Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (926)

Search Parameters:
Keywords = investment under uncertainties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 307 KiB  
Article
Who Is Manipulating Corporate Wallets Amid the Ever-Changing Circumstances? Digital Clues, Information Truths and Risk Mysteries
by Cheng Tao, Roslan Ja’afar and Wan Mohd Hirwani Wan Hussain
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 206; https://doi.org/10.3390/jtaer20030206 (registering DOI) - 7 Aug 2025
Abstract
Digital transformation (DT) has emerged as a key strategic lever for enhancing firm resilience and competitiveness, yet its influence on non-productive investment behaviors, such as corporate financial investment, remains underexplored. Existing studies have largely focused on DT’s role in innovation and operational efficiency, [...] Read more.
Digital transformation (DT) has emerged as a key strategic lever for enhancing firm resilience and competitiveness, yet its influence on non-productive investment behaviors, such as corporate financial investment, remains underexplored. Existing studies have largely focused on DT’s role in innovation and operational efficiency, leaving a significant gap in understanding how DT reshapes firms’ financial asset allocation. Drawing on a unique panel dataset of A-share main board-listed firms in China from 2011 to 2023, this study provides novel empirical evidence that DT significantly restrains financial investment, with pronounced heterogeneity across ownership types. More importantly, this paper uncovers a multi-layered mechanism: DT enhances the corporate information environment, which subsequently reduces financial investment. In addition, the analysis reveals a moderated mediation mechanism wherein economic uncertainty dampens the information-enhancing effect of DT. Unlike previous research that treats corporate risk-taking as a parallel mediator, this study identifies a sequential mediation pathway, where improved information environments suppress financial investment indirectly by influencing firms’ risk-taking behavior. These findings offer new theoretical insights into the financial implications of DT and contribute to the broader understanding of enterprise behavior in the context of digitalization and economic volatility. Full article
15 pages, 425 KiB  
Article
Game-Optimization Modeling of Shadow Carbon Pricing and Low-Carbon Transition in the Power Sector
by Guangzeng Sun, Bo Yuan, Han Zhang, Peng Xia, Cong Wu and Yichun Gong
Energies 2025, 18(15), 4173; https://doi.org/10.3390/en18154173 - 6 Aug 2025
Abstract
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. [...] Read more.
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. The upper-level model, guided by the government, focuses on minimizing total costs, including emission reduction costs, technological investments, and operational costs, by dynamically adjusting emission targets and shadow carbon prices. The lower-level model employs evolutionary game theory to simulate the adaptive behaviors and strategic interactions among power producers, regulatory authorities, and technology suppliers. Three representative uncertainty scenarios, disruptive technological breakthroughs, major policy interventions, and international geopolitical shifts, are incorporated to evaluate system robustness. Simulation results indicate that an optimistic scenario is characterized by rapid technological advancement and strong policy incentives. Conversely, under a pessimistic scenario with sluggish technology development and weak regulatory frameworks, there are substantially higher transition costs. This research uniquely contributes by explicitly modeling dynamic feedback between policy and stakeholder behavior under multiple uncertainties, highlighting the critical roles of innovation-driven strategies and proactive policy interventions in shaping effective, resilient, and cost-efficient carbon pricing and low-carbon transition pathways in the power sector. Full article
Show Figures

