes
3.2. Identification of Transcription Factors Rgulating UBE2D Family Gene Expression
3.3. Apoptosis Induction via Inhibition of ARNT Transcriptional Activity
3.4. Role of PPARδ as a Modification Factor of Cd Toxicity
3.5. Reactive Oxygen Species (ROS)-Related Apoptosis Involved in Cd Toxicity
3.6. Endoplasmic Reticulum (ER)-Mediated Apoptosis Involved in Cd Toxicity
4. Non-Apoptotic Cell Death Pathways Regulating Cd Toxicity
4.1. Suppression of GLUT4 via Inhibition of MEF2A, and Reduction in Intracellular Glucose
4.2. Reactive Oxygen Species (ROS)-Necroptotic Cell Death Pathways Involved in Cd Toxicity
4.3. Induction of Ferroptosis in Cd-Exposed Renal Cells
4.4. Inflammatory Pyroptosis in Cd Toxicity
4.5. Lysosomal-Irregulated Autophagic Dysfunction in Cd Toxicity
5. Molecular Mechanism of Cd-Induced Iron Deficiency
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nordberg, G.F.; Åkesson, A.; Nogawa, K.; Nordberg, M. Chapter 7—Cadmium. In Handbook on the Toxicology of Metals, 5th ed.; Nordberg Gunnar, F., Max, C., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 141–196. [Google Scholar]
- Charkiewicz, A.E.; Omeljaniuk, W.J.; Nowak, K.; Garley, M.; Nikliński, J. Cadmium Toxicity and Health Effects-A Brief Summary. Molecules 2023, 28, 6620. [Google Scholar] [CrossRef] [PubMed]
- Ghaderpoori, M.; Kamarehie, B.; Jafari, A.; Alinejad, A.A.; Hashempour, Y.; Saghi, M.H.; Yousefi, M.; Oliveri Conti, G.; Mohammadi, A.A.; Ghaderpoury, A.; et al. Health risk assessment of heavy metals in cosmetic products sold in Iran: The Monte Carlo simulation. Environ. Sci. Pollut. Res. Int. 2020, 27, 7588–7595. [Google Scholar] [CrossRef] [PubMed]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Env. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Turner, A. Cadmium pigments in consumer products and their health risks. Sci. Total Environ. 2019, 657, 1409–1418. [Google Scholar] [CrossRef]
- Dhiman, V.; Sharma, S. Sources and Spatial Distribution of Cadmium in the Environment. In Cadmium Toxicity: Challenges and Solutions; Nitish, K., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 31–41. [Google Scholar]
- Teschke, R. Copper, Iron, Cadmium, and Arsenic, All Generated in the Universe: Elucidating Their Environmental Impact Risk on Human Health Including Clinical Liver Injury. Int. J. Mol. Sci. 2024, 25, 6662. [Google Scholar] [CrossRef] [PubMed]
- Carocci, A.; Catalano, A.; Lauria, G.; Sinicropi, M.S.; Genchi, G. Lead toxicity, antioxidant defense and environment. Rev. Environ. Contam. Toxicol. 2016, 238, 45–67. [Google Scholar]
- Carocci, A.; Rovito, N.; Sinicropi, M.S.; Genchi, G. Mercury toxicity and neurodegenerative effects. Rev. Environ. Contam. Toxicol. 2013, 229, 1–18. [Google Scholar]
- Friberg, L.T.; Elinder, G.-G.; Kjellstrom, T.; Nordberg, G.F. Cadmium and Health: A Toxicological and Epidemiological Appraisal: Volume 2: Effects and Response; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–110. [Google Scholar]
- Genchi, G.; Sinicropi, M.S.; Carocci, A.; Lauria, G.; Catalano, A. Response to Comment on Giuseppe Genchi et al. Mercury Exposure and Heart Diseases. Int. J. Environ. Res. Public Health 2017, 14, 74. [Google Scholar] [CrossRef]
- Sinicropi, M.S.; Amantea, D.; Caruso, A.; Saturnino, C. Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning. Arch. Toxicol. 2010, 84, 501–520. [Google Scholar] [CrossRef]
- Sinicropi, M.S.; Caruso, A.; Capasso, A.; Palladino, C.; Panno, A.; Saturnino, C. Heavy metals: Toxicity and carcinogenicity. Pharmacologyonline 2010, 2, 329–333. [Google Scholar]
- Al-Makki, A.; DiPette, D.; Whelton, P.K.; Murad, M.H.; Mustafa, R.A.; Acharya, S.; Beheiry, H.M.; Champagne, B.; Connell, K.; Cooney, M.T.; et al. Hypertension Pharmacological Treatment in Adults: A World Health Organization Guideline Executive Summary. Hypertension 2022, 79, 293–301. [Google Scholar] [CrossRef]
- Mititelu, M.; Udeanu, D.I.; Docea, A.O.; Tsatsakis, A.; Calina, D.; Arsene, A.L.; Nedelescu, M.; Neacsu, S.M.; Bruno Ștefan, V.; Ghica, M. New method for risk assessment in environmental health: The paradigm of heavy metals in honey. Environ. Res. 2023, 236, 115194. [Google Scholar] [CrossRef]
- Sciacca, S.; Conti, G.O. Mutagens and carcinogens in drinking water. Mediterr. J. Nutr. Metab. 2009, 2, 157–162. [Google Scholar] [CrossRef]
