Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = interfacial thermal transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2521 KiB  
Article
Interface-Driven Electrothermal Degradation in GaN-on-Diamond High Electron Mobility Transistors
by Huanran Wang, Yifan Liu, Xiangming Dong, Abid Ullah, Jisheng Sun, Chuang Zhang, Yucheng Xiong, Peng Gu, Ge Chen and Xiangjun Liu
Nanomaterials 2025, 15(14), 1114; https://doi.org/10.3390/nano15141114 - 18 Jul 2025
Viewed by 321
Abstract
Diamond is an attractive substrate candidate for GaN high-electron-mobility transistors (HEMT) to enhance heat dissipation due to its exceptional thermal conductivity. However, the thermal boundary resistance (TBR) at the GaN–diamond interface poses a significant bottleneck to heat transport, exacerbating self-heating and limiting device [...] Read more.
Diamond is an attractive substrate candidate for GaN high-electron-mobility transistors (HEMT) to enhance heat dissipation due to its exceptional thermal conductivity. However, the thermal boundary resistance (TBR) at the GaN–diamond interface poses a significant bottleneck to heat transport, exacerbating self-heating and limiting device performance. In this work, TCAD simulations were employed to systematically investigate the effects of thermal boundary layer (TBL) thickness (dTBL) and thermal conductivity (κTBL) on the electrothermal behavior of GaN-on-diamond HEMTs. Results show that increasing the TBL thickness (5–20 nm) or decreasing its thermal conductivity (0.1–1.0 W/(m·K)) leads to elevated hotspot temperatures and degraded electron mobility, resulting in a notable deterioration of IV characteristics. The nonlinear dependence of device performance on κTBL is attributed to Fourier’s law, where heat flux is inversely proportional to thermal resistance. Furthermore, the co-analysis of substrate thermal conductivity and interfacial quality reveals that interface TBR has a more dominant impact on device behavior than substrate conductivity. Remarkably, devices with low thermal conductivity substrates and optimized interfaces can outperform those with high-conductivity substrates but poor interfacial conditions. These findings underscore the critical importance of interface engineering in thermal management of GaN–diamond HEMTs and provide a theoretical foundation for future work on phonon transport and defect-controlled thermal interfaces. Full article
Show Figures

Graphical abstract

14 pages, 3047 KiB  
Article
Investigation on the Underlying Mechanisms of the Mechanical and Electrical Enhancement of Nano-SiO2-Doped Epoxy Resins: A Molecular Simulation Study
by Kunqi Cui, Yang Wang, Wenchao Yan, Teng Cao, Yan Du, Kai Wu and Li Guo
Molecules 2025, 30(14), 2960; https://doi.org/10.3390/molecules30142960 - 14 Jul 2025
Viewed by 254
Abstract
As a key insulating material in power equipment, epoxy resins (EP) are often limited in practical applications due to space charge accumulation and mechanical degradation. This study systematically investigates the effects of SiO2 nanoparticle doping on the electrical and mechanical properties of [...] Read more.
As a key insulating material in power equipment, epoxy resins (EP) are often limited in practical applications due to space charge accumulation and mechanical degradation. This study systematically investigates the effects of SiO2 nanoparticle doping on the electrical and mechanical properties of SiO2/EP composites through molecular dynamics simulations and first-principles calculations. The results demonstrate that SiO2 doping enhances the mechanical properties of EP, with notable improvements in Young’s modulus, bulk modulus, and shear modulus, while maintaining excellent thermal stability across different temperatures. Further investigations reveal that SiO2 doping effectively modulates the interfacial charge behavior between EP and metals (Cu/Fe) by introducing shallow defect states and reconstructing interfacial dipoles. Density of states analysis indicates the formation of localized defect states at the interface in doped systems, which dominate the defect-assisted hopping mechanism for charge transport and suppress space charge accumulation. Potential distribution calculations show that doping reduces the average potential of EP (1 eV for Cu layer and 1.09 eV for Fe layer) while simultaneously influencing the potential distribution near the polymer–metal interface, thereby optimizing the interfacial charge injection barrier. Specifically, the hole barrier at the maximum valence band (VBM) after doping significantly increased, rising from the initial values of 0.448 eV (Cu interface) and 0.349 eV (Fe interface) to 104.02% and 209.46%, respectively. These findings provide a theoretical foundation for designing high-performance epoxy-based composites with both enhanced mechanical properties and controllable interfacial charge behavior. Full article
Show Figures