Figure 1

28 pages, 5054 KiB  
Article
Risk and Uncertainty in Geothermal Projects: Characteristics, Challenges and Application of the Novel Reverse Enthalpy Methodology
by Roberto Gambini, Dave William Waters, Franco Sansone and Valerio Memmo
Energies 2025, 18(15), 4157; https://doi.org/10.3390/en18154157 - 5 Aug 2025
Abstract
A reliable geothermal risk assessment methodology is key to any business decision. To be effective, it must be based on widely accepted principles, be easy to apply, be auditable, and produce consistent results. In this paper, we review the key characteristics of a [...] Read more.
A reliable geothermal risk assessment methodology is key to any business decision. To be effective, it must be based on widely accepted principles, be easy to apply, be auditable, and produce consistent results. In this paper, we review the key characteristics of a geothermal project and propose a novel approach derived from risk and uncertainty definitions used in the hydrocarbon industry. According to the proposed methodology, the probability of success is assessed by estimating three different components. The first is the geological probability of success, which is the likelihood that the geological model on which the geothermal project is based is correct and that the key fundamental geological elements are present. The second, the temperature threshold, is defined as the probability that the fluid is above a certain reference value. Such a reference value is the one used to design the development. Such a component, therefore, depends on the end use of the geothermal resource. The third component is the commercial probability of success and estimates the chance of a project being commercially viable using the Reverse Enthalpy Methodology. Geothermal projects do not have a single parameter that represents their monetary value. Therefore, in order to estimate it, it is necessary to make an initial assumption that can be revisited later in an iterative manner. The proposed methodology works with either the capital expenditure of the geothermal facility (power plant or direct thermal use) or the drilling cost as the initial assumption. Varying the other parameter, it estimates the probability of having a net present value (NPV) higher than zero. Full article
Show Figures

Figure 1

23 pages, 5135 KiB  
Article
Strategic Multi-Stage Optimization for Asset Investment in Electricity Distribution Networks Under Load Forecasting Uncertainties
by Clainer Bravin Donadel
Eng 2025, 6(8), 186; https://doi.org/10.3390/eng6080186 - 5 Aug 2025
Viewed by 79
Abstract
Electricity distribution systems face increasing challenges due to demand growth, regulatory requirements, and the integration of distributed generation. In this context, distribution companies must make strategic and well-supported investment decisions, particularly in asset reinforcement actions such as reconductoring. This paper presents a multi-stage [...] Read more.
Electricity distribution systems face increasing challenges due to demand growth, regulatory requirements, and the integration of distributed generation. In this context, distribution companies must make strategic and well-supported investment decisions, particularly in asset reinforcement actions such as reconductoring. This paper presents a multi-stage methodology to optimize reconductoring investments under load forecasting uncertainties. The approach combines a decomposition strategy with Monte Carlo simulation to capture demand variability. By discretizing a lognormal probability density function and selecting the largest loads in the network, the methodology balances computational feasibility with modeling accuracy. The optimization model employs exhaustive search techniques independently for each network branch, ensuring precise and consistent investment decisions. Tests conducted on the IEEE 123-bus feeder consider both operational and regulatory constraints from the Brazilian context. Results show that uncertainty-aware planning leads to a narrow investment range—between USD 55,108 and USD 66,504—highlighting the necessity of reconductoring regardless of demand scenarios. A comparative analysis of representative cases reveals consistent interventions, changes in conductor selection, and schedule adjustments based on load conditions. The proposed methodology enables flexible, cost-effective, and regulation-compliant investment planning, offering valuable insights for utilities seeking to enhance network reliability and performance while managing demand uncertainties. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

