Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (246)

Search Parameters:
Keywords = ion-channel inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7509 KiB  
Article
A New Kv1.3 Channel Blocker from the Venom of the Ant Tetramorium bicarinatum
by Guillaume Boy, Laurence Jouvensal, Nathan Téné, Jean-Luc Carayon, Elsa Bonnafé, Françoise Paquet, Michel Treilhou, Karine Loth and Arnaud Billet
Toxins 2025, 17(8), 379; https://doi.org/10.3390/toxins17080379 - 30 Jul 2025
Viewed by 293
Abstract
Ant venoms are rich sources of bioactive molecules, including peptide toxins with potent and selective activity on ion channels, which makes them valuable for pharmacological research and therapeutic development. Voltage-dependent potassium (Kv) channels, critical for regulating cellular excitability or cell cycle progression control, [...] Read more.
Ant venoms are rich sources of bioactive molecules, including peptide toxins with potent and selective activity on ion channels, which makes them valuable for pharmacological research and therapeutic development. Voltage-dependent potassium (Kv) channels, critical for regulating cellular excitability or cell cycle progression control, are targeted by a diverse array of venom-derived peptides. This study focuses on MYRTXA4-Tb11a, a peptide from Tetramorium bicarinatum venom, which was previously shown to have a strong paralytic effect on dipteran species without cytotoxicity on insect cells. In the present study, we show that Tb11a exhibited no or low cytotoxicity toward mammalian cells either, even at high concentrations, while electrophysiological studies revealed a blockade of hKv1.3 activity. Additionally, Ta11a, an analog of Tb11a from the ant Tetramorium africanum, demonstrated similar Kv1.3 inhibitory properties. Structural analysis supports that the peptide acts on Kv1.3 channels through the functional dyad Y21-K25 and that the disulfide bridge is essential for biological activity, as reduction seems to disrupt the peptide conformation and impair the dyad. These findings highlight the importance of three-dimensional structure in channel modulation and establish Tb11a and Ta11a as promising Kv1.3 inhibitors. Future research should investigate their selectivity across additional ion channels and employ structure-function studies to further enhance their pharmacological potential. Full article
(This article belongs to the Special Issue Unlocking the Deep Secrets of Toxins)
Show Figures

Figure 1

11 pages, 769 KiB  
Article
Sperm Motility Is Modulated by F4-Neuroprostane via the Involvement of Ryanodine Receptors
by Cinzia Signorini, Elena Moretti, Laura Liguori, Caterina Marcucci, Thierry Durand, Jean-Marie Galano, Camille Oger and Giulia Collodel
Int. J. Mol. Sci. 2025, 26(15), 7231; https://doi.org/10.3390/ijms26157231 - 26 Jul 2025
Viewed by 232
Abstract
F4-Neuroprostanes (F4-NeuroPs), oxidative metabolites of docosahexaenoic acid, act as bioactive lipid mediators enhancing sperm motility and induce capacitation-like changes in vitro. Their biological action is proposed to involve sperm ion channels, in particular ryanodine receptors (RyRs), which regulate intracellular [...] Read more.
F4-Neuroprostanes (F4-NeuroPs), oxidative metabolites of docosahexaenoic acid, act as bioactive lipid mediators enhancing sperm motility and induce capacitation-like changes in vitro. Their biological action is proposed to involve sperm ion channels, in particular ryanodine receptors (RyRs), which regulate intracellular calcium homeostasis. We evaluated the effects of dantrolene, a RyR inhibitor, on motility and vitality of a selected spermatozoa at different concentrations (10, 30, 50, 100 μM). Then sperm motility, acrosome integrity, and RyR localization following co-incubation with dantrolene (D50 or D100 μM) and 4-/10-F4t-NeuroPs (7 ng) were investigated. Acrosomal status was assessed using Pisum sativum agglutinin (PSA) staining and RyR localization by immunofluorescence. D50 was identified as the minimum effective dose to induce significant reductions in sperm motility. F4-NeuroPs significantly increased rapid progressive motility versus controls. Co-incubation with F4-NeuroPs + D50 reduced rapid motility and increased in situ and circular movement. The acrosome staining appeared altered or absent to different percentages, and RyR localization was also seen in the midpiece. These findings suggested that F4-NeuroPs enhance sperm motility via RyR-mediated pathways, as confirmed by dantrolene inhibition. Accordingly, our results underscore the physiological relevance of RyRs in sperm function and suggest new insights into lipid-based mechanisms regulating sperm motility. Full article
Show Figures