Figure 1

17 pages, 3986 KiB  
Article
Titanate-Coupled Aluminum as an Interfacial Modifier for Enhanced Thermal and Mechanical Performance in Hybrid Epoxy Composites
by Hai-Long Cheng, Seul-Yi Lee, Na Chu, Se-Yeol Lee, Fan-Long Jin and Soo-Jin Park
Polymers 2025, 17(14), 1922; https://doi.org/10.3390/polym17141922 - 11 Jul 2025
Viewed by 467
Abstract
Thermally conductive polymer composites are essential for effective heat dissipation in electronic packaging, where both thermal management and mechanical reliability are critical. Although diglycidyl ether of bisphenol-A (DGEBA)-based epoxies exhibit favorable properties, their intrinsically low thermal conductivity limits broader applications. Incorporating conductive fillers, [...] Read more.
Thermally conductive polymer composites are essential for effective heat dissipation in electronic packaging, where both thermal management and mechanical reliability are critical. Although diglycidyl ether of bisphenol-A (DGEBA)-based epoxies exhibit favorable properties, their intrinsically low thermal conductivity limits broader applications. Incorporating conductive fillers, such as expanded graphite (EG) and metal powders, enhances heat transport but often compromises mechanical strength due to poor filler–matrix compatibility. In this study, we address this trade-off by employing a titanate coupling agent to surface-modify aluminum (Al) fillers, thereby improving interfacial adhesion and dispersion within the DGEBA matrix. Our results show that incorporating 10 wt% untreated Al increases thermal conductivity from 7.35 to 9.60 W/m·K; however, this gain comes at the cost of flexural strength, which drops to 18.29 MPa. In contrast, titanate-modified Al (Ti@Al) not only preserves high thermal conductivity but also restores mechanical performance, achieving a flexural strength of 35.31 MPa (at 5 wt% Ti@Al) and increasing impact strength from 0.60 to 1.01 kJ/m2. These findings demonstrate that interfacial engineering via titanate coupling offers a compelling strategy to overcome the thermal–mechanical trade-off in hybrid composites, enabling the development of high-performance materials for advanced thermal interface and structural applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

37 pages, 6674 KiB  
Article
Marangoni Convection of Self-Rewetting Fluid Layers with a Deformable Interface in a Square Enclosure and Driven by Imposed Nonuniform Heat Energy Fluxes
by Bashir Elbousefi, William Schupbach and Kannan N. Premnath
Energies 2025, 18(13), 3563; https://doi.org/10.3390/en18133563 - 6 Jul 2025
Viewed by 275
Abstract
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting [...] Read more.
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting fluids apart from normal fluids (NFs). The potential to improve heat transfer using self-rewetting fluids (SRFs) is garnering interest for use in various technologies, including low-gravity conditions and microfluidic systems. Our research aims to shed light on the contrasting behaviors of SRFs in comparison to NFs regarding interfacial transport phenomena. This study focuses on the thermocapillary convection in SRF layers with a deformable interface enclosed inside a closed container modeled as a square cavity, which is subject to nonuniform heating, represented using a Gaussian profile for the heat flux variation on one of its sides, in the absence of gravity. To achieve this, we have enhanced a central-moment-based lattice Boltzmann method (LBM) utilizing three distribution functions for tracking interfaces, computing two-fluid motions with temperature-dependent surface tension and energy transport, respectively. Through numerical simulations, the impacts of several characteristic parameters, including the viscosity and thermal conductivity ratios, as well as the surface tension–temperature sensitivity parameters, on the distribution and magnitude of the thermocapillary-driven motion are examined. In contrast to that in NFs, the counter-rotating pair of vortices generated in the SRF layers, due to the surface tension gradient at the interface, is found to be directed toward the SRF layers’ hotter zones. Significant interfacial deformations are observed, especially when there are contrasts in the viscosities of the SRF layers. The thermocapillary convection is found to be enhanced if the bottom SRF layer has a higher thermal conductivity or viscosity than that of the top layer or when distributed, rather than localized, heating is applied. Furthermore, the higher the magnitude of the effect of the dimensionless quadratic surface tension sensitivity coefficient on the temperature, or of the effect of the imposed heat flux, the greater the peak interfacial velocity current generated due to the Marangoni stresses. In addition, an examination of the Nusselt number profiles reveals significant redistribution of the heat transfer rates in the SRF layers due to concomitant nonlinear thermocapillary effects. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