36 pages, 5151 KiB  
Article
Flexibility Resource Planning and Stability Optimization Methods for Power Systems with High Penetration of Renewable Energy
by Haiteng Han, Xiangchen Jiang, Yang Cao, Xuanyao Luo, Sheng Liu and Bei Yang
Energies 2025, 18(15), 4139; https://doi.org/10.3390/en18154139 - 4 Aug 2025
Viewed by 180
Abstract
With the accelerating global transition toward sustainable energy systems, power grids with a high share of renewable energy face increasing challenges due to volatility and uncertainty, necessitating advanced flexibility resource planning and stability optimization strategies. This paper presents a comprehensive distribution network planning [...] Read more.
With the accelerating global transition toward sustainable energy systems, power grids with a high share of renewable energy face increasing challenges due to volatility and uncertainty, necessitating advanced flexibility resource planning and stability optimization strategies. This paper presents a comprehensive distribution network planning framework that coordinates and integrates multiple types of flexibility resources through joint optimization and network reconfiguration to enhance system adaptability and operational resilience. A novel virtual network coupling modeling approach is proposed to address topological constraints during network reconfiguration, ensuring radial operation while allowing rapid topology adjustments to isolate faults and restore power supply. Furthermore, to mitigate the uncertainty and fault risks associated with extreme weather events, a CVaR-based risk quantification framework is incorporated into a bi-level optimization model, effectively balancing investment costs and operational risks under uncertainty. In this model, the upper-level planning stage optimizes the siting and sizing of flexibility resources, while the lower-level operational stage coordinates real-time dispatch strategies through demand response, energy storage operation, and dynamic network reconfiguration. Finally, a hybrid SA-PSO algorithm combined with conic programming is employed to enhance computational efficiency while ensuring high solution quality for practical system scales. Case study analyses demonstrate that, compared to single-resource configurations, the proposed coordinated planning of multiple flexibility resources can significantly reduce the total system cost and markedly improve system resilience under fault conditions. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
27 pages, 471 KiB  
Article
Multi-Granulation Covering Rough Intuitionistic Fuzzy Sets Based on Maximal Description
by Xiao-Meng Si and Zhan-Ao Xue
Symmetry 2025, 17(8), 1217; https://doi.org/10.3390/sym17081217 - 1 Aug 2025
Viewed by 97
Abstract
Rough sets and fuzzy sets are two complementary approaches for modeling uncertainty and imprecision. Their integration enables a more comprehensive representation of complex, uncertain systems. However, existing rough fuzzy sets models lack the expressive power to fully capture the interactions among structural uncertainty, [...] Read more.
Rough sets and fuzzy sets are two complementary approaches for modeling uncertainty and imprecision. Their integration enables a more comprehensive representation of complex, uncertain systems. However, existing rough fuzzy sets models lack the expressive power to fully capture the interactions among structural uncertainty, cognitive hesitation, and multi-level granular information. To address these limitations, we achieve the following: (1) We propose intuitionistic fuzzy covering rough membership and non-membership degrees based on maximal description and construct a new single-granulation model that more effectively captures both the structural relationships among elements and the semantics of fuzzy information. (2) We further extend the model to a multi-granulation framework by defining optimistic and pessimistic approximation operators and analyzing their properties. Additionally, we propose a neutral multi-granulation covering rough intuitionistic fuzzy sets based on aggregated membership and non-membership degrees. Compared with single-granulation models, the multi-granulation models integrate multiple levels of information, allowing for more fine-grained and robust representations of uncertainty. Finally, a case study on real estate investment was conducted to validate the effectiveness of the proposed models. The results show that our models can more precisely represent uncertainty and granularity in complex data, providing a flexible tool for knowledge representation in decision-making scenarios. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

28 pages, 10147 KiB  
Article
Construction of Analogy Indicator System and Machine-Learning-Based Optimization of Analogy Methods for Oilfield Development Projects
by Muzhen Zhang, Zhanxiang Lei, Chengyun Yan, Baoquan Zeng, Fei Huang, Tailai Qu, Bin Wang and Li Fu
Energies 2025, 18(15), 4076; https://doi.org/10.3390/en18154076 - 1 Aug 2025
Viewed by 260
Abstract
Oil and gas development is characterized by high technical complexity, strong interdisciplinarity, long investment cycles, and significant uncertainty. To meet the need for quick evaluation of overseas oilfield projects with limited data and experience, this study develops an analogy indicator system and tests [...] Read more.
Oil and gas development is characterized by high technical complexity, strong interdisciplinarity, long investment cycles, and significant uncertainty. To meet the need for quick evaluation of overseas oilfield projects with limited data and experience, this study develops an analogy indicator system and tests multiple machine-learning algorithms on two analogy tasks to identify the optimal method. Using an initial set of basic indicators and a database of 1436 oilfield samples, a combined subjective–objective weighting strategy that integrates statistical methods with expert judgment is used to select, classify, and assign weights to the indicators. This process results in 26 key indicators for practical analogy analysis. Single-indicator and whole-asset analogy experiments are then performed with five standard machine-learning algorithms—support vector machine (SVM), random forest (RF), backpropagation neural network (BP), k-nearest neighbor (KNN), and decision tree (DT). Results show that SVM achieves classification accuracies of 86% and 95% in medium-high permeability sandstone oilfields, respectively, greatly surpassing other methods. These results demonstrate the effectiveness of the proposed indicator system and methodology, providing efficient and objective technical support for evaluating and making decisions on overseas oilfield development projects. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