Figure 1

16 pages, 916 KiB  
Review
Molecular Mechanisms and Pathways in Visceral Pain
by Qiqi Zhou and George Nicholas Verne
Cells 2025, 14(15), 1146; https://doi.org/10.3390/cells14151146 - 25 Jul 2025
Viewed by 385
Abstract
Chronic visceral pain, a significant contributor to morbidity in the United States, affects millions and results in substantial economic costs. Despite its impact, the mechanisms underlying disorders of gut–brain interaction (DGBIs), such as irritable bowel syndrome (IBS), remain poorly understood. Visceral hypersensitivity, a [...] Read more.
Chronic visceral pain, a significant contributor to morbidity in the United States, affects millions and results in substantial economic costs. Despite its impact, the mechanisms underlying disorders of gut–brain interaction (DGBIs), such as irritable bowel syndrome (IBS), remain poorly understood. Visceral hypersensitivity, a hallmark of chronic visceral pain, involves an enhanced pain response in internal organs to normal stimuli. Various factors like inflammation, intestinal hyperpermeability, and epigenetic modifications influence its presentation. Emerging evidence suggests that persistent colonic stimuli, disrupted gut barriers, and altered non-coding RNA (ncRNA) expression contribute to the pathophysiology of visceral pain. Additionally, cross-sensitization of afferent pathways shared by pelvic organs underpins the overlap of chronic pelvic pain disorders, such as interstitial cystitis and IBS. Central sensitization and viscerosomatic convergence further exacerbate pain, with evidence showing IBS patients exhibit hypersensitivity to both visceral and somatic stimuli. The molecular mechanisms of visceral pain involve critical mediators such as cytokines, prostaglandins, and neuropeptides, alongside ion channels like transient receptor potential vanilloid 1 (TRPV1) and acid-sensing ion channels (ASICs). These molecular insights indicate potential therapeutic targets and highlight the possible use of TRPV1 antagonists and ASIC inhibitors to mitigate visceral pain. This review explores the neurophysiological pathways of visceral pain, focusing on peripheral and central sensitization mechanisms, to advance the development of targeted treatments for chronic pain syndromes, particularly IBS and related disorders. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Neuropathic Pain)
Show Figures

Figure 1

34 pages, 1051 KiB  
Review
Atrial Fibrillation in Diabetes: Pathogenesis and Targeted Rhythm Control Strategies
by Konstantinos Grigoriou, Paschalis Karakasis, Konstantinos Pamporis, Panagiotis Theofilis, Dimitrios Patoulias, Efstratios Karagiannidis, Barbara Fyntanidou, Antonios P. Antoniadis and Nikolaos Fragakis
Curr. Issues Mol. Biol. 2025, 47(7), 559; https://doi.org/10.3390/cimb47070559 - 17 Jul 2025
Viewed by 493
Abstract
Diabetes mellitus and atrial fibrillation (AF) frequently coexist, creating a complex bidirectional relationship that exacerbates cardiovascular risk and challenges clinical management. Diabetes fosters a profibrotic, pro-inflammatory, and proarrhythmic atrial substrate through a constellation of pathophysiologic mechanisms, including metabolic remodeling, oxidative stress, mitochondrial dysfunction, [...] Read more.
Diabetes mellitus and atrial fibrillation (AF) frequently coexist, creating a complex bidirectional relationship that exacerbates cardiovascular risk and challenges clinical management. Diabetes fosters a profibrotic, pro-inflammatory, and proarrhythmic atrial substrate through a constellation of pathophysiologic mechanisms, including metabolic remodeling, oxidative stress, mitochondrial dysfunction, ion channel dysregulation, and autonomic imbalance, thereby promoting AF initiation and progression. Conventional rhythm control strategies remain less effective in diabetic individuals, underscoring the need for innovative, substrate-targeted interventions. In this context, sodium–glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists have emerged as promising agents with pleiotropic antiarrhythmic properties, modulating fibrosis, inflammation, and mitochondrial integrity. Moreover, advances in anti-inflammatory, antifibrotic, and ion channel-modulating therapeutics, coupled with novel mitochondrial-targeted strategies, are reshaping the therapeutic landscape. Multi-omics approaches are further refining our understanding of diabetes-associated AF, facilitating precision medicine and biomarker-guided interventions. This review delineates the molecular nexus linking diabetes and AF, critically appraises emerging rhythm control strategies, and outlines translational avenues poised to advance individualized management in this high-risk population. Full article
(This article belongs to the Special Issue Advances in Molecular Therapies and Disease Associations in Diabetes)
Show Figures