- Urbano, T.; Verzelloni, P.; Malavolti, M.; Sucato, S.; Polledri, E.; Agnoli, C.; Sieri, S.; Natalini, N.; Marchesi, C.; Fustinoni, S.; et al. Influence of dietary patterns on urinary excretion of cadmium in an Italian population: A cross-sectional study. J. Trace Elem. Med. Biol. 2023, 80, 127298. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Sang, P.; Guo, Y.; Jin, P.; Cheng, Y.; Yu, H.; Xie, Y.; Yao, W.; Qian, H. Cadmium in food: Source, distribution and removal. Food Chem. 2023, 405, 134666. [Google Scholar] [CrossRef]
- Xu, W.; Wang, S.; Ruan, W.; Hao, M.; Jiang, K.; Guo, H.; Geng, A.; Man, M.; Hu, Z.; Liu, Y.; et al. Cadmium exposure and health outcomes:An umbrella review of meta-analyses. Environ. Res. 2025, 276, 121547. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Soleimani, Y.; Nayebi, M.; Mahmoudi, S.; Daraei, M.; Khorsand, S.; Jahazi, M.A.; Farsi, M.Y.; Khalafi, F.; Varseh, M.; Jarrahi, Z.M.; et al. Cadmium exposure and risk of pancreatic cancer: Systematic review and meta-analysis. PLoS ONE 2025, 20, e0319283. [Google Scholar] [CrossRef]
- Syed, M.H.; Rubab, S.A.; Abbas, S.R.; Qutaba, S.; Mohd Zahari, M.A.K.; Abdullah, N. Effects of cadmium acetate contaminated drinking water on vital organs: A histopathological and biochemical study. J. Biochem. Mol. Toxicol. 2023, 37, e23382. [Google Scholar] [CrossRef]
- Tavakoli Pirzaman, A.; Ebrahimi, P.; Niknezhad, S.; Vahidi, T.; Hosseinzadeh, D.; Akrami, S.; Ashrafi, A.M.; Moeen Velayatimehr, M.; Hosseinzadeh, R.; Kazemi, S. Toxic mechanisms of cadmium and exposure as a risk factor for oral and gastrointestinal carcinomas. Hum. Exp. Toxicol. 2023, 42. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, Y.H.; Pi, H.F.; Gao, P.; Li, M.; Zhang, L.; Pei, L.P.; Mei, X.; Liu, L.; Zhao, Q.; et al. Cadmium Exposure is Associated with the Prevalence of Dyslipidemia. Cell Physiol. Biochem. 2016, 40, 633–643. [Google Scholar] [CrossRef] [PubMed]
- JECFA. Safety Evaluation of Certain Food Additives and Contaminants: Prepared by the Seventy-Third Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- CXS 193-1995; General Standard for Contaminants and Toxins in Food and Feed. FAO/WHO: Rome, Italy, 2019.
- Barregard, L.; Sallsten, G.; Lundh, T.; Mölne, J. Low-level exposure to lead, cadmium and mercury, and histopathological findings in kidney biopsies. Environ. Res. 2022, 211, 113119. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, Z.; Lin, X.; Liao, J.; Zhang, Y.; Xie, B.; Huang, Y.; Peng, L. Environmental Cadmium Exposure Promotes the Development, Progression and Chemoradioresistance of Esophageal Squamous Cell Carcinoma. Front. Cell Dev. Biol. 2022, 10, 792933. [Google Scholar] [CrossRef]
- Luo, H.; Gu, R.; Ouyang, H.; Wang, L.; Shi, S.; Ji, Y.; Bao, B.; Liao, G.; Xu, B. Cadmium exposure induces osteoporosis through cellular senescence, associated with activation of NF-κB pathway and mitochondrial dysfunction. Environ. Pollut. 2021, 290, 118043. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Su, Q.; Yue, C.; Zou, H.; Zhu, J.; Zhao, H.; Song, R.; Liu, Z. The Effect of Oxidative Stress-Induced Autophagy by Cadmium Exposure in Kidney, Liver, and Bone Damage, and Neurotoxicity. Int. J. Mol. Sci. 2022, 23, 13491. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Yang, J.; Zhu, Y.; Li, Y.; Zheng, W.; Wu, M.; He, G. Dose-response evaluation of urinary cadmium and kidney injury biomarkers in Chinese residents and dietary limit standards. Environ. Health 2021, 20, 75. [Google Scholar] [CrossRef]
- Qu, F.; Zheng, W. Cadmium Exposure: Mechanisms and Pathways of Toxicity and Implications for Human Health. Toxics 2024, 12, 388. [Google Scholar] [CrossRef]
- Syeda, T.; Cannon, J.R. Environmental exposures and the etiopathogenesis of Alzheimer’s disease: The potential role of BACE1 as a critical neurotoxic target. J. Biochem. Mol. Toxicol. 2021, 35, e22694. [Google Scholar] [CrossRef]
- Nordberg, M.; Nordberg, G.F. Metallothionein and Cadmium Toxicology-Historical Review and Commentary. Biomolecules 2022, 12, 360. [Google Scholar] [CrossRef]
- Satarug, S.; Garrett, S.H.; Sens, M.A.; Sens, D.A. Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 2010, 118, 182–190. [Google Scholar] [CrossRef]
- Aoshima, K.; Horiguchi, H. Historical Lessons on Cadmium Environmental Pollution Problems in Japan and Current Cadmium Exposure Situation. In Cadmium Toxicity: New Aspects in Human Disease, Rice Contamination, and Cytotoxicity; Seiichiro, H., Keiko, A., Eds.; Springer: Singapore, 2019; pp. 3–19. [Google Scholar]
- Aoshima, K. Recent Clinical and Epidemiological Studies of Itai-Itai Disease (Cadmium-Induced Renal Tubular Osteomalacia) and Cadmium Nephropathy in the Jinzu River Basin in Toyama Prefecture, Japan. In Cadmium Toxicity: New Aspects in Human Disease, Rice Contamination, and Cytotoxicity; Seiichiro, H., Keiko, A., Eds.; Springer: Singapore, 2019; pp. 23–37. [Google Scholar]