16 pages, 1833 KiB  
Article
Prediction of Waste Generation Using Machine Learning: A Regional Study in Korea
by Jae-Sang Lee and Dong-Chul Shin
Urban Sci. 2025, 9(8), 297; https://doi.org/10.3390/urbansci9080297 - 30 Jul 2025
Viewed by 252
Abstract
Accurate forecasting of household waste generation is essential for sustainable urban planning and the development of data-driven environmental policies. Conventional statistical models, while simple and interpretable, often fail to capture the nonlinear and multidimensional relationships inherent in waste production patterns. This study proposes [...] Read more.
Accurate forecasting of household waste generation is essential for sustainable urban planning and the development of data-driven environmental policies. Conventional statistical models, while simple and interpretable, often fail to capture the nonlinear and multidimensional relationships inherent in waste production patterns. This study proposes a machine learning-based regression framework utilizing Random Forest and XGBoost algorithms to predict annual household waste generation across four metropolitan regions in South Korea Seoul, Gyeonggi, Incheon, and Jeju over the period from 2000 to 2023. Independent variables include demographic indicators (total population, working-age population, elderly population), economic indicators (Gross Regional Domestic Product), and regional identifiers encoded using One-Hot Encoding. A derived feature, elderly ratio, was introduced to reflect population aging. Model performance was evaluated using R2, RMSE, and MAE, with artificial noise added to simulate uncertainty. Random Forest demonstrated superior generalization and robustness to data irregularities, especially in data-scarce regions like Jeju. SHAP-based interpretability analysis revealed total population and GRDP as the most influential features. The findings underscore the importance of incorporating economic indicators in waste forecasting models, as demographic variables alone were insufficient for explaining waste dynamics. This approach provides valuable insights for policymakers and supports the development of adaptive, region-specific strategies for waste reduction and infrastructure investment. Full article
Show Figures

Figure 1

20 pages, 892 KiB  
Article
The Effect of Generator-Side Charges on Investment in Power Generation and Transmission Under Demand Uncertainty
by Hirotaka Hiraiwa, Kazuya Ito and Ryuta Takashima
Sustainability 2025, 17(15), 6824; https://doi.org/10.3390/su17156824 - 27 Jul 2025
Viewed by 330
Abstract
Given the increases in renewable energy penetration, appropriately allocating transmission costs is important in generation and transmission investment decisions. This study examines how a generator-side transmission charge affects investment decisions by power generation companies (PC) and the transmission system operator (TSO) under two [...] Read more.
Given the increases in renewable energy penetration, appropriately allocating transmission costs is important in generation and transmission investment decisions. This study examines how a generator-side transmission charge affects investment decisions by power generation companies (PC) and the transmission system operator (TSO) under two frameworks differing in who decides investment timing. We compare two frameworks: (1) TSO determines investment timing and the PC determines capacity (TL framework); (2) PC determines investment timing and capacity (GL framework). We examine how variations in generator-side charges and demand uncertainty affect the optimal investment timing, capacity, and social surplus. Regarding investment timing, increases in the generator-side charge led to earlier investment in the TL framework but delayed investment in the GL framework. Concerning investment capacity, the TL framework yielded greater capacity with low uncertainty, while the GL framework supported greater capacity with high uncertainty. The magnitude of the relative social surplus of the two frameworks was reversed according to the generator-side charge and uncertainty. Specifically, the GL framework became increasingly superior to the TL framework as uncertainty increased, and this advantage was amplified by a higher generator-side charge. Policymakers should consider uncertainty and calibrate the level of generator-side charge and the allocation of decision-making authority. Full article
(This article belongs to the Special Issue Sustainable Energy System: Efficiency and Cost of Renewable Energy)
Show Figures