18 pages, 5735 KiB  
Article
Fractional Calculus as a Tool for Modeling Electrical Relaxation Phenomena in Polymers
by Flor Y. Rentería-Baltiérrez, Jesús G. Puente-Córdova, Nasser Mohamed-Noriega and Juan Luna-Martínez
Polymers 2025, 17(13), 1726; https://doi.org/10.3390/polym17131726 - 20 Jun 2025
Viewed by 466
Abstract
The dielectric relaxation behavior of polymeric materials is critical to their performance in electronic, insulating, and energy storage applications. This study presents an electrical fractional model (EFM) based on fractional calculus and the complex electric modulus ( [...] Read more.
The dielectric relaxation behavior of polymeric materials is critical to their performance in electronic, insulating, and energy storage applications. This study presents an electrical fractional model (EFM) based on fractional calculus and the complex electric modulus (M*=M+iM) formalism to simultaneously describe two key relaxation phenomena: α-relaxation and interfacial polarization (Maxwell–Wagner–Sillars effect). The model incorporates fractional elements (cap-resistors) into a modified Debye equivalent circuit to capture polymer dynamics and energy dissipation. Fractional differential equations are derived, with fractional orders taking values between 0 and 1; the frequency and temperature responses are analyzed using Fourier transform. Two temperature-dependent behaviors are considered: the Matsuoka model, applied to α-relaxation near the glass transition, and an Arrhenius-type equation, used to describe interfacial polarization associated with thermally activated charge transport. The proposed model is validated using literature data for amorphous polymers, polyetherimide (PEI), polyvinyl chloride (PVC), and polyvinyl butyral (PVB), successfully fitting dielectric spectra and extracting meaningful physical parameters. The results demonstrate that the EFM is a robust and versatile tool for modeling complex dielectric relaxation in polymeric systems, offering improved interpretability over classical integer-order models. This approach enhances understanding of coupled relaxation mechanisms and may support the design of advanced polymer-based materials with tailored dielectric properties. Full article
(This article belongs to the Special Issue Relaxation Phenomena in Polymers)
Show Figures

Figure 1

43 pages, 9107 KiB  
Review
A Review on Pre-, In-Process, and Post-Synthetic Strategies to Break the Surface Area Barrier in g-C3N4 for Energy Conversion and Environmental Remediation
by Mingming Gao, Minghao Zhao, Qianqian Yang, Lan Bao, Liwei Chen, Wei Liu and Jing Feng
Nanomaterials 2025, 15(13), 956; https://doi.org/10.3390/nano15130956 - 20 Jun 2025
Viewed by 420
Abstract
Nanomaterials with large specific surface area (SSA) have emerged as pivotal platforms for energy storage and environmental remediation, primarily due to their enhanced active site exposure, improved mass transport capabilities, and superior interfacial reactivity. Among them, polymeric carbon nitride (g-C3N4 [...] Read more.
Nanomaterials with large specific surface area (SSA) have emerged as pivotal platforms for energy storage and environmental remediation, primarily due to their enhanced active site exposure, improved mass transport capabilities, and superior interfacial reactivity. Among them, polymeric carbon nitride (g-C3N4) has garnered significant attention in energy and environmental applications owing to its visible-light-responsive bandgap (~2.7 eV), exceptional thermal/chemical stability, and earth-abundant composition. However, the practical performance of g-C3N4 is fundamentally constrained by intrinsic limitations, including its inherently low SSA (<20 m2/g via conventional thermal polymerization), rapid recombination of photogenerated carriers, and inefficient charge transfer kinetics. Notably, the theoretical SSA of g-C3N4 reaches 2500 m2/g, yet achieving this value remains challenging due to strong interlayer van der Waals interactions and structural collapse during synthesis. Recent advances demonstrate that state-of-the-art strategies can elevate its SSA to 50–200 m2/g. To break this surface area barrier, advanced strategies achieve SSA enhancement through three primary pathways: pre-treatment (molecular and supramolecular precursor design), in process (templating and controlled polycondensation), and post-processing (chemical exfoliation and defect engineering). This review systematically examines controllable synthesis methodologies for high-SSA g-C3N4, analyzing how SSA amplification intrinsically modulates band structures, extends carrier lifetimes, and boosts catalytic efficiencies. Future research should prioritize synergistic multi-stage engineering to approach the theoretical SSA limit (2500 m2/g) while preserving robust optoelectronic properties. Full article
Show Figures

