Angiogenesis in Atrial Fibrillation: A Literature Review
Abstract
:1. Introduction
2. Pathophysiological Mechanisms
2.1. Angiogenesis and Atrial Electrical Remodeling
2.2. Interplay Between Angiogenesis, Fibrosis, and Inflammation
2.3. Interaction Between Atrial Myocytes and Angiogenesis
2.4. Pathological Roles of Key Signaling Pathways
2.4.1. VEGF Pathway: Promotes Fibrosis and Endothelial Dysfunction
2.4.2. ANGPT Pathway: Ang-2 Imbalance Leads to Endothelial Destabilization
2.4.3. FGF/EGF Pathway: Regulates Fibrosis and Oxidative Stress
2.4.4. TGF-β/PDGF Pathway: Core Pro-Fibrotic Mechanism
3. Clinical Evidence of Angiogenesis Implication in AF
3.1. Association of Angiogenic Biomarkers with Atrial Fibrillation
3.2. Controversy over AF Risk Associated with Anti-Angiogenic Drugs
3.3. Dual Role of VEGF-D
3.4. Mechanisms of Atrial Fibrillation Induced by Anticancer Drugs
3.5. Controversy over Cardiovascular Toxicity in Anti-Angiogenic Therapy
3.6. Critical Analysis of Clinical Data
3.7. Potential Causes of Contradictory Findings
3.8. Future Research Directions
3.9. Clinical Translational Potential
4. Therapeutic Strategies and Translational Challenges
4.1. Targeting Pathological Angiogenesis Inhibitor Applications
4.2. Precision Interventions
4.3. Enhancing Compensatory Angiogenesis
4.4. Clinical Challenges in Balancing Therapeutic Effects
5. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AF | Atrial fibrillation |
VEGF | Vascular endothelial growth factor |
sVEGFR-2 | Soluble VEGF receptor-2 |
EPC | Endothelial progenitor cell |
MVD | Microvascular density |
FGF | Fibroblast growth factor |
HB-EGF | Heparin-binding EGF |
Angiopoietins | ANGPT |
EGF | Epidermal growth factor |
EndMT | Endothelial-to-mesenchymal transition |
eNOS | Endothelial nitric oxide synthase |
ECM | Extracellular matrix |
PDGF | Platelet-derived growth factors |
TKIs | Tyrosine kinase inhibitors |
5-FU | Fluorouracil |
HDAC | Histone deacetylase |
KDR | VEGF receptor 2 |
References
- Freeman, J.V.; Higgins, A.Y.; Wang, Y.; Du, C.; Friedman, D.J.; Daimee, U.A.; Minges, K.E.; Pereira, L.; Goldsweig, A.M.; Price, M.J.; et al. Antithrombotic Therapy after Left Atrial Appendage Occlusion in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2022, 79, 1785–1798. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Song, X.; Liang, Y.; Bai, X.; Liu-Huo, W.-S.; Tang, C.; Chen, W.; Zhao, L. Global, Regional, and National Burden of Disease Study of Atrial Fibrillation/Flutter, 1990-2019: Results from a Global Burden of Disease Study, 2019. BMC Public Health 2022, 22, 2015. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Xing, W.; Gao, C.; Wang, X.; Qi, D.; Dai, G.; Zhao, W.; Yan, G. Inhibitory Effect of Vascular Endothelial Growth Factor on the Slowly Activating Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes. J. Am. Heart Assoc. 2018, 7, e007730. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, Y.; Huang, S.; Li, H.; Hou, J.; Huang, J.; Chen, J.; Feng, K.; Liang, M.; Chen, G.; et al. Does an Imbalance in Circulating Vascular Endothelial Growth Factors (VEGFs) Cause Atrial Fibrillation in Patients with Valvular Heart Disease? J. Thorac. Dis. 2019, 11, 5509–5516. [Google Scholar] [CrossRef]
- Kannel, W.B.; Wolf, P.A.; Benjamin, E.J.; Levy, D. Prevalence, Incidence, Prognosis, and Predisposing Conditions for Atrial Fibrillation: Population-Based Estimates. Am. J. Cardiol. 1998, 82, 2N–9N. [Google Scholar] [CrossRef]