Figure 1

32 pages, 1658 KiB  
Review
Advances in Viroporin Function and Structure: A Comparative Analysis of Alphavirus 6K with Well-Characterized Viroporins
by Vashi Negi, Andrew S. Miller and Richard J. Kuhn
Viruses 2025, 17(6), 868; https://doi.org/10.3390/v17060868 - 19 Jun 2025
Viewed by 1075
Abstract
Viruses encode ion channel proteins called viroporins to assist in infection and immune evasion. The alphavirus 6K protein is classified as a member of the viroporin family of proteins. Several studies have characterized the role of 6K in alphavirus budding and infection since [...] Read more.
Viruses encode ion channel proteins called viroporins to assist in infection and immune evasion. The alphavirus 6K protein is classified as a member of the viroporin family of proteins. Several studies have characterized the role of 6K in alphavirus budding and infection since its discovery in the late 1970s. In this review, we summarize 6K research and discuss some unanswered questions regarding 6K biology. We highlight the similarities and differences between 6K and viroporins of clinically relevant viruses—influenza A virus, HIV-1, hepatitis C virus, and SARS-CoV-2—and address their importance as therapeutic targets. The sensitivity of these viroporins to common inhibitors and their ability to functionally complement each other underscore their potential as targets for broad-spectrum antiviral therapies. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

15 pages, 564 KiB  
Review
Angiogenesis in Atrial Fibrillation: A Literature Review
by Jie Lin, Haihuan Lin, Zhijun Xu, Zhihui Yang, Chenglv Hong, Ying Wang and Haocheng Lu
Biomedicines 2025, 13(6), 1399; https://doi.org/10.3390/biomedicines13061399 - 6 Jun 2025
Viewed by 752
Abstract
Atrial fibrillation (AF), the most prevalent clinically significant cardiac arrhythmia, is characterized by chaotic atrial electrical activity and currently affects an estimated 2.5–3.5% of the global population. Its pathogenesis involves ion channel dysfunction, inflammatory cascades, and structural remodeling processes, notably fibrosis. Angiogenesis, the [...] Read more.
Atrial fibrillation (AF), the most prevalent clinically significant cardiac arrhythmia, is characterized by chaotic atrial electrical activity and currently affects an estimated 2.5–3.5% of the global population. Its pathogenesis involves ion channel dysfunction, inflammatory cascades, and structural remodeling processes, notably fibrosis. Angiogenesis, the physiological/pathological process of new blood vessel formation, plays a multifaceted role in AF progression. This review synthesizes evidence highlighting angiogenesis’s dual role in AF pathogenesis: while excessive or dysregulated angiogenesis promotes atrial remodeling through fibrosis, and electrical dysfunction via VEGF, ANGPT, and FGF signaling pathways, compensatory angiogenesis exerts protective effects by improving tissue perfusion to alleviate ischemia and inflammation. Therapeutically, targeting angiogenic pathways—particularly VEGF—represents a promising strategy for modulating structural remodeling; however, non-selective VEGF inhibition raises safety concerns due to cardiovascular toxicity, necessitating cautious exploration. Emerging evidence highlights that anti-cancer agents (e.g., ibrutinib, bevacizumab) impair endothelial homeostasis and elevate AF risk, underscoring the need for cardio-oncology frameworks to optimize risk–benefit ratios. Preclinical studies on angiogenesis inhibitors and gene therapies provide mechanistic insights, but clinical validation remains limited. Future research should prioritize elucidating mechanistic complexities, developing biomarker refinement, and implementing interdisciplinary strategies integrating single-cell sequencing with cardio-oncology principles. This review emphasizes the imperative to clarify angiogenic mechanisms, optimize therapeutic strategies, and balance pro-arrhythmic versus compensatory angiogenesis, in pursuit of personalized AF management. Full article
(This article belongs to the Special Issue Angiogenesis and Related Disorders)
Show Figures