- Jo, H.; Kim, G.; Chang, J.; Lee, K.; Lee, C.; Lee, B. Chronic Exposure to Lead and Cadmium in Residents Living Near a Zinc Smelter. Int. J. Environ. Res. Public Health 2021, 18, 1731. [Google Scholar] [CrossRef]
- Kwon, J.Y.; Lee, S.; Surenbaatar, U.; Lim, H.J.; Kim, B.G.; Eom, S.Y.; Cho, Y.M.; Kim, W.J.; Yu, B.C.; Lee, K.; et al. Association between levels of exposure to heavy metals and renal function indicators of residents in environmentally vulnerable areas. Sci. Rep. 2023, 13, 2856. [Google Scholar] [CrossRef]
- Satarug, S.; Vesey, D.A.; Gobe, G.C.; Yimthiang, S.; Buha Đorđević, A. Health Risk in a Geographic Area of Thailand with Endemic Cadmium Contamination: Focus on Albuminuria. Toxics 2023, 11, 68. [Google Scholar] [CrossRef]
- Snoj Tratnik, J.; Kocman, D.; Horvat, M.; Andersson, A.M.; Juul, A.; Jacobsen, E.; Ólafsdóttir, K.; Klanova, J.; Andryskova, L.; Janasik, B.; et al. Cadmium exposure in adults across Europe: Results from the HBM4EU Aligned Studies survey 2014–2020. Int. J. Hyg. Environ. Health 2022, 246, 114050. [Google Scholar] [CrossRef]
- Shimbo, S.; Zhang, Z.W.; Watanabe, T.; Nakatsuka, H.; Matsuda-Inoguchi, N.; Higashikawa, K.; Ikeda, M. Cadmium and lead contents in rice and other cereal products in Japan in 1998–2000. Sci. Total Environ. 2001, 281, 165–175. [Google Scholar] [CrossRef]
- Hara, T.; Kumagai, R.; Tanaka, T.; Nakano, T.; Fujie, T.; Fujiwara, Y.; Yamamoto, C.; Kaji, T. Lead suppresses perlecan expression via EGFR-ERK1/2-COX-2-PGI2 pathway in cultured bovine vascular endothelial cells. J. Toxicol. Sci. 2023, 48, 655–663. [Google Scholar] [CrossRef]
- Hirata, Y.; Kojima, R.; Ashida, R.; Nada, Y.; Kimura, S.; Sato, E.; Noguchi, T.; Matsuzawa, A. Industrially produced trans-fatty acids are potent promoters of DNA damage-induced apoptosis. J. Toxicol. Sci. 2024, 49, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Iijima, Y.; Miki, R.; Fujimura, M.; Oyadomari, S.; Uehara, T. Methylmercury-induced brain neuronal death in CHOP-knockout mice. J. Toxicol. Sci. 2024, 49, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Tokumoto, M.; Ohtsu, T.; Honda, A.; Fujiwara, Y.; Nagase, H.; Satoh, M. DNA microarray analysis of normal rat kidney epithelial cells treated with cadmium. J. Toxicol. Sci. 2011, 36, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Tokumoto, M.; Fujiwara, Y.; Satoh, M. Gene expression analysis using DNA microarray in HK-2 human proximal tubular cells treated with cadmium. J. Toxicol. Sci. 2013, 38, 959–962. [Google Scholar] [CrossRef]
- Tokumoto, M.; Ohtsu, T.; Imai, S.; Honda, A.; Nagase, H.; Satoh, M. DNA microarray analysis of hepatic gene expression in mice exposed to cadmium for 30 days. J. Toxicol. Sci. 2013, 38, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Tokumoto, M.; Lee, J.Y.; Fujiwara, Y.; Satoh, M. DNA microarray expression analysis of mouse kidney following cadmium exposure for 12 months. J. Toxicol. Sci. 2013, 38, 799–802. [Google Scholar] [CrossRef] [PubMed]
- Kurita, H.; Nagase, H.; Tokumoto, M.; Lee, J.-Y.; Satoh, M. DNA microarray analysis of fetal liver of C57BL/6J mice exposed to cadmium during gestation. Fundam. Toxicol. Sci. 2016, 3, 257–280. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Tokumoto, M.; Fujiwara, Y.; Lee, M.-Y.; Satoh, M. Effects of cadmium on the gene expression of SLC39A1 coding for ZIP1 protein. Fundam. Toxicol. Sci. 2014, 1, 131–133. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Tokumoto, M.; Hwang, G.-W.; Satoh, M. Effect of heat shock protein gene expression on cadmium toxicity in human proximal tubular cells. Fundam. Toxicol. Sci. 2018, 5, 93–97. [Google Scholar] [CrossRef]
- Tokumoto, M.; Fujiwara, Y.; Shimada, A.; Hasegawa, T.; Seko, Y.; Nagase, H.; Satoh, M. Cadmium toxicity is caused by accumulation of p53 through the down-regulation of Ube2d family genes in vitro and in vivo. J. Toxicol. Sci. 2011, 36, 191–200. [Google Scholar] [CrossRef]
- Julier, A.; Radtke, V.; Marx, A.; Scheffner, M. Generation and Characterization of Site-Specifically Mono-Ubiquitylated p53. Chembiochem 2022, 23, e202100659. [Google Scholar] [CrossRef]
- Saville, M.K.; Sparks, A.; Xirodimas, D.P.; Wardrop, J.; Stevenson, L.F.; Bourdon, J.C.; Woods, Y.L.; Lane, D.P. Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J. Biol. Chem. 2004, 279, 42169–42181. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Tokumoto, M.; Fujiwara, Y.; Hasegawa, T.; Seko, Y.; Shimada, A.; Satoh, M. Accumulation of p53 via down-regulation of UBE2D family genes is a critical pathway for cadmium-induced renal toxicity. Sci. Rep. 2016, 6, 21968. [Google Scholar] [CrossRef]