Graphical abstract

15 pages, 1687 KiB  
Article
Study on Regulation Mechanism of Heat Transport at Aluminum Nitride/Graphene/Silicon Carbide Heterogeneous Interface
by Dongjing Liu, Pengbo Wang, Zhiliang Hu, Jia Fu, Wei Qin, Jianbin Yu, Yangyang Zhang, Bing Yang and Yunqing Tang
Nanomaterials 2025, 15(12), 928; https://doi.org/10.3390/nano15120928 - 14 Jun 2025
Viewed by 452
Abstract
In order to solve the self-heating problem of power electronic devices, this paper adopts a nonequilibrium molecular dynamics approach to study the thermal transport regulation mechanism of the aluminum nitride/graphene/silicon carbide heterogeneous interface. The effects of temperature, size, and vacancy defects on interfacial [...] Read more.
In order to solve the self-heating problem of power electronic devices, this paper adopts a nonequilibrium molecular dynamics approach to study the thermal transport regulation mechanism of the aluminum nitride/graphene/silicon carbide heterogeneous interface. The effects of temperature, size, and vacancy defects on interfacial thermal conductivity are analyzed by phonon state density versus phonon participation rate to reveal their phonon transfer mechanisms during thermal transport. It is shown that the interfacial thermal conductance (ITC) increases about three times when the temperature increases from 300 K to 1100 K. It is analyzed that the increase in temperature will enhance lattice vibration, enhance phonon coupling degree, and thus increase its ITC. With the increase in the number of AlN-SiC layers from 8 to 28, the ITC increases by about 295.3%, and it is analyzed that the increase in the number of AlN-SiC layers effectively reduces the interfacial scattering and improves the phonon interfacial transmission efficiency. The increase in the number of graphene layers from 1 layer to 4 layers decreases the ITC by 70.3%. The interfacial thermal conductivity reaches a minimum, which is attributed to the increase in graphene layers aggravating the degree of phonon localization. Under the influence of the increase in graphene single and double vacancy defects concentration, the ITC is slightly reduced. When the defect rate reaches about 20%, the interfacial thermal conductance of SV (single vacancy) and DV (double vacancy) defects rises back to 5.606 × 10−2 GW/m2K and 5.224 × 10−2 GW/m2K, respectively. It is analyzed that the phonon overlapping and the participation rate act at the same time, so the heat-transferring phonons increase, increasing the thermal conductance of their interfaces. The findings provide theoretical support for optimizing the thermal management performance of heterostructure interfaces. Full article
Show Figures