Figure 1

43 pages, 2735 KiB  
Review
Voltage-Gated Ion Channels in Neuropathic Pain Signaling
by Ricardo Felix, Alejandra Corzo-Lopez and Alejandro Sandoval
Life 2025, 15(6), 888; https://doi.org/10.3390/life15060888 - 30 May 2025
Viewed by 1259
Abstract
Neuropathic pain is a chronic and debilitating disorder of the somatosensory system that affects a significant proportion of the population and is characterized by abnormal responses such as hyperalgesia and allodynia. Voltage-gated ion channels, including sodium (NaV), calcium (CaV), [...] Read more.
Neuropathic pain is a chronic and debilitating disorder of the somatosensory system that affects a significant proportion of the population and is characterized by abnormal responses such as hyperalgesia and allodynia. Voltage-gated ion channels, including sodium (NaV), calcium (CaV), and potassium (KV) channels, play a pivotal role in modulating neuronal excitability and pain signal transmission following nerve injury. This review intends to provide a comprehensive analysis of the molecular and cellular mechanisms by which dysregulation in the expression, localization, and function of specific NaV channel subtypes (mainly NaV1.7 and NaV1.8) and their auxiliary subunits contributes to aberrant neuronal activation, the generation of ectopic discharges, and sensitization in neuropathic pain. Likewise, special emphasis is placed on the crucial role of CaV channels, particularly CaV2.2 and the auxiliary subunit CaVα2δ, whose overexpression increases calcium influx, neurotransmitter release, and neuronal hyperexcitability, thus maintaining persistent pain states. Furthermore, KV channels (particularly KV7 channels) function as brakes on neuronal excitability, and their dysregulation facilitates the development and maintenance of neuropathic pain. Therefore, targeting specific KV channel subtypes to restore their function is also a promising therapeutic strategy for alleviating neuropathic pain symptoms. On the other hand, recent advances in the development of small molecules as selective modulators or inhibitors targeting voltage-gated ion channels are also discussed. These agents have improved efficacy and safety profiles in preclinical and clinical studies by attenuating pathophysiological channel activity and restoring neuronal function. This review seeks to contribute to guiding future research and drug development toward more effective mechanism-based treatments by discussing the molecular mechanisms underlying neuropathic pain and highlighting translational therapeutic opportunities. Full article
(This article belongs to the Special Issue Ion Channels and Neurological Disease: 2nd Edition)
Show Figures