- Tokumoto, M.; Lee, J.Y.; Fujiwara, Y.; Uchiyama, M.; Satoh, M. Inorganic arsenic induces apoptosis through downregulation of Ube2d genes and p53 accumulation in rat proximal tubular cells. J. Toxicol. Sci. 2013, 38, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; Healy, A.; Zhu, J. Differential regulation of lineage-determining transcription factor expression in innate lymphoid cell and adaptive T helper cell subsets. Front. Immunol. 2022, 13, 1081153. [Google Scholar] [CrossRef]
- Liu, G.S.; Li, H.L.; Grierson, D.; Fu, D.Q. NAC Transcription Factor Family Regulation of Fruit Ripening and Quality: A Review. Cells 2022, 11, 525. [Google Scholar] [CrossRef]
- Tokumoto, M.; Lee, J.Y.; Fujiwara, Y.; Satoh, M. Alteration of DNA binding activity of transcription factors in NRK-52E rat proximal tubular cells treated with cadmium. J. Toxicol. Sci. 2014, 39, 735–738. [Google Scholar] [CrossRef]
- Lee, J.Y.; Tokumoto, M.; Hwang, G.W.; Lee, M.Y.; Satoh, M. Identification of ARNT-regulated BIRC3 as the target factor in cadmium renal toxicity. Sci. Rep. 2017, 7, 17287. [Google Scholar] [CrossRef]
- Rath-Deschner, B.; Nogueira, A.V.B.; Memmert, S.; Nokhbehsaim, M.; Augusto Cirelli, J.; Eick, S.; Miosge, N.; Kirschneck, C.; Kesting, M.; Deschner, J.; et al. Regulation of Anti-Apoptotic SOD2 and BIRC3 in Periodontal Cells and Tissues. Int. J. Mol. Sci. 2021, 22, 591. [Google Scholar] [CrossRef]
- Dai, H.; Lv, C.; Huang, Z.; Shen, Y.; Shi, P. The involvement of glutathione in cadmium detoxification of Saccharomyces cerevisiae. Toxicol. Environ. Chem. 2024, 106, 117–131. [Google Scholar] [CrossRef]
- Delalande, O.; Desvaux, H.; Godat, E.; Valleix, A.; Junot, C.; Labarre, J.; Boulard, Y. Cadmium-glutathione solution structures provide new insights into heavy metal detoxification. FEBS J. 2010, 277, 5086–5096. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, T.; Zhang, M.; Duan, X.; Chen, J.; Liu, Y.; Tao, Z.; Guo, Q. Genome-Wide Identification of Glutathione S-Transferase Family from Dendrobium officinale and the Functional Characterization of DoGST5 in Cadmium Tolerance. Int. J. Mol. Sci. 2024, 25, 8439. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2025, 99, 153–209. [Google Scholar] [CrossRef] [PubMed]
- Keçecioğlu, C.; Sarıkaya, C.; Aydın, A.; Charehsaz, M.; Efendi, H. Investigation of the Relationship Between Heavy Metals (Cadmium, Arsenic, and Lead) and Metallothionein in Multiple Sclerosis. Cureus 2024, 16, e66754. [Google Scholar] [CrossRef]
- Marikar, F.; Zi-Chun, H. Metal-binding protein: Metallothionein. Int. J. Med. Biochem. 2023, 6, 57–62. [Google Scholar]
- Sabolić, I.; Breljak, D.; Skarica, M.; Herak-Kramberger, C.M. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 2010, 23, 897–926. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Qin, J.; Yuan, H.; Guo, M.; Shang, M.; Niu, S.; Li, Y.; Li, Q.; Xue, Y. Recombinant human metallothionein-III alleviates oxidative damage induced by copper and cadmium in Caenorhabditis elegans. J. Appl. Toxicol. 2023, 43, 1242–1252. [Google Scholar] [CrossRef]
- Vitelli, V.; Giamborino, A.; Bertolini, A.; Saba, A.; Andreucci, A. Cadmium Stress Signaling Pathways in Plants: Molecular Responses and Mechanisms. Curr. Issues Mol. Biol. 2024, 46, 6052–6068. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, H.; Luo, C.; Zhang, X.; Chen, Y.; Yue, F.; Xie, B.; Chen, T.; Zou, C. The Next-Generation Probiotic E coli 1917-pSK18a-MT Ameliorates Cadmium-Induced Liver Injury by Surface Display of Metallothionein and Modulation of Gut Microbiota. Nutrients 2024, 16, 1468. [Google Scholar] [CrossRef]
- Alnuaimi, S.; Reljic, T.; Abdulla, F.S.; Memon, H.; Al-Ali, S.; Smith, T.; Serdarevic, F.; Velija Asimi, Z.; Kumar, A.; Semiz, S. PPAR agonists as add-on treatment with metformin in management of type 2 diabetes: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 8809. [Google Scholar] [CrossRef]
- Christofides, A.; Konstantinidou, E.; Jani, C.; Boussiotis, V.A. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism 2021, 114, 154338. [Google Scholar] [CrossRef]
- Hayes, C.M.; Gallucci, G.M.; Boyer, J.L.; Assis, D.N.; Ghonem, N.S. PPAR agonists for the treatment of cholestatic liver diseases: Over a decade of clinical progress. Hepatol. Commun. 2025, 9, e0612. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Chaudhary, R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int. Immunopharmacol. 2025, 155, 114616. [Google Scholar] [CrossRef] [PubMed]