- Kannel, W.B.; Benjamin, E.J. Status of the Epidemiology of Atrial Fibrillation. Med. Clin. N. Am. 2008, 92, 17–40. [Google Scholar] [CrossRef]
- Chen, Y.C.; Voskoboinik, A.; Gerche, A.L.; Marwick, T.H.; McMullen, J.R. Prevention of Pathological Atrial Remodeling and Atrial Fibrillation: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 77, 2846–2864. [Google Scholar] [CrossRef]
- Ohlrogge, A.H.; Brederecke, J.; Schnabel, R.B. Global Burden of Atrial Fibrillation and Flutter by National Income: Results from the Global Burden of Disease 2019 Database. J. Am. Heart Assoc. 2023, 12, e030438. [Google Scholar] [CrossRef]
- Linz, D.; Gawalko, M.; Betz, K.; Hendriks, J.M.; Lip, G.Y.H.; Vinter, N.; Guo, Y.; Johnsen, S. Atrial Fibrillation: Epidemiology, Screening and Digital Health. Lancet Reg. Health Eur. 2024, 37, 100786. [Google Scholar] [CrossRef]
- Brundel, B.J.J.M.; Ai, X.; Hills, M.T.; Kuipers, M.F.; Lip, G.Y.H.; de Groot, N.M.S. Atrial Fibrillation. Nat. Rev. Dis. Primer 2022, 8, 21. [Google Scholar] [CrossRef]
- Verweij, N.; Eppinga, R.N.; Hagemeijer, Y.; Van Der Harst, P. Identification of 15 Novel Risk Loci for Coronary Artery Disease and Genetic Risk of Recurrent Events, Atrial Fibrillation and Heart Failure. Sci. Rep. 2017, 7, 2761. [Google Scholar] [CrossRef] [PubMed]
- Escudero-Martínez, I.; Morales-Caba, L.; Segura, T. Atrial Fibrillation and Stroke: A Review and New Insights. Trends Cardiovasc. Med. 2023, 33, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.-G. Cardiac Arrhythmias: Diagnosis, Symptoms, and Treatments. Cell Biochem. Biophys. 2015, 73, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Haïssaguerre, M.; Jaïs, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef]
- Zhu, X.; Lv, M.; Cheng, T.; Zhou, Y.; Yuan, G.; Chu, Y.; Luan, Y.; Song, Q.; Hu, Y. Bibliometric Analysis of Atrial Fibrillation and Ion Channels. Heart Rhythm 2024, 21, 1161–1169. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, W.; Xu, J.; Qiu, Y.; Wan, Y.; Fan, Y. Association of C-Reactive Protein Level with Adverse Outcomes in Patients with Atrial Fibrillation: A Meta-Analysis. Am. J. Med. Sci. 2024, 367, 41–48. [Google Scholar] [CrossRef]
- Shinagawa, K.; Shi, Y.-F.; Tardif, J.-C.; Leung, T.-K.; Nattel, S. Dynamic Nature of Atrial Fibrillation Substrate during Development and Reversal of Heart Failure in Dogs. Circulation 2002, 105, 2672–2678. [Google Scholar] [CrossRef]
- Andrade, J.; Khairy, P.; Dobrev, D.; Nattel, S. The Clinical Profile and Pathophysiology of Atrial Fibrillation: Relationships among Clinical Features, Epidemiology, and Mechanisms. Circ. Res. 2014, 114, 1453–1468. [Google Scholar] [CrossRef]
- Baman, J.R.; Passman, R.S. Atrial Fibrillation. JAMA 2021, 325, 2218. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the Diagnosis and Management of Atrial Fibrillation of the European Society of Cardiology (ESC) Developed with the Special Contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Serbo, J.V.; Gerecht, S. Vascular Tissue Engineering: Biodegradable Scaffold Platforms to Promote Angiogenesis. Stem Cell Res. Ther. 2013, 4, 8. [Google Scholar] [CrossRef]
- Cai, Z.; Saiding, Q.; Cheng, L.; Zhang, L.; Wang, Z.; Wang, F.; Chen, X.; Chen, G.; Deng, L.; Cui, W. Capturing Dynamic Biological Signals via Bio-Mimicking Hydrogel for Precise Remodeling of Soft Tissue. Bioact. Mater. 2021, 6, 4506–4516. [Google Scholar] [CrossRef]
- Peng, J.-Y.; Fu, X.; Luo, X.-Y.; Liu, F.; Zhang, B.; Zhou, B.; Sun, K.; Chen, A.F. Endothelial ELABELA Improves Post-Ischemic Angiogenesis by Upregulating VEGFR2 Expression. Transl. Res. J. Lab. Clin. Med. 2024, 270, 13–23. [Google Scholar] [CrossRef]