Figure 1

12 pages, 2091 KiB  
Article
Opposing Calcium-Dependent Effects of GsMTx4 in Acute Lymphoblastic Leukemia: In Vitro Proliferation vs. In Vivo Survival Advantage
by Souleymane Abdoul-Azize, Rachid Zoubairi and Olivier Boyer
Int. J. Mol. Sci. 2025, 26(10), 4822; https://doi.org/10.3390/ijms26104822 - 18 May 2025
Viewed by 462
Abstract
Mechanogated (MG) ion channels play a crucial role in mechano-transduction and immune cell regulation, yet their impact on blood cancers, particularly acute lymphoblastic leukemia (ALL), remains poorly understood. This study investigates the pharmacological effects of GsMTx4, an MG channel inhibitor, in human ALL [...] Read more.
Mechanogated (MG) ion channels play a crucial role in mechano-transduction and immune cell regulation, yet their impact on blood cancers, particularly acute lymphoblastic leukemia (ALL), remains poorly understood. This study investigates the pharmacological effects of GsMTx4, an MG channel inhibitor, in human ALL cells both in vitro and in vivo. Unexpectedly, we found that GsMTx4 remarkably increased basal calcium (Ca2+) levels in ALL cells through constitutive Ca2+ entry and enhanced store-operated Ca2⁺ influx upon thapsigargin stimulation. This increase in basal Ca2+ signaling promoted ALL cell viability and proliferation in vitro. Notably, chelating intracellular Ca2+ with BAPTA-AM reduces GsMTx4-mediated leukemia cell viability and proliferation. However, in vivo, GsMTx4 decreases cytosolic Ca2+ levels in Nalm-6 GFP⁺ cells isolated from mouse blood, effectively countering leukemia progression and significantly extending survival in NSG mice transplanted with leukemia cells (median survival: GsMTx4 vs. control, 37.5 days vs. 29 days, p = 0.0414). Our results highlight the different properties of GsMTx4 activity in in vitro and in vivo models. They also emphasize that Ca2+ signaling is a key vulnerability in leukemia, where its precise modulation dictates disease progression. Thus, targeting Ca2+ channels could offer a novel therapeutic strategy for leukemia by exploiting Ca2+ homeostasis. Full article
Show Figures

Figure 1

18 pages, 2726 KiB  
Article
TMEM16A Maintains Acrosomal Integrity Through ERK1/2, RhoA, and Actin Cytoskeleton During Capacitation
by Ana L. Roa-Espitia, Tania Reyes-Miguel, Monica L. Salgado-Lucio, Joaquín Cordero-Martínez, Dennis Tafoya-Domínguez and Enrique O. Hernández-González
Int. J. Mol. Sci. 2025, 26(8), 3750; https://doi.org/10.3390/ijms26083750 - 16 Apr 2025
Viewed by 579
Abstract
Mammalian spermatozoa undergo a series of physiological and biochemical changes in the oviduct that lead them to acquire the ability to fertilize eggs. During their transit in the oviduct, spermatozoa face a series of environmental changes that can affect sperm viability. A series [...] Read more.
Mammalian spermatozoa undergo a series of physiological and biochemical changes in the oviduct that lead them to acquire the ability to fertilize eggs. During their transit in the oviduct, spermatozoa face a series of environmental changes that can affect sperm viability. A series of ion channels and transporters, as well as the sperm cytoskeleton, allow spermatozoa to remain viable and functional. Cl channels such as TMEM16A (calcium-activated chloride channel), CFTR (cystic fibrosis transmembrane conductance regulator), and ClC3 (chloride voltage-gated channel 3) are some of the ion transporters involved in maintaining cellular homeostasis. They are expressed in mammalian spermatozoa and are associated with capacitation, acrosomal reaction, and motility. However, little is known about their role in maintaining sperm volume. Therefore, this study aimed to determine the mechanism through which TMEM16A maintains sperm volume during capacitation. The effects of TMEM16A were compared to those of CFTR and ClC3. Spermatozoa were capacitated in the presence of specific TMEM16A, CFTR, and ClC3 inhibitors, and the results showed that only TMEM16A inhibition increased acrosomal volume, leading to changes within the acrosome. Similarly, only TMEM16A inhibition prevented actin polymerization during capacitation. Further analysis showed that TMEM16A inhibition also prevented ERK1/2 and RhoA activation. On the other hand, TMEM16A and CFTR inhibition affected both capacitation and spontaneous acrosomal reaction, whereas ClC3 inhibition only affected the spontaneous acrosomal reaction. In conclusion, during capacitation, TMEM16A activity regulates acrosomal structure through actin polymerization and by regulating ERK1/2 and RhoA activities. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 2932 KiB  
Article
Transcriptome Analysis Reveals the Requirement of the TGFβ Pathway in Ascidian Tail Regression
by Wenjie Shi, Penghui Liu, Dongyu Yang, Yuan Zhuang, Boyan Lin and Bo Dong
Cells 2025, 14(7), 546; https://doi.org/10.3390/cells14070546 - 4 Apr 2025
Viewed by 664
Abstract
Metamorphosis is a common developmental process in invertebrate development. It is essential for the degeneration of larval organs, formation of adult organs, and adaptation transformation of the living environment. However, the underlying molecular regulatory mechanism remains to be elucidated. In this study, we [...] Read more.
Metamorphosis is a common developmental process in invertebrate development. It is essential for the degeneration of larval organs, formation of adult organs, and adaptation transformation of the living environment. However, the underlying molecular regulatory mechanism remains to be elucidated. In this study, we used tail regression of ascidian Styela clava as a model to understand the gene regulation pathway and molecular mechanism in organ metamorphosis. The TGFβ signaling pathway was screened and demonstrated to be involved in tail regression based on RNA sequencing on the different larval stages and verification with inhibitor treatment experiments. We further investigated the downstream gene network of the TGFβ signaling pathway through comparative transcriptome data analysis on the TGFβ pathway inhibition samples. Together with qRT-PCR verification, we identified four critical gene functional categories, including ion transporters/water channel, extracellular matrix structural constituent, extracellular matrix organization, and cell polarity establishment. Furthermore, a cross-species comparative analysis between Ciona robusta and S. clava was performed to understand the conservation and divergence of gene regulation in ascidians. Overall, our work identifies a crucial gene regulation pathway in ascidian tail regression and provides several potential downstream targets for understanding the molecular mechanism of larval metamorphosis. Full article
Show Figures