- Titus, C.; Hoque, M.T.; Bendayan, R. PPAR agonists for the treatment of neuroinflammatory diseases. Trends Pharmacol. Sci. 2024, 45, 9–23. [Google Scholar] [CrossRef]
- Mori, C.; Lee, J.-Y.; Tokumoto, M.; Satoh, M. Cadmium Toxicity Is Regulated by Peroxisome Proliferator-Activated Receptor δ in Human Proximal Tubular Cells. Int. J. Mol. Sci. 2022, 23, 8652. [Google Scholar] [CrossRef]
- Fu, Y.; Su, L.; Cai, M.; Yao, B.; Xiao, S.; He, Q.; Xu, L.; Yang, L.; Zhao, C.; Wan, T.; et al. Downregulation of CPA4 inhibits non small-cell lung cancer growth by suppressing the AKT/c-MYC pathway. Mol. Carcinog. 2019, 58, 2026–2039. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, H.; Sun, L.; Zhao, D.; Liu, P.; Yan, M.; Zaidi, N.; Izadmehr, S.; Gupta, A.; Abu-Amer, W.; et al. FSIP1 binds HER2 directly to regulate breast cancer growth and invasiveness. Proc. Natl. Acad. Sci. USA 2017, 114, 7683–7688. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Y.; Liu, C.; Lu, T.; Zhai, Q.; Wang, H.; Zhang, J. Inhibition of VDAC1 prevents oxidative stress and apoptosis induced by bisphenol A in spermatogonia via AMPK/mTOR signaling pathway. J. Toxicol. Sci. 2023, 48, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Baloch, S.; Kazi, T.G.; Baig, J.A.; Afridi, H.I.; Arain, M.B. Occupational exposure of lead and cadmium on adolescent and adult workers of battery recycling and welding workshops: Adverse impact on health. Sci. Total Environ. 2020, 720, 137549. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Fu, M.; Bi, R.; Zheng, X.; Fu, B.; Tian, S.; Liu, C.; Li, Q.; Liu, J. Cadmium induced BEAS-2B cells apoptosis and mitochondria damage via MAPK signaling pathway. Chemosphere 2021, 263, 128346. [Google Scholar] [CrossRef]
- Kiran Kumar, K.M.; Naveen Kumar, M.; Patil, R.H.; Nagesh, R.; Hegde, S.M.; Kavya, K.; Babu, R.L.; Ramesh, G.T.; Sharma, S.C. Cadmium induces oxidative stress and apoptosis in lung epithelial cells. Toxicol. Mech. Methods 2016, 26, 658–666. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.Y.; Zhou, X.P.; Liu, Z.P.; Song, X.B.; Wang, Z.Y.; Wang, L. Cadmium disrupts autophagic flux by inhibiting cytosolic Ca2+-dependent autophagosome-lysosome fusion in primary rat proximal tubular cells. Toxicology 2017, 383, 13–23. [Google Scholar] [CrossRef]
- Li, K.; Guo, C.; Ruan, J.; Ning, B.; Wong, C.K.; Shi, H.; Gu, J. Cadmium Disrupted ER Ca2+ Homeostasis by Inhibiting SERCA2 Expression and Activity to Induce Apoptosis in Renal Proximal Tubular Cells. Int. J. Mol. Sci. 2023, 24, 5979. [Google Scholar] [CrossRef]
- Jia, L.; Ma, T.; Lv, L.; Yu, Y.; Zhao, M.; Chen, H.; Gao, L. Endoplasmic reticulum stress mediated by ROS participates in cadmium exposure-induced MC3T3-E1 cell apoptosis. Ecotoxicol. Environ. Saf. 2023, 251, 114517. [Google Scholar] [CrossRef]
- Ding, L.; Wang, K.; Zhu, H.; Liu, Z.; Wang, J. Protective effect of quercetin on cadmium-induced kidney apoptosis in rats based on PERK signaling pathway. J. Trace Elem. Med. Biol. 2024, 82, 127355. [Google Scholar] [CrossRef]
- Liu, B.; Ou, W.C.; Fang, L.; Tian, C.W.; Xiong, Y. Myocyte Enhancer Factor 2A Plays a Central Role in the Regulatory Networks of Cellular Physiopathology. Aging Dis. 2023, 14, 331–349. [Google Scholar] [CrossRef]
- Viswanathan, M.P.; Mullainadhan, V.; Karundevi, B. DEHP and Its Metabolite MEHP Alter the Insr and Glut4 Gene Expression by Blunting the Interaction of Transcription Factors in L6 Myotubes. Int. J. Toxicol. 2025, 44, 170–180. [Google Scholar] [CrossRef]
- Lee, J.Y.; Tokumoto, M.; Satoh, M. Cadmium toxicity mediated by the inhibition of SLC2A4 expression in human proximal Tubule cells. Faseb J. 2021, 35, e21236. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Chen, H.; Xue, J.; Li, P.; Fu, X. The role of GLUT2 in glucose metabolism in multiple organs and tissues. Mol. Biol. Rep. 2023, 50, 6963–6974. [Google Scholar] [CrossRef] [PubMed]
- Luengo, A.; Li, Z.; Gui, D.Y.; Sullivan, L.B.; Zagorulya, M.; Do, B.T.; Ferreira, R.; Naamati, A.; Ali, A.; Lewis, C.A.; et al. Increased demand for NAD(+) relative to ATP drives aerobic glycolysis. Mol. Cell 2021, 81, 691–707.e6. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.H.; Lin, H.C.; Chen, S.W.; Tai, Y.T.; Jung, S.M.; Ko, F.H.; Pang, J.S.; Chu, P.H. Cadmium exposure induces histological damage and cytotoxicity in the cardiovascular system of mice. Food Chem. Toxicol. 2023, 175, 113740. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.C.; Hao, W.M.; Chu, P.H. Cadmium and cardiovascular disease: An overview of pathophysiology, epidemiology, therapy, and predictive value. Rev. Port. Cardiol. (Engl. Ed.) 2021, 40, 611–617. [Google Scholar] [CrossRef]