Graphical abstract

12 pages, 2114 KiB  
Article
Interface-Sensitive Charge Storage and Activation Behavior of Mn(1,3,5-Benzenetricarboxylic Acid (BTC))-Derived Mn3O4/Carbon Cathodes for Aqueous Zinc-Ion Batteries
by Jieun Lee and Byoungnam Park
Molecules 2025, 30(12), 2566; https://doi.org/10.3390/molecules30122566 - 12 Jun 2025
Viewed by 365
Abstract
In this study, we couple precise interface engineering via alternating current electrophoretic deposition (AC–EPD) with performance-enhancing structural transformation via annealing, enabling the development of high-performance, stable, and tunable Mn-based cathodes for aqueous zinc-ion batteries (ZIBs). Using AC–EPD to fabricate Mn(BTC) (BTC = 1,3,5-benzenetricarboxylic [...] Read more.
In this study, we couple precise interface engineering via alternating current electrophoretic deposition (AC–EPD) with performance-enhancing structural transformation via annealing, enabling the development of high-performance, stable, and tunable Mn-based cathodes for aqueous zinc-ion batteries (ZIBs). Using AC–EPD to fabricate Mn(BTC) (BTC = 1,3,5-benzenetricarboxylic acid) cathodes followed by thermal annealing to synthesize MOF-derived Mn3O4 offers a synergistic approach that addresses several key challenges in aqueous ZIB systems. The Mn3O4 cathode prepared via AC–EPD from Mn(BTC) exhibited a remarkable specific capacity of up to 430 mAh/g at a current density of 200 mA/g. Interestingly, the capacity continued to increase progressively with cycling, suggesting dynamic structural or interfacial changes that improved Zn2+ transport and utilization over time. Such capacity enhancement behavior during prolonged cycling at elevated rates has not been observed in previously reported Mn3O4-based ZIB systems. Kinetic analysis further revealed that the charge storage process is predominantly governed by diffusion-controlled mechanisms. This behavior can be attributed to the intrinsic characteristics of the Mn3O4 phase formed from the MOF precursor, where the bulk redox reactions involving Zn2+ insertion require ion migration into the electrode interior. Even though the electrode was processed as an ultrathin film with enhanced electrolyte contact, the charge storage remains limited by solid-state ion diffusion rather than fast surface-driven reactions, reinforcing the diffusion-dominant nature of the system. Full article
(This article belongs to the Special Issue Functional Porous Frameworks: Synthesis, Properties, and Applications)
Show Figures

Figure 1

16 pages, 2229 KiB  
Article
Investigation of the Effect of Molecules Containing Sulfonamide Moiety Adsorbed on the FAPbI3 Perovskite Surface: A First-Principles Study
by Shiyan Yang, Yu Zhuang, Youbo Dou, Jianjun Wang, Hongwen Zhang, Wenjing Lu, Qiuli Zhang, Xihua Zhang, Yuan Wu and Xianfeng Jiang
Molecules 2025, 30(11), 2463; https://doi.org/10.3390/molecules30112463 - 4 Jun 2025
Viewed by 528
Abstract
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite [...] Read more.
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite surface, aiming to establish a significant positive correlation between the molecular structures and their regulatory effects on the perovskite surface. A systematic comparison was conducted to evaluate the adsorption stability of the three molecules on the two distinct surface terminations. The results show that all three molecules exhibit strong adsorption on the FAPbI3(001) surface, with C2H12N6O4S demonstrating the most favorable binding stability due to its extended frameworks and multiple electron-donating/withdrawing groups. Simpler molecules lacking carbon skeletons exhibit weaker adsorption and less dependence on surface termination. Ab initio molecular dynamics simulations (AIMD) further corroborated the thermal stability of the stable adsorption configurations at elevated temperatures. Electronic structure analysis reveals that molecular adsorption significantly reconstructs the density of states (DOS) on the PbI2-terminated surface, inducing shifts in band-edge states and enhancing energy-level coupling between molecular orbitals and surface states. In contrast, the FAI-terminated surface shows weaker interactions. Charge density difference (CDD) analysis indicates that the molecules form multiple coordination bonds (e.g., Pb–O, Pb–S, and Pb–N) with uncoordinated Pb atoms, facilitated by –SO2–NH2 groups. Bader charge and work function analyses indicate that the PbI2-terminated surface exhibits more pronounced electronic coupling and interfacial charge transfer. The C2H12N6O4S adsorption system demonstrates the most substantial reduction in work function. Optical property calculations show a distinct red-shift in the absorption edge along both the XX and YY directions for all adsorption systems, accompanied by enhanced absorption intensity and broadened spectral range. These findings suggest that sulfonamide-containing molecules, particularly C2H12N6O4S with extended carbon skeletons, can effectively stabilize the perovskite interface, optimize charge transport pathways, and enhance light-harvesting performance. Full article
Show Figures