- Cipriani, P.; Marrelli, A.; Liakouli, V.; Di Benedetto, P.; Giacomelli, R. Cellular Players in Angiogenesis during the Course of Systemic Sclerosis. Autoimmun. Rev. 2011, 10, 641–646. [Google Scholar] [CrossRef]
- Wietecha, M.S.; Cerny, W.L.; DiPietro, L.A. Mechanisms of Vessel Regression: Toward an Understanding of the Resolution of Angiogenesis. Curr. Top. Microbiol. Immunol. 2013, 367, 3–32. [Google Scholar] [CrossRef]
- Felmeden, D.C.; Blann, A.D.; Lip, G.Y.H. Angiogenesis: Basic Pathophysiology and Implications for Disease. Eur. Heart J. 2003, 24, 586–603. [Google Scholar] [CrossRef]
- Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular Endothelial Growth Factor (VEGF)—Key Factor in Normal and Pathological Angiogenesis. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar]
- Chen, Y.-C.; Huang, C.-Y.; Lien, L.-M.; Chen, J.-H.; Hsieh, F.-I. Cardiovascular Toxicity of Angiogenesis Inhibitors among Patients with Cancer in Taiwan: A Nested Case-Control Study. J. Am. Heart Assoc. 2024, 13, e030263. [Google Scholar] [CrossRef]
- Van Den Berg, N.W.E.; Kawasaki, M.; Fabrizi, B.; Nariswari, F.A.; Verduijn, A.C.; Neefs, J.; Wesselink, R.; Al-Shama, R.F.M.; Van Der Wal, A.C.; De Boer, O.J.; et al. Epicardial and Endothelial Cell Activation Concurs with Extracellular Matrix Remodeling in Atrial Fibrillation. Clin. Transl. Med. 2021, 11, e558. [Google Scholar] [CrossRef]
- Gramley, F.; Lorenzen, J.; Jedamzik, B.; Gatter, K.; Koellensperger, E.; Munzel, T.; Pezzella, F. Atrial Fibrillation Is Associated with Cardiac Hypoxia. Cardiovasc. Pathol. 2010, 19, 102–111. [Google Scholar] [CrossRef]
- Vallerio, P.; Orenti, A.; Tosi, F.; Maistrello, M.; Palazzini, M.; Cingarlini, S.; Colombo, P.; Bertuzzi, M.; Spina, F.; Amatu, A.; et al. Major Adverse Cardiovascular Events Associated with VEGF-Targeted Anticancer Tyrosine Kinase Inhibitors: A Real-Life Study and Proposed Algorithm for Proactive Management. ESMO Open 2022, 7, 100338. [Google Scholar] [CrossRef] [PubMed]
- Watson, T.; Shantsila, E.; Lip, G.Y.H. Mechanisms of Thrombogenesis in Atrial Fibrillation: Virchow’s Triad Revisited. Lancet 2009, 373, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Byrne, A.M.; Bouchier-Hayes, D.J.; Harmey, J.H. Angiogenic and Cell Survival Functions of Vascular Endothelial Growth Factor (VEGF). J. Cell. Mol. Med. 2005, 9, 777–794. [Google Scholar] [CrossRef] [PubMed]
- Freestone, B.; Chong, A.Y.; Lim, H.S.; Blann, A.; Lip, G.Y.H. Angiogenic Factors in Atrial Fibrillation: A Possible Role in Thrombogenesis? Ann. Med. 2005, 37, 365–372. [Google Scholar] [CrossRef]
- Gogiraju, R.; Bochenek, M.L.; Schäfer, K. Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure. Front. Cardiovasc. Med. 2019, 6, 20. [Google Scholar] [CrossRef]
- Berntsson, J.; Smith, J.G.; Johnson, L.S.B.; Söderholm, M.; Borné, Y.; Melander, O.; Orho-Melander, M.; Nilsson, J.; Engström, G. Increased Vascular Endothelial Growth Factor D Is Associated with Atrial Fibrillation and Ischaemic Stroke. Heart 2019, 105, 553–558. [Google Scholar] [CrossRef]
- Siu, C.-W.; Watson, T.; Lai, W.-H.; Lee, Y.-K.; Chan, Y.-H.; Ng, K.-M.; Lau, C.-P.; Lip, G.Y.H.; Tse, H.-F. Relationship of Circulating Endothelial Progenitor Cells to the Recurrence of Atrial Fibrillation after Successful Conversion and Maintenance of Sinus Rhythm. Europace 2010, 12, 517–521. [Google Scholar] [CrossRef]