- Teschke, R. Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular Aspects in Experimental Liver Injury. Int. J. Mol. Sci. 2022, 23, 12213. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Wang, S.; Hou, L.; Cui, Z.; Li, Q.; Huang, H. Selenium alleviates cadmium-induced oxidative stress, endoplasmic reticulum stress and programmed necrosis in chicken testes. Sci. Total Environ. 2023, 863, 160601. [Google Scholar] [CrossRef]
- Zhao, J.; Zeng, H.; Guo, C.; Qi, X.; Yang, Z.; Wang, W. Cadmium Exposure Induces Apoptosis and Necrosis of Thyroid Cells via the Regulation of miR-494-3p/PTEN Axis. Biol. Trace Elem. Res. 2024, 202, 5061–5070. [Google Scholar] [CrossRef]
- Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol. Immunol. 2021, 18, 1106–1121. [Google Scholar] [CrossRef] [PubMed]
- Ketelut-Carneiro, N.; Fitzgerald, K.A. Apoptosis, Pyroptosis, and Necroptosis-Oh My! The Many Ways a Cell Can Die. J. Mol. Biol. 2022, 434, 167378. [Google Scholar] [CrossRef] [PubMed]
- Martens, S.; Bridelance, J.; Roelandt, R.; Vandenabeele, P.; Takahashi, N. MLKL in cancer: More than a necroptosis regulator. Cell Death Differ. 2021, 28, 1757–1772. [Google Scholar] [CrossRef]
- Yan, J.; Wan, P.; Choksi, S.; Liu, Z.G. Necroptosis and tumor progression. Trends Cancer 2022, 8, 21–27. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Y.; Inuzuka, H.; Wei, W. Necroptosis pathways in tumorigenesis. Semin. Cancer Biol. 2022, 86, 32–40. [Google Scholar] [CrossRef]
- Chen, X.; Bi, M.; Yang, J.; Cai, J.; Zhang, H.; Zhu, Y.; Zheng, Y.; Liu, Q.; Shi, G.; Zhang, Z. Cadmium exposure triggers oxidative stress, necroptosis, Th1/Th2 imbalance and promotes inflammation through the TNF-α/NF-κB pathway in swine small intestine. J. Hazard. Mater. 2022, 421, 126704. [Google Scholar] [CrossRef]
- Mahalanobish, S.; Saha, S.; Dutta, S.; Ghosh, S.; Sil, P.C. Melatonin counteracts necroptosis and pulmonary edema in cadmium-induced chronic lung injury through the inhibition of angiotensin II. J. Biochem. Mol. Toxicol. 2022, 36, e23163. [Google Scholar] [CrossRef]
- Zec, M.; Srdic-Rajic, T.; Krivokuca, A.; Jankovic, R.; Todorovic, T.; Andelkovic, K.; Radulovic, S. Novel selenosemicarbazone metal complexes exert anti-tumor effect via alternative, caspase-independent necroptotic cell death. Med. Chem. 2014, 10, 759–771. [Google Scholar] [CrossRef]
- Zheng, X.; Sun, Y.; Wang, J.; Yin, Y.; Li, Z.; Liu, B.; Hu, H.; Xu, J.; Dai, Y.; Kanwar, Y.S.; et al. Cadmium exposure induces Leydig cell injury via necroptosis caused by oxidative stress and TNF-α/TNFR1 signaling. Biochem. Biophys. Res. Commun. 2025, 761, 151717. [Google Scholar] [CrossRef] [PubMed]
- Coradduzza, D.; Congiargiu, A.; Chen, Z.; Zinellu, A.; Carru, C.; Medici, S. Ferroptosis and Senescence: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 3658. [Google Scholar] [CrossRef]
- Liang, D.; Minikes, A.M.; Jiang, X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell 2022, 82, 2215–2227. [Google Scholar] [CrossRef]
- Rochette, L.; Dogon, G.; Rigal, E.; Zeller, M.; Cottin, Y.; Vergely, C. Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. Int. J. Mol. Sci. 2022, 24, 449. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Wang, L.; Tang, H.; Liu, X.; Peng, F.; Peng, C. Ferroptosis in Non-Small Cell Lung Cancer: Progression and Therapeutic Potential on It. Int. J. Mol. Sci. 2021, 22, 13335. [Google Scholar] [CrossRef] [PubMed]
- Kajarabille, N.; Latunde-Dada, G.O. Programmed Cell-Death by Ferroptosis: Antioxidants as Mitigators. Int. J. Mol. Sci. 2019, 20, 4968. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Kang, R.; Klionsky, D.J.; Tang, D. Ferroptosis: Machinery and regulation. Autophagy 2021, 17, 2054–2081. [Google Scholar] [CrossRef]
- Deng, P.; Li, J.; Lu, Y.; Hao, R.; He, M.; Li, M.; Tan, M.; Gao, P.; Wang, L.; Hong, H.; et al. Chronic cadmium exposure triggered ferroptosis by perturbing the STEAP3-mediated glutathione redox balance linked to altered metabolomic signatures in humans. Sci. Total Environ. 2023, 905, 167039. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Liang, N.N.; Zhang, X.Y.; Ren, Y.H.; Wu, W.Z.; Liu, Z.B.; He, Y.Z.; Zhang, Y.H.; Huang, Y.C.; Zhang, T.; et al. Mitochondrial GPX4 acetylation is involved in cadmium-induced renal cell ferroptosis. Redox Biol. 2024, 73, 103179. [Google Scholar] [CrossRef]