Figure 1

14 pages, 14180 KiB  
Article
Effect of Cr Content on Microstructure and Mechanical Properties of Heat Affected Zone in Supercritical Carbon Dioxide Transport Pipeline Steel
by Rui Hong, Xiaodan Zhu, Shubiao Yin, Nengsheng Liu, Shujun Jia, Yuxi Cao, Yuqin Qin and Qilin Ma
Materials 2025, 18(11), 2607; https://doi.org/10.3390/ma18112607 - 3 Jun 2025
Viewed by 451
Abstract
This study systematically investigates the influence mechanism of the element Cr on the mechanical properties of the heat-affected zone in pipeline steels for supercritical CO2 transportation. Microstructural evolution in the heat affected-zone was characterized through thermal simulation tests, Charpy impact testing (−10 [...] Read more.
This study systematically investigates the influence mechanism of the element Cr on the mechanical properties of the heat-affected zone in pipeline steels for supercritical CO2 transportation. Microstructural evolution in the heat affected-zone was characterized through thermal simulation tests, Charpy impact testing (−10 °C), and microhardness measurements, complemented by multiscale microscopic analyses (optical microscopy, scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy). The results demonstrate that Cr addition enhances the base metal’s resistance to supercritical CO2 corrosion but reduces its low-temperature impact toughness from 277 J to 235 J at −10 °C. Notably, the intercritical heat-affected zone exhibits severe embrittlement, with impact energy plummeting from 235 J (base metal) to 77 J. Microstructural analysis reveals that Cr interacts with carbon to form stable carbonitride particles, which reduce the free carbon concentration and diffusion coefficient in austenite, thereby inducing heterogeneous austenitization. Undissolved carbonitrides pin grain boundaries, creating carbon concentration gradients. During rapid cooling, these localized carbon-enriched microregions preferentially transform into core–shell-structured M-A constituent, characterized by a micro-twin containing retained austenite core encapsulated by high hardness lath martensite. The synergistic interaction between micro-twins and interfacial thermal mismatch stress induces localized stress concentration, triggering microcrack nucleation and subsequent toughness degradation. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

24 pages, 5920 KiB  
Article
Numerical Investigations on Boil-Off Gas Generation Characteristics of LCO2 in Type C Storage Tanks Under Different Sloshing Conditions
by Mengke Sun, Zhongchao Zhao and Jiwei Gong
Appl. Sci. 2025, 15(10), 5788; https://doi.org/10.3390/app15105788 - 21 May 2025
Viewed by 444
Abstract
Marine transportation of liquefied carbon dioxide (LCO2) is crucial for Carbon Capture, Transportation, Utilization, and Storage (CCTUS) technology, aiding in CO2 emission reduction and greenhouse effect control. This study investigates the thermodynamic and fluid dynamic characteristics of LCO2 in [...] Read more.
Marine transportation of liquefied carbon dioxide (LCO2) is crucial for Carbon Capture, Transportation, Utilization, and Storage (CCTUS) technology, aiding in CO2 emission reduction and greenhouse effect control. This study investigates the thermodynamic and fluid dynamic characteristics of LCO2 in Type C storage tanks using numerical simulations, focusing on heat transfer, flow phenomena, and boil-off gas (BOG) generation under varying storage pressures. Results show that heated liquid rises along the tank wall, forming vortices, while gas-phase vortices are driven by central upward airflow. Over time, liquid velocity near the wall increases, enhancing flow field mixing. Gas-phase temperatures rise significantly, while liquid-phase temperature gradients remain minimal. Higher storage pressures reduce fluid velocity, vortex range, and thermal response speed. BOG generation is higher at low pressures and decreases as pressure rises, slowing beyond 1.5 MPa. Under sloshing conditions, interfacial fluctuations enhance heat and mass transfer, reducing thermal stratification. Resonance periods amplify interfacial disturbances, improving thermal mixing and minimizing temperature gradients (ΔT ≈ 0.1 K). Higher filling rates suppress surface rupture, while lower rates exhibit gas-dominated instabilities and larger thermal gradients (ΔT ≈ 0.3 K). Full article
(This article belongs to the Special Issue Research on Heat Transfer Analysis in Fluid Dynamics)
Show Figures