Figure 1

29 pages, 1682 KiB  
Article
Polish Farmers′ Perceptions of the Benefits and Risks of Investing in Biogas Plants and the Role of GISs in Site Selection
by Anna Kochanek, Józef Ciuła, Mariusz Cembruch-Nowakowski and Tomasz Zacłona
Energies 2025, 18(15), 3981; https://doi.org/10.3390/en18153981 - 25 Jul 2025
Viewed by 269
Abstract
In the past decade, agricultural biogas plants have become one of the key tools driving the energy transition in rural areas. Nevertheless, their development in Poland still lags behind that in Western European countries, suggesting the existence of barriers that go beyond technological [...] Read more.
In the past decade, agricultural biogas plants have become one of the key tools driving the energy transition in rural areas. Nevertheless, their development in Poland still lags behind that in Western European countries, suggesting the existence of barriers that go beyond technological or regulatory issues. This study aims to examine how Polish farmers perceive the risks and expected benefits associated with investing in biogas plants and which of these perceptions influence their willingness to invest. The research was conducted in the second quarter of 2025 among farmers planning to build micro biogas plants as well as owners of existing biogas facilities. Geographic Information System (GIS) tools were also used in selecting respondents and identifying potential investment sites, helping to pinpoint areas with favorable spatial and environmental conditions. The findings show that both current and prospective biogas plant operators view complex legal requirements, social risk, and financial uncertainty as the main obstacles. However, both groups are primarily motivated by the desire for on-farm energy self-sufficiency and the environmental benefits of improved agricultural waste management. Owners of operational installations—particularly small and medium-sized ones—tend to rate all categories of risk significantly lower than prospective investors, suggesting that practical experience and knowledge-sharing can effectively alleviate perceived risks related to renewable energy investments. Full article
(This article belongs to the Special Issue Green Additive for Biofuel Energy Production)
Show Figures

Figure 1

34 pages, 3347 KiB  
Article
The Nexus Between Tax Revenue, Economic Policy Uncertainty, and Economic Growth: Evidence from G7 Economies
by Emre Sakar, Mahmut Unsal Sasmaz and Ahmet Ozen
Sustainability 2025, 17(15), 6780; https://doi.org/10.3390/su17156780 - 25 Jul 2025
Viewed by 297
Abstract
Economic policy uncertainty is an important macroeconomic risk factor that can have direct effects on investment decisions, growth dynamics, and public finance. In particular, its potential impact on tax revenue is critical in terms of fiscal sustainability. This study investigates the Granger-causal relationship [...] Read more.
Economic policy uncertainty is an important macroeconomic risk factor that can have direct effects on investment decisions, growth dynamics, and public finance. In particular, its potential impact on tax revenue is critical in terms of fiscal sustainability. This study investigates the Granger-causal relationship between economic policy uncertainty, total tax revenue, and economic growth in G7 economies over the 1997–2021 period, applying symmetric and asymmetric panel causality tests. The empirical findings revealed evidence of causality between economic policy uncertainty and tax revenue and between economic growth and economic policy uncertainty. In asymmetric analyses where the effects of positive and negative shocks were separated, the direction of causal relationships differed between countries. These results imply that asymmetric effects vary by country. Overall, the empirical findings suggest that enhancing transparency and predictability in tax systems could play a vital role in reducing economic policy uncertainty and thus positively affect tax revenue performance and fiscal resilience. Full article
Show Figures