- van den Berg, N.W.E.; Neefs, J.; Kawasaki, M.; Nariswari, F.A.; Wesselink, R.; Fabrizi, B.; Jongejan, A.; Klaver, M.N.; Havenaar, H.; Hulsman, E.L.; et al. Extracellular Matrix Remodeling Precedes Atrial Fibrillation: Results of the PREDICT-AF Trial. Heart Rhythm 2021, 18, 2115–2125. [Google Scholar] [CrossRef]
- Mezache, L.; Soltisz, A.M.; Johnstone, S.R.; Isakson, B.E.; Veeraraghavan, R. Vascular Endothelial Barrier Protection Prevents Atrial Fibrillation by Preserving Cardiac Nanostructure. JACC Clin. Electrophysiol. 2023, 9, 2444–2458. [Google Scholar] [CrossRef]
- Shah, S.J.; Lam, C.S.P.; Svedlund, S.; Saraste, A.; Hage, C.; Tan, R.-S.; Beussink-Nelson, L.; Ljung Faxén, U.; Fermer, M.L.; Broberg, M.A.; et al. Prevalence and Correlates of Coronary Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction: PROMIS-HFpEF. Eur. Heart J. 2018, 39, 3439–3450. [Google Scholar] [CrossRef]
- Aguiar, S.; Lopes, L.; Fiarresga, A.; Branco, L.; Galrinho, A.; Thomas, B.; Ferreira, F.; Lopes, J.; Figueiredo, M.; Cardoso, I.; et al. Microvascular Dysfunction Contributes to Atrial Fibrillation in Hypertrophic Cardiomyopathy, a Multimodality Study. Eur. Heart J. Cardiovasc. Imaging 2025, 26, jeae333.494. [Google Scholar] [CrossRef]
- Han, C.; Barakat, M.; DiPietro, L.A. Angiogenesis in Wound Repair: Too Much of a Good Thing? Cold Spring Harb. Perspect. Biol. 2022, 14, a041225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dhalla, N.S. The Role of Pro-Inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease. Int. J. Mol. Sci. 2024, 25, 1082. [Google Scholar] [CrossRef]
- Hu, Y.-F.; Chen, Y.-J.; Lin, Y.-J.; Chen, S.-A. Inflammation and the Pathogenesis of Atrial Fibrillation. Nat. Rev. Cardiol. 2015, 12, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Nishimura, H.; Takahashi, N.; Ashida, T.; Nagai, R. Serum Levels of Vascular Endothelial Growth Factor and Transforming Growth Factor-Beta1 in Patients with Atrial Fibrillation Undergoing Defibrillation Therapy. Jpn. Heart J. 2000, 41, 27–32. [Google Scholar] [CrossRef]
- Räsänen, M.; Sultan, I.; Paech, J.; Hemanthakumar, K.A.; Yu, W.; He, L.; Tang, J.; Sun, Y.; Hlushchuk, R.; Huan, X.; et al. VEGF-B Promotes Endocardium-Derived Coronary Vessel Development and Cardiac Regeneration. Circulation 2021, 143, 65–77. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, X.; Cui, H.; Shi, J.; Yuan, G.; Shi, S.; Hu, Y. The Role of the VEGF Family in Coronary Heart Disease. Front. Cardiovasc. Med. 2021, 8, 738325. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, Y.; Zhou, Y.; Yang, S.; Xiao, X.; Feng, L. Angiogenesis-an Emerging Role in Organ Fibrosis. Int. J. Mol. Sci. 2023, 24, 14123. [Google Scholar] [CrossRef]
- Sprague, A.H.; Khalil, R.A. Inflammatory Cytokines in Vascular Dysfunction and Vascular Disease. Biochem. Pharmacol. 2009, 78, 539–552. [Google Scholar] [CrossRef]
- Barratt, S.L.; Flower, V.A.; Pauling, J.D.; Millar, A.B. VEGF (Vascular Endothelial Growth Factor) and Fibrotic Lung Disease. Int. J. Mol. Sci. 2018, 19, 1269. [Google Scholar] [CrossRef]