Graphical abstract

19 pages, 1304 KiB  
Review
Ciliary Ion Channels in Polycystic Kidney Disease
by Lubna A. Alshriem, Raghad Buqaileh, Qasim Alorjani and Wissam AbouAlaiwi
Cells 2025, 14(6), 459; https://doi.org/10.3390/cells14060459 - 19 Mar 2025
Viewed by 1396
Abstract
Polycystic kidney disease (PKD) is the most common hereditary disorder that disrupts renal function and frequently progresses to end-stage renal disease. Recent advances have elucidated the critical role of primary cilia and ciliary ion channels, including transient receptor potential (TRP) channels, cystic fibrosis [...] Read more.
Polycystic kidney disease (PKD) is the most common hereditary disorder that disrupts renal function and frequently progresses to end-stage renal disease. Recent advances have elucidated the critical role of primary cilia and ciliary ion channels, including transient receptor potential (TRP) channels, cystic fibrosis transmembrane conductance regulator (CFTR), and polycystin channels, in the pathogenesis of PKD. While some channels primarily function as chloride conductance channels (e.g., CFTR), others primarily regulate calcium (Ca+2) homeostasis. These ion channels are essential for cellular signaling and maintaining the normal kidney architecture. Dysregulation of these pathways due to genetic mutations in PKD1 and PKD2 leads to disrupted Ca+2 and cAMP signaling, aberrant fluid secretion, and uncontrolled cellular proliferation, resulting in tubular cystogenesis. Understanding the molecular mechanisms underlying these dysfunctions has opened the door for innovative therapeutic strategies, including TRPV4 activators, CFTR inhibitors, and calcimimetics, to mitigate cyst growth and preserve renal function. This review summarizes the current knowledge on the roles of ciliary ion channels in PKD pathophysiology, highlights therapeutic interventions targeting these channels, and identifies future research directions for improving patient outcomes. Full article
(This article belongs to the Special Issue The Role of Cilia in Health and Diseases—2nd Edition)
Show Figures

