Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (749)

Search Parameters:
Keywords = interfacial tensions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4663 KiB  
Article
Investigation on Imbibition Recovery Characteristics in Jimusar Shale Oil and White Mineral Oil by NMR
by Dunqing Liu, Chengzhi Jia and Keji Chen
Energies 2025, 18(15), 4111; https://doi.org/10.3390/en18154111 - 2 Aug 2025
Viewed by 128
Abstract
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in [...] Read more.
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in light shale oil or tight oil. However, the representativeness of these simulated oils for low-maturity crude oils with higher viscosity and greater content of resins and asphaltenes requires further research. In this study, imbibition experiments were conducted and T2 and T1T2 nuclear magnetic resonance (NMR) spectra were adopted to investigate the oil recovery characteristics among resin–asphaltene-rich Jimusar shale oil and two WMOs. The overall imbibition recovery rates, pore scale recovery characteristics, mobility variations among oils with different occurrence states, as well as key factors influencing imbibition efficiency were analyzed. The results show the following: (1) WMO, kerosene, or alkanes with matched apparent viscosity may not comprehensively replicate the imbibition behavior of resin–asphaltene-rich crude oils. These simplified systems fail to capture the pore-scale occurrence characteristics of resins/asphaltenes, their influence on pore wettability alteration, and may consequently overestimate the intrinsic imbibition displacement efficiency in reservoir formations. (2) Surfactant optimization must holistically address the intrinsic coupling between interfacial tension reduction, wettability modification, and pore-scale crude oil mobilization mechanisms. The alteration of overall wettability exhibits higher priority over interfacial tension in governing displacement dynamics. (3) Imbibition displacement exhibits selective mobilization characteristics for oil phases in pores. Specifically, when the oil phase contains complex hydrocarbon components, lighter fractions in larger pores are preferentially mobilized; when the oil composition is homogeneous, oil in smaller pores is mobilized first. Full article
(This article belongs to the Special Issue New Progress in Unconventional Oil and Gas Development: 2nd Edition)
Show Figures

Figure 1

15 pages, 1758 KiB  
Article
Optimized Si-H Content and Multivariate Engineering of PMHS Antifoamers for Superior Foam Suppression in High-Viscosity Systems
by Soyeon Kim, Changchun Liu, Junyao Huang, Xiang Feng, Hong Sun, Xiaoli Zhan, Mingkui Shi, Hongzhen Bai and Guping Tang
Coatings 2025, 15(8), 894; https://doi.org/10.3390/coatings15080894 (registering DOI) - 1 Aug 2025
Viewed by 192
Abstract
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D [...] Read more.
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D30T1), and terminal group chemistry (H- vs. M-type). These structural modifications resulted in a broad range of Si-H functionalities, which were quantitatively analyzed and correlated with defoaming performance. The PMHS matrices were integrated with high-viscosity PDMS, a nonionic surfactant, and covalently grafted fumed silica—which was chemically matched to each PMHS backbone—to construct formulation-specific defoaming systems with enhanced interfacial compatibility and colloidal stability. Comprehensive physicochemical characterization via FT-IR, 1H NMR, GPC, TGA, and surface tension analysis revealed a nonmonotonic relationship between Si-H content and defoaming efficiency. Formulations containing 0.1–0.3 wt% Si-H achieved peak performance, with suppression efficiencies up to 96.6% and surface tensions as low as 18.9 mN/m. Deviations from this optimal range impaired performance due to interfacial over-reactivity or reduced mobility. Furthermore, thermal stability and molecular weight distribution were found to be governed by repeat unit architecture and terminal group selection. Compared with conventional EO/PO-modified commercial defoamers, the PMHS-based systems exhibited markedly improved suppression durability and formulation stability in high-viscosity environments. These results establish a predictive structure–property framework for tailoring antifoaming agents and highlight PMHS-based formulations as advanced foam suppressors with improved functionality. This study provides actionable design criteria for high-performance silicone materials with strong potential for application in thermally and mechanically demanding environments such as coating, bioprocessing, and polymer manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