- Miao, C.; Zhu, X.; Wei, X.; Long, M.; Jiang, L.; Li, C.; Jin, D.; Du, Y. Pro- and Anti-Fibrotic Effects of Vascular Endothelial Growth Factor in Chronic Kidney Diseases. Ren. Fail. 2022, 44, 881–892. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Ren, J.; Li, Y.; Yang, G.; Kang, L.; Zhang, S.; Ma, C.; Li, J.; Liu, J.; Yang, L.; et al. Resveratrol Protects against Isoproterenol Induced Myocardial Infarction in Rats through VEGF-B/AMPK/eNOS/NO Signalling Pathway. Free Radic. Res. 2019, 53, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Paterson, M.; Baumgardt, S.L.; Irwin, M.G.; Xia, Z.; Bosnjak, Z.J.; Ge, Z.-D. Vascular Endothelial Growth Factor Regulation of Endothelial Nitric Oxide Synthase Phosphorylation Is Involved in Isoflurane Cardiac Preconditioning. Cardiovasc. Res. 2019, 115, 168–178. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, Y.-T.; Liu, J.; Gan, L.; Jiang, Y. Role of Transforming Growth Factor-Β1 Pathway in Angiogenesis Induced by Chronic Stress in Colorectal Cancer. Cancer Biol. Ther. 2024, 25, 2366451. [Google Scholar] [CrossRef]
- Seghezzi, G.; Patel, S.; Ren, C.J.; Gualandris, A.; Pintucci, G.; Robbins, E.S.; Shapiro, R.L.; Galloway, A.C.; Rifkin, D.B.; Mignatti, P. Fibroblast Growth Factor-2 (FGF-2) Induces Vascular Endothelial Growth Factor (VEGF) Expression in the Endothelial Cells of Forming Capillaries: An Autocrine Mechanism Contributing to Angiogenesis. J. Cell Biol. 1998, 141, 1659–1673. [Google Scholar] [CrossRef]
- Yang, M.; Wang, L.; Wang, X.; Wang, X.; Yang, Z.; Li, J. IL-6 Promotes FSH-Induced VEGF Expression Through JAK/STAT3 Signaling Pathway in Bovine Granulosa Cells. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2017, 44, 293–302. [Google Scholar] [CrossRef]
- Khalpey, Z.; Kumar, U.; Aslam, U.; Deckwa, J.; Konhilas, J. Synergistic Effect of Transmyocardial Revascularization and Platelet-Rich Plasma on Improving Cardiac Function after Coronary Artery Bypass Grafting. Cureus 2024, 16, e60254. [Google Scholar] [CrossRef]
- Cho, J.G.; Lee, A.; Chang, W.; Lee, M.S.; Kim, J. Endothelial to Mesenchymal Transition Represents a Key Link in the Interaction between Inflammation and Endothelial Dysfunction. Front. Immunol. 2018, 9, 294. [Google Scholar] [CrossRef]
- Saljic, A.; Grandi, E.; Dobrev, D. TGF-Β1-Induced Endothelial-Mesenchymal Transition: A Potential Contributor to Fibrotic Remodeling in Atrial Fibrillation? J. Clin. Investig. 2022, 132, e161070. [Google Scholar] [CrossRef]
- Lai, Y.-J.; Tsai, F.-C.; Chang, G.-J.; Chang, S.-H.; Huang, C.-C.; Chen, W.-J.; Yeh, Y.-H. miR-181b Targets Semaphorin 3A to Mediate TGF-β-Induced Endothelial-Mesenchymal Transition Related to Atrial Fibrillation. J. Clin. Investig. 2022, 132, e142548. [Google Scholar] [CrossRef]
- Lai, Y.-J.; Chang, S.-H.; Tung, Y.-C.; Chang, G.-J.; Almeida, C.D.; Chen, W.-J.; Yeh, Y.-H.; Tsai, F.-C. Naringin Activates Semaphorin 3A to Ameliorate TGF-β-Induced Endothelial-to-Mesenchymal Transition Related to Atrial Fibrillation. J. Cell. Physiol. 2024, 239, e31248. [Google Scholar] [CrossRef]
- Chung, N.A.Y.; Belgore, F.; Li-Saw-Hee, F.L.; Conway, D.S.G.; Blann, A.D.; Lip, G.Y.H. Is the Hypercoagulable State in Atrial Fibrillation Mediated by Vascular Endothelial Growth Factor? Stroke 2002, 33, 2187–2191. [Google Scholar] [CrossRef]
- Kinashi, H.; Ito, Y.; Sun, T.; Katsuno, T.; Takei, Y. Roles of the TGF-β−VEGF-C Pathway in Fibrosis-Related Lymphangiogenesis. Int. J. Mol. Sci. 2018, 19, 2487. [Google Scholar] [CrossRef]
- Chen, X.L.; Nam, J.-O.; Jean, C.; Lawson, C.; Walsh, C.T.; Goka, E.; Lim, S.-T.; Tomar, A.; Tancioni, I.; Uryu, S.; et al. VEGF-Induced Vascular Permeability Is Mediated by FAK. Dev. Cell 2012, 22, 146–157. [Google Scholar] [CrossRef]
- Thomas, M.; Augustin, H.G. The Role of the Angiopoietins in Vascular Morphogenesis. Angiogenesis 2009, 12, 125–137. [Google Scholar] [CrossRef]
- Levy, A.P.; Levy, N.S.; Loscalzo, J.; Calderone, A.; Takahashi, N.; Yeo, K.T.; Koren, G.; Colucci, W.S.; Goldberg, M.A. Regulation of Vascular Endothelial Growth Factor in Cardiac Myocytes. Circ. Res. 1995, 76, 758–766. [Google Scholar] [CrossRef]