Figure 1

22 pages, 12767 KiB  
Article
Remote Sensing Evidence of Blue Carbon Stock Increase and Attribution of Its Drivers in Coastal China
by Jie Chen, Yiming Lu, Fangyuan Liu, Guoping Gao and Mengyan Xie
Remote Sens. 2025, 17(15), 2559; https://doi.org/10.3390/rs17152559 - 23 Jul 2025
Viewed by 394
Abstract
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon [...] Read more.
Coastal blue carbon ecosystems (traditional types such as mangroves, salt marshes, and seagrass meadows; emerging types such as tidal flats and mariculture) play pivotal roles in capturing and storing atmospheric carbon dioxide. Reliable assessment of the spatial and temporal variation and the carbon storage potential holds immense promise for mitigating climate change. Although previous field surveys and regional assessments have improved the understanding of individual habitats, most studies remain site-specific and short-term; comprehensive, multi-decadal assessments that integrate all major coastal blue carbon systems at the national scale are still scarce for China. In this study, we integrated 30 m Landsat imagery (1992–2022), processed on Google Earth Engine with a random forest classifier; province-specific, literature-derived carbon density data with quantified uncertainty (mean ± standard deviation); and the InVEST model to track coastal China’s mangroves, salt marshes, tidal flats, and mariculture to quantify their associated carbon stocks. Then the GeoDetector was applied to distinguish the natural and anthropogenic drivers of carbon stock change. Results showed rapid and divergent land use change over the past three decades, with mariculture expanded by 44%, becoming the dominant blue carbon land use; whereas tidal flats declined by 39%, mangroves and salt marshes exhibited fluctuating upward trends. National blue carbon stock rose markedly from 74 Mt C in 1992 to 194 Mt C in 2022, with Liaoning, Shandong, and Fujian holding the largest provincial stock; Jiangsu and Guangdong showed higher increasing trends. The Normalized Difference Vegetation Index (NDVI) was the primary driver of spatial variability in carbon stock change (q = 0.63), followed by precipitation and temperature. Synergistic interactions were also detected, e.g., NDVI and precipitation, enhancing the effects beyond those of single factors, which indicates that a wetter climate may boost NDVI’s carbon sequestration. These findings highlight the urgency of strengthening ecological red lines, scaling climate-smart restoration of mangroves and salt marshes, and promoting low-impact mariculture. Our workflow and driver diagnostics provide a transferable template for blue carbon monitoring and evidence-based coastal management frameworks. Full article
Show Figures

Graphical abstract

25 pages, 4094 KiB  
Article
Risk–Cost Equilibrium for Grid Reinforcement Under High Renewable Penetration: A Bi-Level Optimization Framework with GAN-Driven Scenario Learning
by Feng Liang, Ying Mu, Dashun Guan, Dongliang Zhang and Wenliang Yin
Energies 2025, 18(14), 3805; https://doi.org/10.3390/en18143805 - 17 Jul 2025
Viewed by 367
Abstract
The integration of high-penetration renewable energy sources (RESs) into transmission networks introduces profound uncertainty that challenges traditional infrastructure planning approaches. Existing transmission expansion planning (TEP) models either rely on static scenario sets or over-conservative worst-case assumptions, failing to capture the operational stress triggered [...] Read more.
The integration of high-penetration renewable energy sources (RESs) into transmission networks introduces profound uncertainty that challenges traditional infrastructure planning approaches. Existing transmission expansion planning (TEP) models either rely on static scenario sets or over-conservative worst-case assumptions, failing to capture the operational stress triggered by rare but structurally impactful renewable behaviors. This paper proposes a novel bi-level optimization framework for transmission planning under adversarial uncertainty, coupling a distributionally robust upper-level investment model with a lower-level operational response embedded with physics and market constraints. The uncertainty space was not exogenously fixed, but instead dynamically generated through a physics-informed spatiotemporal generative adversarial network (PI-ST-GAN), which synthesizes high-risk renewable and load scenarios designed to maximally challenge the system’s resilience. The generator was co-trained using a composite stress index—combining expected energy not served, loss-of-load probability, and marginal congestion cost—ensuring that each scenario reflects both physical plausibility and operational extremity. The resulting bi-level model was reformulated using strong duality, and it was decomposed into a tractable mixed-integer structure with embedded adversarial learning loops. The proposed framework was validated on a modified IEEE 118-bus system with high wind and solar penetration. Results demonstrate that the GAN-enhanced planner consistently outperforms deterministic and stochastic baselines, reducing renewable curtailment by up to 48.7% and load shedding by 62.4% under worst-case realization. Moreover, the stress investment frontier exhibits clear convexity, enabling planners to identify cost-efficient resilience strategies. Spatial congestion maps and scenario risk-density plots further illustrate the ability of adversarial learning to reveal latent structural bottlenecks not captured by conventional methods. This work offers a new methodological paradigm, in which optimization and generative AI co-evolve to produce robust, data-aware, and stress-responsive transmission infrastructure designs. Full article
Show Figures