Figure 1

45 pages, 3763 KiB  
Review
Mathematical and Physical Description of Transport Phenomena in Heat Pipes Based on Nanofluids: A Review
by Marina S. Astanina, Nikita S. Gibanov, Igor V. Miroshnichenko, Egor A. Tarasov and Mikhail A. Sheremet
Nanomaterials 2025, 15(10), 757; https://doi.org/10.3390/nano15100757 - 18 May 2025
Viewed by 561
Abstract
Heat pipes are highly efficient heat transfer devices relying on phase-change mechanisms, with performance heavily influenced by working fluids and operational dynamics. This review article comprehensively examines hydrodynamics and heat transfer in heat pipes, contrasting conventional working fluids with nanofluid-enhanced systems. In the [...] Read more.
Heat pipes are highly efficient heat transfer devices relying on phase-change mechanisms, with performance heavily influenced by working fluids and operational dynamics. This review article comprehensively examines hydrodynamics and heat transfer in heat pipes, contrasting conventional working fluids with nanofluid-enhanced systems. In the present work we discuss mathematical models governing fluid flow and heat transfer, emphasizing continuum and porous media approaches for wick structures. Functional dependencies of thermophysical properties (e.g., viscosity, surface tension, thermal conductivity) are reviewed, highlighting temperature-driven correlations and nanofluid modifications. Transport mechanisms within wicks are analyzed, addressing capillary-driven flow, permeability, and challenges posed by nanoparticle integration. Fourth, interfacial phase-change conditions—evaporation and condensation—are modeled, focusing on kinetic theory and empirical correlations. Also, numerical and experimental results are synthesized to quantify performance enhancements from nanofluids, including thermal resistance reduction and capillary limit extension, while addressing inconsistencies in stability and pressure drop trade-offs. Finally, applications spanning electronics cooling, aero-space, and renewable energy systems are evaluated, underscoring nanofluids’ potential to expand heat pipe usability in extreme environments. The review identifies critical gaps, such as long-term nanoparticle stability and scalability of lab-scale models, while advocating for unified frameworks to optimize nanofluid selection and wick design. This work serves as a foundational reference for researchers and engineers aiming to advance heat pipe technology through nanofluid integration, balancing theoretical rigor with practical feasibility. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

12 pages, 3483 KiB  
Article
A Cascade Bilayer Electron-Transporting Layer for Enhanced Performance and Stability of Self-Powered All-Inorganic Perovskite Photodetectors
by Yu Hyun Kim and Jae Woong Jung
Molecules 2025, 30(10), 2195; https://doi.org/10.3390/molecules30102195 - 17 May 2025
Viewed by 453
Abstract
This study aims to enhance optoelectronic properties of all-inorganic perovskite photodetectors (PDs) by incorporating a bilayer electron transport layer (ETL). The bilayer ETL composed of SnO2 and ZnO effectively optimizes energy level alignment at the interface, facilitating efficient electron extraction from the [...] Read more.
This study aims to enhance optoelectronic properties of all-inorganic perovskite photodetectors (PDs) by incorporating a bilayer electron transport layer (ETL). The bilayer ETL composed of SnO2 and ZnO effectively optimizes energy level alignment at the interface, facilitating efficient electron extraction from the CsPbI2Br perovskite layer while suppressing shunt pathways. Additionally, it enhances interfacial properties by mitigating defects and minimizing dark current leakage, thereby improving overall device performance. As a result, the bilayer ETL-based PDs exhibit broadband photoresponsivity in 300 to 700 nm with a responsivity of 0.45 A W−1 and a specific detectivity of 9 × 1013 Jones, outperforming the single-ETL devices. Additionally, they demonstrate stable cyclic photoresponsivity with fast response times (14 μs for turn-on and 32 μs for turn-off). The bilayer ETL also improves long-term reliability and thermal stability, highlighting its potential for high performance, reliability, and practical applications of all-inorganic perovskite PDs. Full article
(This article belongs to the Special Issue Chemistry Innovatives in Perovskite Based Materials)
Show Figures