Figure 1

16 pages, 1729 KiB  
Article
Activation of Smooth Muscle Kir2.1 Channels and Na+/K+-ATPase Mediates Dilation of Porcine Coronary Arterioles at Physiological Levels of Potassium
by Travis W. Hein, Habib M. Razavi, Xin Xu, Sonal Somvanshi, Mariappan Muthuchamy and Lih Kuo
Int. J. Mol. Sci. 2025, 26(6), 2654; https://doi.org/10.3390/ijms26062654 - 15 Mar 2025
Cited by 1 | Viewed by 581
Abstract
Metabolic stress on the heart can cause dilation of coronary arterioles for blood flow recruitment. Although potassium ions (K+) released from the myocardium are a major mediator for this response, the underlying signaling pathways for vasodilation are incompletely understood. Herein, the [...] Read more.
Metabolic stress on the heart can cause dilation of coronary arterioles for blood flow recruitment. Although potassium ions (K+) released from the myocardium are a major mediator for this response, the underlying signaling pathways for vasodilation are incompletely understood. Herein, the roles of smooth muscle inward-rectifier K+ channel subtype 2.1 (Kir2.1) and Na+/K+-ATPase were examined. Porcine coronary arterioles were isolated, cannulated, and pressurized for vasomotor study. Vessels developed basal tone and dilated concentration-dependently to extraluminal K+ from 7 to 20 mM. Higher K+ concentrations (25–40 mM) caused graded vasoconstriction. Vasodilation to K+ (10 mM) was not altered by endothelial removal, and blockade of ATP-sensitive K+ channels, voltage-sensitive K+ channels, or calcium-activated K+ channels did not affect K+-induced vasodilation. However, sustained but not abrupt transient vasodilation to K+ was reduced by the nonspecific Kir channel inhibitor Ba2+ or Kir2.1 channel blocker chloroethylclonidine. The Na+/K+-ATPase inhibitor ouabain attenuated K+-elicited vasodilation, and ouabain with Ba2+ abolished the response. Transfection of arterioles with Kir2.1 antisense oligonucleotides abolished sustained but not transient dilation. It is concluded that extraluminal K+ elevation within the physiological range induces initial transient dilation of porcine coronary arterioles by activating smooth muscle Na+/K+-ATPase and sustained dilation via smooth muscle Kir2.1 channels. Full article
Show Figures

Figure 1

18 pages, 3803 KiB  
Article
A High-Throughput Biosensing Approach for Rapid Screening of Compounds Targeting the hNav1.1 Channel: Marine Toxins as a Case Study
by Huijing Shen, Yuxia Cui, Shiyuan Liang, Shuang Zhou, Yingji Li, Yongning Wu and Junxian Song
Mar. Drugs 2025, 23(3), 119; https://doi.org/10.3390/md23030119 - 9 Mar 2025
Viewed by 1315
Abstract
Voltage-gated sodium (Nav) channels play a crucial role in initiating and propagating action potentials throughout the heart, muscles and nervous systems, making them targets for a number of drugs and toxins. While patch-clamp electrophysiology is considered the gold standard for measuring ion channel [...] Read more.
Voltage-gated sodium (Nav) channels play a crucial role in initiating and propagating action potentials throughout the heart, muscles and nervous systems, making them targets for a number of drugs and toxins. While patch-clamp electrophysiology is considered the gold standard for measuring ion channel activity, its labor-intensive and time-consuming nature highlights the need for fast screening strategies to facilitate a preliminary selection of potential drugs or hazards. In this study, a high-throughput and cost-effective biosensing method was developed to rapidly identify specific agonists and inhibitors targeting the human Nav1.1 (hNav1.1) channel. It combines a red fluorescent dye sensitive to transmembrane potentials with CHO cells stably expressing the hNav1.1 α-subunit (hNav1.1-CHO). In the initial screening mode, the tested compounds were mixed with pre-equilibrated hNav1.1-CHO cells and dye to detect potential agonist effects via fluorescence enhancement. In cases where no fluorescence enhancement was observed, the addition of a known agonist veratridine allowed the indication of inhibitor candidates by fluorescence reduction, relative to the veratridine control without test compounds. Potential agonists or inhibitors identified in the initial screening were further evaluated by measuring concentration–response curves to determine EC50/IC50 values, providing semi-quantitative estimates of their binding strength to hNav1.1. This robust, high-throughput biosensing assay was validated through comparisons with the patch-clamp results and tested with 12 marine toxins, yielding consistent results. It holds promise as a low-cost, rapid, and long-term stable approach for drug discovery and non-target screening of neurotoxins. Full article
(This article belongs to the Special Issue Toxins as Marine-Based Drug Discovery, 2nd Edition)
Show Figures