- Zhang, H.-G.; Zhang, Q.-J.; Li, B.-W.; Li, L.-H.; Song, X.-H.; Xiong, C.-M.; Zou, Y.-B.; Liu, B.-Y.; Han, J.-Q.; Xiu, R.-J. The Circulating Level of miR-122 Is a Potential Risk Factor for Endothelial Dysfunction in Young Patients with Essential Hypertension. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2020, 43, 511–517. [Google Scholar] [CrossRef]
- Liu, Y.; Song, J.-W.; Lin, J.-Y.; Miao, R.; Zhong, J.-C. Roles of MicroRNA-122 in Cardiovascular Fibrosis and Related Diseases. Cardiovasc. Toxicol. 2020, 20, 463–473. [Google Scholar] [CrossRef]
- Edmonston, D.; Grabner, A.; Wolf, M. FGF23 and Klotho at the Intersection of Kidney and Cardiovascular Disease. Nat. Rev. Cardiol. 2024, 21, 11–24. [Google Scholar] [CrossRef]
- Tan, Z.; Song, T.; Huang, S.; Liu, M.; Ma, J.; Zhang, J.; Yu, P.; Liu, X. Relationship between Serum Growth Differentiation Factor 15, Fibroblast Growth Factor-23 and Risk of Atrial Fibrillation: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 899667. [Google Scholar] [CrossRef]
- Chen, M.; Zhong, J.; Wang, Z.; Xu, H.; Chen, H.; Sun, X.; Lu, Y.; Chen, L.; Xie, X.; Zheng, L. Fibroblast Growth Factor 21 Protects Against Atrial Remodeling via Reducing Oxidative Stress. Front. Cardiovasc. Med. 2021, 8, 720581. [Google Scholar] [CrossRef]
- Büttner, P.; Werner, S.; Sommer, P.; Burkhardt, R.; Zeynalova, S.; Baber, R.; Bollmann, A.; Husser-Bollmann, D.; Thiery, J.; Hindricks, G.; et al. EGF (Epidermal Growth Factor) Receptor Ligands in Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2019, 12, e007212. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, M.; Bie, M.; Wang, X.; Guo, J.; Xiao, H. Galectin-3 Induces Atrial Fibrosis by Activating the TGF-Β1/Smad Pathway in Patients with Atrial Fibrillation. Cardiology 2020, 145, 446–455. [Google Scholar] [CrossRef]
- Xu, J.; Gong, X.; Chen, C.; Xing, J.; Wang, Q.; Shen, W.; Zhang, Q. Reduced Plasma Level of Basic Fibroblast Growth Factor Is Associated with Incomplete Device Endothelialization at Six Months Following Left Atrial Appendage Closure. BMC Cardiovasc. Disord. 2021, 21, 242. [Google Scholar] [CrossRef]
- Sharma, N.; Khatib, M.N.; Roopashree, R.; Kaur, M.; Srivastava, M.; Barwal, A.; Siva Prasad, G.V.; Rajput, P.; Syed, R.; Kundra, K.; et al. Association between Vascular Endothelial Growth Factor and Atrial Fibrillation: A Systematic Review. BMC Cardiovasc. Disord. 2025, 25, 5. [Google Scholar] [CrossRef]
- Can, V.; Cakmak, H.A.; Vatansever, F.; Kanat, S.; Ekizler, F.A.; Huysal, K.; Demir, M. Assessment of the Relationship between semaphorin4D Level and Recurrence after Catheter Ablation in Paroxysmal Atrial Fibrillation. Biomark. Biochem. Indic. Expo. Response Susceptibility Chem. 2021, 26, 468–476. [Google Scholar] [CrossRef]
- Hartikainen, J.; Hassinen, I.; Hedman, A.; Kivelä, A.; Saraste, A.; Knuuti, J.; Husso, M.; Mussalo, H.; Hedman, M.; Rissanen, T.T.; et al. Adenoviral Intramyocardial VEGF-DΔNΔC Gene Transfer Increases Myocardial Perfusion Reserve in Refractory Angina Patients: A Phase I/IIa Study with 1-Year Follow-Up. Eur. Heart J. 2017, 38, 2547–2555. [Google Scholar] [CrossRef]
- Burashnikov, A. Atrial Fibrillation Induced by Anticancer Drugs and Underling Mechanisms. J. Cardiovasc. Pharmacol. 2022, 80, 540–546. [Google Scholar] [CrossRef]
- Touyz, R.M.; Herrmann, J. Cardiotoxicity with Vascular Endothelial Growth Factor Inhibitor Therapy. NPJ Precis. Oncol. 2018, 2, 13. [Google Scholar] [CrossRef]