Figure 1

13 pages, 2642 KiB  
Review
Advancements in Inorganic Hole-Transport Materials for Perovskite Solar Cells: A Comparative Review
by Johannes Zanoxolo Mbese
Energies 2025, 18(9), 2374; https://doi.org/10.3390/en18092374 - 6 May 2025
Viewed by 975
Abstract
Single-junction perovskite solar cells (PSCs) have been one of the most promising photovoltaic technologies owing to their high-power conversion efficiencies (PCEs) of ~27% and the low-cost fabrication processes involved, which pay off significantly given their distinct structural characteristics. Recently, inorganic hole-transport materials (HTMs) [...] Read more.
Single-junction perovskite solar cells (PSCs) have been one of the most promising photovoltaic technologies owing to their high-power conversion efficiencies (PCEs) of ~27% and the low-cost fabrication processes involved, which pay off significantly given their distinct structural characteristics. Recently, inorganic hole-transport materials (HTMs) such as nickel oxide (NiOx) have been developed and received considerable attention for use in OPVs due to their excellent thermal stability, low-cost materials, and compatibility with scalable deposition methods. Here, we summarize the recent progress on inorganic HTMs for PSCs, which can be divided into three categories: NiOx, copper-based compounds, and emerging new alternatives. The deposition method (sputtering, atomic layer deposition, or a solution-based technique) is one of the most important factors affecting the performance and stability of PSCs. Finally, we review interfacial engineering strategies, such as surface modifications and doping, which can enhance charge transport and extend a device’s lifetime. We also balance the benefits of inorganic HTMs against the key challenges in advancing to commercialization, namely interior defects and environmental degradation. In this review, we summarize the recent progress and challenges toward developing cost-efficient and stable PSCs with inorganic HTMs and provide insights into the future development of these materials. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

34 pages, 38166 KiB  
Review
Gas Generation in Lithium-Ion Batteries: Mechanisms, Failure Pathways, and Thermal Safety Implications
by Tianyu Gong, Xuzhi Duan, Yan Shan and Lang Huang
Batteries 2025, 11(4), 152; https://doi.org/10.3390/batteries11040152 - 13 Apr 2025
Cited by 2 | Viewed by 3403
Abstract
Gas evolution in lithium-ion batteries represents a pivotal yet underaddressed concern, significantly compromising long-term cyclability and safety through complex interfacial dynamics and material degradation across both normal operation and extreme thermal scenarios. While extensive research has focused on isolated gas generation mechanisms in [...] Read more.
Gas evolution in lithium-ion batteries represents a pivotal yet underaddressed concern, significantly compromising long-term cyclability and safety through complex interfacial dynamics and material degradation across both normal operation and extreme thermal scenarios. While extensive research has focused on isolated gas generation mechanisms in specific components, critical knowledge gaps persist in understanding cross-component interactions and the cascading failure pathways it induced. This review systematically decouples gas generation mechanisms at cathodes (e.g., lattice oxygen-driven CO2/CO in high-nickel layered oxides), anodes (e.g., stress-triggered solvent reduction in silicon composites), electrolytes (solvent decomposition), and auxiliary materials (binder/separator degradation), while uniquely establishing their synergistic impacts on battery stability. Distinct from prior modular analyses, we emphasize that: (1) emerging systems exhibit fundamentally different gas evolution thermodynamics compared to conventional materials, exemplified by sulfide solid electrolytes releasing H2S/SO2 via unique anionic redox pathways; (2) gas crosstalk between components creates compounding risks—retained gases induce electrolyte dry-out and ion transport barriers during cycling, while combustible gas–O2 mixtures accelerate thermal runaway through chain reactions. This review proposes three key strategies to suppress gas generation: (1) oxygen lattice stabilization via dopant engineering, (2) solvent decomposition mitigation through tailored interphases engineering, and (3) gas-selective adaptive separator development. Furthermore, it establishes a multiscale design framework spanning atomic defect control to pack-level thermal management, providing actionable guidelines for battery engineering. By correlating early gas detection metrics with degradation patterns, the work enables predictive safety systems and standardized protocols, directly guiding the development of reliable high-energy batteries for electric vehicles and grid storage. Full article
(This article belongs to the Special Issue High-Safety Lithium-Ion Batteries: Basics, Progress and Challenges)
Show Figures

Figure 1

Back to TopTop