Figure 1

28 pages, 522 KiB  
Article
Sustainable Strategies to Reduce Logistics Costs Based on Cross-Docking—The Case of Emerging European Markets
by Mircea Boșcoianu, Zsolt Toth and Alexandru-Silviu Goga
Sustainability 2025, 17(14), 6471; https://doi.org/10.3390/su17146471 - 15 Jul 2025
Viewed by 533
Abstract
Cross-docking operations in Eastern and Central European markets face increasing complexity amid persistent uncertainty and inflationary pressures. This study provides the first comprehensive comparative analysis integrating economic efficiency with sustainability indicators across strategic locations. Using mixed-methods analysis of 40 bibliographical sources and quantitative [...] Read more.
Cross-docking operations in Eastern and Central European markets face increasing complexity amid persistent uncertainty and inflationary pressures. This study provides the first comprehensive comparative analysis integrating economic efficiency with sustainability indicators across strategic locations. Using mixed-methods analysis of 40 bibliographical sources and quantitative modeling of cross-docking scenarios in Bratislava, Prague, and Budapest, we integrate environmental, social, and governance frameworks with activity-based costing and artificial intelligence analysis. Optimized cross-docking achieves statistically significant cost reductions of 10.61% for Eastern and Central European inbound logistics and 3.84% for Western European outbound logistics when utilizing Budapest location (p < 0.01). Activity-based costing reveals labor (35–40%), equipment utilization (25–30%), and facility operations (20–25%) as primary cost drivers. Budapest demonstrates superior integrated performance index incorporating operational efficiency (94.2% loading efficiency), economic impact (EUR 925,000 annual savings), and environmental performance (486 tons CO2 reduction annually). This is the first empirically validated framework integrating activity-based costing–corporate social responsibility methodologies for an emerging market cross-docking, multi-dimensional performance assessment model transcending operational-sustainability dichotomy and location-specific contingency identification for emerging market implementation. Findings support targeted infrastructure investments, harmonized regulatory frameworks, and public–private partnerships for sustainable logistics development in emerging European markets, providing actionable roadmap for EUR 142,000–EUR 187,000 artificial intelligence implementation investments achieving a 14.6-month return on investment. Full article
Show Figures

Figure 1

27 pages, 792 KiB  
Article
The Role of Human Capital in Explaining Asset Return Dynamics in the Indian Stock Market During the COVID Era
by Eleftherios Thalassinos, Naveed Khan, Mustafa Afeef, Hassan Zada and Shakeel Ahmed
Risks 2025, 13(7), 136; https://doi.org/10.3390/risks13070136 - 11 Jul 2025
Viewed by 1131
Abstract
Over the past decade, multifactor models have shown enhanced capability compared to single-factor models in explaining asset return variability. Given the common assertion that higher risk tends to yield higher returns, this study empirically examines the augmented human capital six-factor model’s performance on [...] Read more.
Over the past decade, multifactor models have shown enhanced capability compared to single-factor models in explaining asset return variability. Given the common assertion that higher risk tends to yield higher returns, this study empirically examines the augmented human capital six-factor model’s performance on thirty-two portfolios of non-financial firms sorted by size, value, profitability, investment, and labor income growth in the Indian market over the period July 2010 to June 2023. Moreover, the current study extends the Fama and French five-factor model by incorporating a human capital proxy by labor income growth as an additional factor thereby proposing an augmented six-factor asset pricing model (HC6FM). The Fama and MacBeth two-step estimation methodology is employed for the empirical analysis. The results reveal that small-cap portfolios yield significantly higher returns than large-cap portfolios. Moreover, all six factors significantly explain the time-series variation in excess portfolio returns. Our findings reveal that the Indian stock market experienced heightened volatility during the COVID-19 pandemic, leading to a decline in the six-factor model’s efficiency in explaining returns. Furthermore, Gibbons, Ross, and Shanken (GRS) test results reveal mispricing of portfolio returns during COVID-19, with a stronger rejection of portfolio efficiency across models. However, the HC6FM consistently shows lower pricing errors and better performance, specifically during and after the pandemic era. Overall, the results offer important insights for policymakers, investors, and portfolio managers in optimizing portfolio selection, particularly during periods of heightened market uncertainty. Full article
Show Figures

Figure 1

Back to TopTop