- Leikas, A.J.; Hassinen, I.; Hedman, A.; Kivelä, A.; Ylä-Herttuala, S.; Hartikainen, J.E.K. Long-Term Safety and Efficacy of Intramyocardial Adenovirus-Mediated VEGF-D(ΔNΔC) Gene Therapy Eight-Year Follow-up of Phase I KAT301 Study. Gene Ther. 2022, 29, 289–293. [Google Scholar] [CrossRef]
- Ping, Z.; Fangfang, T.; Yuliang, Z.; Xinyong, C.; Lang, H.; Fan, H.; Jun, M.; Liang, S. Oxidative Stress and Pyroptosis in Doxorubicin-Induced Heart Failure and Atrial Fibrillation. Oxid. Med. Cell. Longev. 2023, 2023, 4938287. [Google Scholar] [CrossRef]
- Baba, Y.; Saito, B.; Shimada, S.; Sasaki, Y.; Murai, S.; Abe, M.; Fujiwara, S.; Arai, N.; Kawaguchi, Y.; Kabasawa, N.; et al. Development of cardiac tamponade and emergence of arrhythmia during chemotherapy for diffuse large B-cell lymphoma. Rinsho Ketsueki 2019, 60, 577–581. [Google Scholar] [CrossRef]
- Quartermaine, C.; Ghazi, S.M.; Yasin, A.; Awan, F.T.; Fradley, M.; Wiczer, T.; Kalathoor, S.; Ferdousi, M.; Krishan, S.; Habib, A.; et al. Cardiovascular Toxicities of BTK Inhibitors in Chronic Lymphocytic Leukemia: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2023, 5, 570–590. [Google Scholar] [CrossRef]
- Touyz, R.M.; Herrmann, S.M.S.; Herrmann, J. Vascular Toxicities with VEGF Inhibitor Therapies-Focus on Hypertension and Arterial Thrombotic Events. J. Am. Soc. Hypertens. JASH 2018, 12, 409–425. [Google Scholar] [CrossRef]
- Jiang, L.; Ping, L.; Yan, H.; Yang, X.; He, Q.; Xu, Z.; Luo, P. Cardiovascular Toxicity Induced by Anti-VEGF/VEGFR Agents: A Special Focus on Definitions, Diagnoses, Mechanisms and Management. Expert Opin. Drug Metab. Toxicol. 2020, 16, 823–835. [Google Scholar] [CrossRef]
- Tournon, N.; Bertrand, L.; Bagheri, H.; Amar, J. Severe Hypertensive Flare-up after Intravitreal Injection of Ranibizumab for Retinal Venous Branch Occlusion. Fundam. Clin. Pharmacol. 2021, 35, 785–788. [Google Scholar] [CrossRef]
- Rini, B.; Redman, B.; Garcia, J.A.; Burris, H.A.; Li, S.; Fandi, A.; Beck, R.; Jungnelius, U.; Infante, J.R. A Phase I/II Study of Lenalidomide in Combination with Sunitinib in Patients with Advanced or Metastatic Renal Cell Carcinoma. Ann. Oncol. 2014, 25, 1794–1799. [Google Scholar] [CrossRef]
- Yang, J.M.; Jung, S.Y.; Kim, M.S.; Lee, S.W.; Yon, D.K.; Shin, J.I.; Lee, J.Y. Cardiovascular and Cerebrovascular Adverse Events Associated with Intravitreal Anti-VEGF Monoclonal Antibodies. Ophthalmology 2025, 132, 62–78. [Google Scholar] [CrossRef]
- Desantis, V.; Potenza, M.A.; Sgarra, L.; Nacci, C.; Scaringella, A.; Cicco, S.; Solimando, A.G.; Vacca, A.; Montagnani, M. microRNAs as Biomarkers of Endothelial Dysfunction and Therapeutic Target in the Pathogenesis of Atrial Fibrillation. Int. J. Mol. Sci. 2023, 24, 5307. [Google Scholar] [CrossRef]
- Chun, P. Therapeutic Effects of Histone Deacetylase Inhibitors on Heart Disease. Arch. Pharm. Res. 2020, 43, 1276–1296. [Google Scholar] [CrossRef]
- Zhang, J.; Le, T.H.V.; Rethineswaran, V.K.; Kim, Y.-J.; Jang, W.B.; Ji, S.T.; Ly, T.T.G.; Ha, J.S.; Yun, J.; Cheong, J.H.; et al. Dronedarone Hydrochloride Enhances the Bioactivity of Endothelial Progenitor Cells via Regulation of the AKT Signaling Pathway. Korean J. Physiol. Pharmacol. 2021, 25, 459–466. [Google Scholar] [CrossRef] [PubMed]
Study | Study Design | Limitations | Clinical Significance | Therapeutic Potential |
---|---|---|---|---|