Figure 1

19 pages, 5008 KiB  
Article
Targeting Ion Channels: Blockers Suppress Calcium Signals and Induce Cytotoxicity Across Medulloblastoma Cell Models
by Darani Ashley Thammavongsa, Taylor N. Jackvony, Markus J. Bookland and Min D. Tang-Schomer
Bioengineering 2025, 12(3), 268; https://doi.org/10.3390/bioengineering12030268 - 9 Mar 2025
Cited by 1 | Viewed by 1125
Abstract
Medulloblastoma (MB) groups 3 and 4 lack targeted therapies despite their dismal prognoses. Ion channels and pumps have been implicated in promoting MB metastasis and growth; however, their roles remain poorly understood. In this study, we repurposed FDA-approved channel blockers and modulators to [...] Read more.
Medulloblastoma (MB) groups 3 and 4 lack targeted therapies despite their dismal prognoses. Ion channels and pumps have been implicated in promoting MB metastasis and growth; however, their roles remain poorly understood. In this study, we repurposed FDA-approved channel blockers and modulators to investigate their potential anti-tumor effects in MB cell lines (DAOY and D283) and primary cell cultures derived from a patient with MB. For the first time, we report spontaneous calcium signaling in MB cells. Spontaneous calcium signals were significantly reduced by mibefradil (calcium channel blocker), paxilline (calcium-activated potassium channel blocker), and thioridazine (potassium channel blocker). These drugs induced dose-dependent cytotoxicity in both the DAOY and D283 cell lines, as well as in primary cell cultures of a patient with group 3 or 4 MB. In contrast, digoxin and ouabain, inhibitors of the Na/K pump, reduced the calcium signaling by over 90% in DAOY cells and induced approximately 90% cell death in DAOY cells and 80% cell death in D283 cells. However, these effects were significantly diminished in the cells derived from a patient with MB, highlighting the variability in drug sensitivity among MB models. These findings demonstrate that calcium signaling is critical for MB cell survival and that the targeted inhibition of calcium pathways suppresses tumor cell growth across multiple MB models. Full article
(This article belongs to the Special Issue Advancing Treatment for Brain Tumors)
Show Figures

Figure 1

16 pages, 2417 KiB  
Communication
Two Amino Acid Substitutions Improve the Pharmacological Profile of the Snake Venom Peptide Mambalgin
by Dmitry I. Osmakov, Timur A. Khasanov, Ekaterina E. Maleeva, Vladimir M. Pavlov, Victor A. Palikov, Olga A. Belozerova, Sergey G. Koshelev, Yuliya V. Korolkova, Igor A. Dyachenko, Sergey A. Kozlov and Yaroslav A. Andreev
Toxins 2025, 17(3), 101; https://doi.org/10.3390/toxins17030101 - 21 Feb 2025
Viewed by 906
Abstract
Mambalgins are peptide inhibitors of acid-sensing ion channels type 1 (ASIC1) with potent analgesic effects in models of inflammatory and neuropathic pain. To optimize recombinant peptide production and enhance pharmacological properties, we developed a mutant analog of mambalgin-1 (Mamb) through molecular modeling and [...] Read more.
Mambalgins are peptide inhibitors of acid-sensing ion channels type 1 (ASIC1) with potent analgesic effects in models of inflammatory and neuropathic pain. To optimize recombinant peptide production and enhance pharmacological properties, we developed a mutant analog of mambalgin-1 (Mamb) through molecular modeling and site-directed mutagenesis. The resulting peptide, Mamb-AL, features methionine-to-alanine and methionine-to-leucine substitutions, allowing for a more efficient recombinant production protocol in E. coli. Electrophysiological experiments demonstrated that Mamb-AL exhibits three-fold and five-fold greater inhibition of homomeric ASIC1a and ASIC1b channels, respectively, and a two-fold increase in inhibition of heteromeric ASIC1a/3 channels compared with Mamb. In a mouse model of acetic acid-induced writhing pain, Mamb-AL showed a trend toward stronger analgesic efficacy than the wild-type peptide. These improvements in both production efficiency and pharmacological properties make Mamb-AL a valuable tool for studying ASIC channels and a promising candidate for analgesic drug development. Full article
Show Figures

Figure 1

Back to TopTop