- Qi, S.; Wang, Q.; Zhang, J.; Liu, Q.; Li, C. Pyroptosis and Its Role in the Modulation of Cancer Progression and Antitumor Immunity. Int. J. Mol. Sci. 2022, 23, 10494. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, H.; Yang, Y.; Wang, H. The Role of Autophagy and Pyroptosis in Liver Disorders. Int. J. Mol. Sci. 2022, 23, 6208. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Zeng, L.; Wang, X.; Xiang, W.; Su, P. Cadmium exposure induces pyroptosis of TM4 cells through oxidative stress damage and inflammasome activation. Ecotoxicol. Environ. Saf. 2024, 270, 115930. [Google Scholar] [CrossRef]
- Zhou, J.; Zeng, L.; Zhang, Y.; Wang, M.; Li, Y.; Jia, Y.; Wu, L.; Su, P. Cadmium exposure induces pyroptosis in testicular tissue by increasing oxidative stress and activating the AIM2 inflammasome pathway. Sci. Total Environ. 2022, 847, 157500. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Lee, M.S. Autophagy—A key player in cellular and body metabolism. Nat. Rev. Endocrinol. 2014, 10, 322–337. [Google Scholar] [CrossRef]
- Zhao, X.; Shi, X.; Yao, Y.; Li, X.; Xu, S. Autophagy flux inhibition mediated by lysosomal dysfunction participates in the cadmium exposure-induced cardiotoxicity in swine. Biofactors 2022, 48, 946–958. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; Yang, Y.; Li, Q.; Liu, Y.; Cao, J. ATF4/PHGDH mediates the effects of ER stress on cadmium-induced autophagy and glycolysis. Toxicology 2024, 509, 153976. [Google Scholar] [CrossRef]
- Bao, S.; Zhang, C.; Luo, S.; Jiang, L.; Li, Q.; Kong, Y.; Cao, J. Autophagy induces mTOR-dependent glucose uptake and mTOR-independent lactate utilization in cadmium-treated A549 cells. Toxicol. In Vitro 2023, 86, 105513. [Google Scholar] [CrossRef]
- Hamilton, D.L.; Valberg, L.S. Relationship between cadmium and iron absorption. Am. J. Physiol. 1974, 227, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
- Horiguchi, H. Anemia induced by cadmium intoxication. Jpn. J. Hyg. 2007, 62, 888–904. [Google Scholar] [CrossRef]
- Widhalm, R.; Ellinger, I.; Granitzer, S.; Forsthuber, M.; Bajtela, R.; Gelles, K.; Hartig, P.Y.; Hengstschläger, M.; Zeisler, H.; Salzer, H.; et al. Human placental cell line HTR-8/SVneo accumulates cadmium by divalent metal transporters DMT1 and ZIP14. Metallomics 2020, 12, 1822–1833. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.T.; Zhen, J.; Leng, J.Y.; Cai, L.; Ji, H.L.; Keller, B.B. Zinc as a countermeasure for cadmium toxicity. Acta Pharmacol. Sin. 2021, 42, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Lee, J.Y.; Banno, H.; Imai, S.; Tokumoto, M.; Hasegawa, T.; Seko, Y.; Nagase, H.; Satoh, M. Cadmium induces iron deficiency anemia through the suppression of iron transport in the duodenum. Toxicol. Lett. 2020, 332, 130–139. [Google Scholar] [CrossRef]
- Tokumoto, M.; Lee, J.Y.; Fujiwara, Y.; Satoh, M. Long-Term Exposure to Cadmium Causes Hepatic Iron Deficiency through the Suppression of Iron-Transport-Related Gene Expression in the Proximal Duodenum. Toxics 2023, 11, 641. [Google Scholar] [CrossRef]
- Fang, Y.-J.; Lin, K.-L.; Lee, J.-H.; Luo, K.-H.; Chen, T.-H.; Yang, C.-C.; Chuang, H.-Y. Interaction between Single Nucleotide Polymorphisms (SNP) of Tumor Necrosis Factor-Alpha (TNF-α) Gene and Plasma Arsenic and the Effect on Estimated Glomerular Filtration Rate (eGFR). Int. J. Environ. Res. Public Health 2022, 19, 4404. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Wei, Y.; Pan, J.; Li, X.; Xu, B.; Deng, Y.; Yang, T.; Liu, W. Shedding new light on methylmercury-induced neurotoxicity through the crosstalk between autophagy and apoptosis. Toxicol. Lett. 2022, 359, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Toyama, T.; Xu, S.; Kanemitsu, Y.; Hasegawa, T.; Noguchi, T.; Lee, J.Y.; Matsuzawa, A.; Naganuma, A.; Hwang, G.W. Methylmercury directly modifies the 105th cysteine residue in oncostatin M to promote binding to tumor necrosis factor receptor 3 and inhibit cell growth. Arch. Toxicol. 2023, 97, 1887–1897. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, J.; Li, K.; Xu, S.; Yin, H.; Li, S.; Gao, X.J. Trimethyltin chloride exposure induces apoptosis and necrosis and impairs islet function through autophagic interference. Ecotoxicol. Environ. Saf. 2023, 267, 115628. [Google Scholar] [CrossRef]
- Renu, K.; Chakraborty, R.; Myakala, H.; Koti, R.; Famurewa, A.C.; Madhyastha, H.; Vellingiri, B.; George, A.; Valsala Gopalakrishnan, A. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium)—induced hepatotoxicity—A review. Chemosphere 2021, 271, 129735. [Google Scholar] [CrossRef]