Wang et al. (2019) [4] | Cross-sectional | Cross-sectional design, small sample size, exclusion of isolated AF patients without valvular heart disease | sVEGFR-2 as potential biomarker linked to endothelial dysfunction; VEGF-C unchanged, causality unresolved (cross-sectional/small sample). | Targeting VEGF/sVEGFR pathways could offer new treatment strategies for AF. |
Freestone et al. (2005) [34] | Cross-sectional | Small sample size, potential confounding by comorbidities like hypertension | Elevated VEGF/Ang-2/vWF in AF patients suggest prothrombotic mechanisms; conflicting evidence (unchanged TF, Ang-1/Ang-2 imbalance), causality unresolved. | Modulating VEGF/Ang-2 pathways could potentially reduce thrombogenesis in AF, though further studies are needed. |
Berntsson et al. (2019) [36] | Prospective cohort | No serial biomarker measurements, undetected AF cases | VEGF-D as potential biomarker for high-risk AF/AF-related stroke; association attenuates post NT-proBNP adjustment, causality unresolved. | Further research is needed to evaluate if targeting VEGF-D could prevent AF or stroke. |
Büttner et al. (2019) [72] | Cross-sectional | Causality unclear, potential confounding by comorbidities like renal dysfunction | EGF/HB-EGF as potential AF biomarkers; causality unclear (confounders: hypertension/renal dysfunction). | Potential targets for therapeutic intervention in AF. |
Sharma et al. (2025) [75] | Systematic review | Cross-sectional designs, small sample sizes, methodological heterogeneity. | VEGF-A/VEGF-D as disease activity/progression biomarkers; VEGF-C conflicts and methodological heterogeneity limit utility. | Modulating VEGF pathways could address atrial fibrosis and inflammation, offering potential therapeutic targets. |
Hartikainen et al. (2017) [77] | Phase I/IIa trial | Small sample size, placebo effects from the invasive control procedure | VEGF-DΔNΔC improved perfusion reserve/angina symptoms in refractory angina; placebo similarity and small sample limit conclusions. | Offers a potential new treatment for refractory angina. |
Gramley et al. (2010) [30] | Cross-sectional | No tissue analysis, inclusion of AF patients at varied stages, non-ideal controls | VEGF: up-regulation of hypoxia/fibrosis in AF pathogenesis; conflicting evidence (unchanged microvessel density, reduced KDR signaling) suggests incomplete hypoxia-driven angiogenesis. | Potential targets for therapeutic intervention in AF. |
Tan et al. (2022) [70] | Meta-analysis | Small sample size, observational bias, heterogeneity across studies, | FGF-23 as potential AF risk biomarker (dose-dependent association); GDF-15 lacks significant AF link. | FGF-23 could be a potential target for AF. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Lin, H.; Xu, Z.; Yang, Z.; Hong, C.; Wang, Y.; Lu, H. Angiogenesis in Atrial Fibrillation: A Literature Review. Biomedicines 2025, 13, 1399. https://doi.org/10.3390/biomedicines13061399
Lin J, Lin H, Xu Z, Yang Z, Hong C, Wang Y, Lu H. Angiogenesis in Atrial Fibrillation: A Literature Review. Biomedicines. 2025; 13(6):1399. https://doi.org/10.3390/biomedicines13061399
Chicago/Turabian StyleLin, Jie, Haihuan Lin, Zhijun Xu, Zhihui Yang, Chenglv Hong, Ying Wang, and Haocheng Lu. 2025. "Angiogenesis in Atrial Fibrillation: A Literature Review" Biomedicines 13, no. 6: 1399. https://doi.org/10.3390/biomedicines13061399
APA StyleLin, J., Lin, H., Xu, Z., Yang, Z., Hong, C., Wang, Y., & Lu, H. (2025). Angiogenesis in Atrial Fibrillation: A Literature Review. Biomedicines, 13(6), 1399. https://doi.org/10.3390/biomedicines13061399