- Wu, S.-Z.; Lan, Y.-Y.; Chu, C.-Y.; Wang, Y.-K.; Lee, Y.-P.; Chang, H.-Y.; Huang, B.-M. Arsenic compounds induce apoptosis by activating the MAPK and caspase pathways in FaDu oral squamous carcinoma cells. Int. J. Oncol. 2022, 60, 1–30. [Google Scholar] [CrossRef]
- Thévenod, F.; Lee, W.K. Cadmium and cellular signaling cascades: Interactions between cell death and survival pathways. Arch. Toxicol. 2013, 87, 1743–1786. [Google Scholar] [CrossRef] [PubMed]
- Tuffour, A.; Adebayiga Kosiba, A.; Addai Peprah, F.; Gu, J.; Zhou, Y.; Shi, H. Cadmium-induced stress: A close look at the relationship between autophagy and apoptosis. Toxicol. Sci. 2023, 194, 1–12. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Lee, J.Y.; Tokumoto, M.; Satoh, M. Cadmium renal toxicity via apoptotic pathways. Biol. Pharm. Bull. 2012, 35, 1892–1897. [Google Scholar] [CrossRef]
- Huang, P.; Chen, G.; Jin, W.; Mao, K.; Wan, H.; He, Y. Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases. Int. J. Mol. Sci. 2022, 23, 7292. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, S.; Xie, R.; Liu, J. Extracellular ATP accelerates cell death and decreases tight junction protein ZO-1 in hypoxic cochlear strial marginal cells in neonatal rats. Cell Signal. 2023, 108, 110732. [Google Scholar] [CrossRef]
- Bailén, M.; Tabone, M.; Bressa, C.; Lominchar, M.G.M.; Larrosa, M.; González-Soltero, R. Unraveling Gut Microbiota Signatures Associated with PPARD and PARGC1A Genetic Polymorphisms in a Healthy Population. Genes 2022, 13, 289. [Google Scholar] [CrossRef]
- Hishida, A.; Wakai, K.; Naito, M.; Tamura, T.; Kawai, S.; Hamajima, N.; Oze, I.; Imaizumi, T.; Turin, T.C.; Suzuki, S.; et al. Polymorphisms in PPAR Genes (PPARD, PPARG, and PPARGC1A) and the Risk of Chronic Kidney Disease in Japanese: Cross-Sectional Data from the J-MICC Study. PPAR Res. 2013, 2013, 980471. [Google Scholar] [CrossRef]
- Leung, A.K.C.; Lam, J.M.; Wong, A.H.C.; Hon, K.L.; Li, X. Iron Deficiency Anemia: An Updated Review. Curr. Pediatr. Rev. 2024, 20, 339–356. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Accelerating Anaemia Reduction: A Comprehensive Framework for Action; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Raleigh, M.F.; Yano, A.S.; Shaffer, N.E. Anemia in Infants and Children: Evaluation and Treatment. Am. Fam. Physician 2024, 110, 612–620. [Google Scholar] [PubMed]
- Lee, J.-Y.; Mori, C.; Tokumoto, M.; Satoh, M. Changes in DNA-binding activity of transcription factors in the kidney of mice exposed to cadmium. J. Toxicol. Sci. 2021, 46, 125–129. [Google Scholar] [CrossRef] [PubMed]
Commodity/ Product Name | ML (mg/kg) | Commodity/ Product NAME | ML (mg/kg) | Commodity/Product Name | ML (mg/kg) |
---|---|---|---|---|---|
Brassica vegetables | 0.05 | Stalk and stem vegetables | 0.1 | Natural mineral waters | 0.003 * |
Bulb vegetables | 0.05 | Cereal grains | 0.1 | Salt, food grade | 0.5 |
Fruiting vegetables | 0.05 | Rice, polished | 0.4 | Chocolates containing or declaring <30% total cocoa solids on a dry matter basis | 0.3 |
Leafy vegetables | 0.2 | Wheat | 0.2 | Chocolate containing or declaring ≥30% to <50% total cocoa solids on a dry matter basis | 0.7 |
Legume vegetables | 0.1 | Quinoa | 0.15 | Chocolate containing or declaring ≥50% to <70% total cocoa solids on a dry matter basis | 0.8 |
Pulses | 0.1 | Marine bivalve molluscs | 2 | Chocolate containing or declaring ≥70% total cocoa solids on a dry matter basis | 0.9 |
Root and tuber vegetables | 0.1 | Cephalopods | 2 | Cocoa powder (100% total cocoa solids on a dry matter basis) ready for consumption | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-Y.; Tokumoto, M.; Satoh, M. Molecular Mechanisms of Cadmium-Induced Toxicity and Its Modification. Int. J. Mol. Sci. 2025, 26, 7515. https://doi.org/10.3390/ijms26157515
Lee J-Y, Tokumoto M, Satoh M. Molecular Mechanisms of Cadmium-Induced Toxicity and Its Modification. International Journal of Molecular Sciences. 2025; 26(15):7515. https://doi.org/10.3390/ijms26157515
Chicago/Turabian StyleLee, Jin-Yong, Maki Tokumoto, and Masahiko Satoh. 2025. "Molecular Mechanisms of Cadmium-Induced Toxicity and Its Modification" International Journal of Molecular Sciences 26, no. 15: 7515. https://doi.org/10.3390/ijms26157515
APA StyleLee, J.-Y., Tokumoto, M., & Satoh, M. (2025). Molecular Mechanisms of Cadmium-Induced Toxicity and Its Modification. International Journal of Molecular Sciences, 26(15), 7515. https://doi.org/10.3390/ijms26157515