14 pages, 1649 KiB  
Article
Development of Cellulose Acetate Spherical Microparticles by Means of Melt Extrusion of Incompatible Polymer Blend
by Masaya Omura, Keiko Kobayashi, Kanji Nagai and Shu Shimamoto
Polymers 2025, 17(15), 2118; https://doi.org/10.3390/polym17152118 - 31 Jul 2025
Viewed by 159
Abstract
Cellulose acetate (CA), commercially produced from natural cellulose, is one of the promising candidates to solve the microplastic issue. In this study, attempts were made to prepare CA microparticles by means of melt extrusion of incompatible polymer blends comprising CA with plasticizer (triacetin [...] Read more.
Cellulose acetate (CA), commercially produced from natural cellulose, is one of the promising candidates to solve the microplastic issue. In this study, attempts were made to prepare CA microparticles by means of melt extrusion of incompatible polymer blends comprising CA with plasticizer (triacetin (TA)) and polyvinyl alcohol (PVA) followed by selective removable of TA and PVA. As implied by semi-theoretical equation previously established by Wu (Wu’s equation), particle size decreased with increasing shear rate or decreasing viscosity ratio of polymers. CA microparticles with a controlled size of 2–8 μm, narrow particle size distribution, and smooth surface were successfully obtained. Efforts were made to determine the numerical solution of Wu’s equation to compare them with observed particle size. To this end, interfacial tension between dispersed and matrix phases to be incorporated in the equation was determined by group contribution methods. The root mean squared error (RMSE) between the observed and calculated particle size was unsatisfactorily large, 4.46 μm. It was found that one of the possible reasons for the limited prediction accuracy was migration of TA from the dispersed to matrix phase affecting the viscosity ratio. Further efforts will be required to achieve a better prediction. Full article
(This article belongs to the Special Issue Advanced Cellulose Polymers and Derivatives)
Show Figures

Figure 1

28 pages, 14358 KiB  
Article
Three-Dimensional Mesoscopic DEM Modeling and Compressive Behavior of Macroporous Recycled Concrete
by Yupeng Xu, Fei Geng, Haoxiang Luan, Jun Chen, Hangli Yang and Peiwei Gao
Buildings 2025, 15(15), 2655; https://doi.org/10.3390/buildings15152655 - 27 Jul 2025
Viewed by 339
Abstract
The mesoscopic-scale discrete element method (DEM) modeling approach demonstrated high compatibility with macroporous recycled concrete (MRC). However, existing DEM models failed to adequately balance modeling accuracy and computational efficiency for recycled aggregate (RA), replicate the three distinct interfacial transition zone (ITZ) types and [...] Read more.
The mesoscopic-scale discrete element method (DEM) modeling approach demonstrated high compatibility with macroporous recycled concrete (MRC). However, existing DEM models failed to adequately balance modeling accuracy and computational efficiency for recycled aggregate (RA), replicate the three distinct interfacial transition zone (ITZ) types and pore structure of MRC, or establish a systematic calibration methodology. In this study, PFC 3D was employed to establish a randomly polyhedral RA composite model and an MRC model. A systematic methodology for parameter testing and calibration was proposed, and compressive test simulations were conducted on the MRC model. The model incorporated all components of MRC, including three types of ITZs, achieving an aggregate volume fraction of 57.7%. Errors in simulating compressive strength and elastic modulus were 3.8% and 18.2%, respectively. Compared to conventional concrete, MRC exhibits larger strain and a steeper post-peak descending portion in stress–strain curves. At peak stress, stress is concentrated in the central region and the surrounding arc-shaped zones. After peak stress, significant localized residual stress persists within specimens; both toughness and toughness retention capacity increase with rising porosity and declining compressive strength. Failure of MRC is dominated by tension rather than shear, with critical bonds determining strength accounting for only 1.4% of the total. The influence ranking of components on compressive strength is as follows: ITZ (new paste–old paste) > ITZ (new paste–natural aggregates) > new paste > old paste > ITZ (old paste–natural aggregates). The Poisson’s ratio of MRC (0.12–0.17) demonstrates a negative correlation with porosity. Predictive formulas for peak strain and elastic modulus of MRC were established, with errors of 2.6% and 3.9%, respectively. Full article
(This article belongs to the Special Issue Advances in Modeling and Characterization of Cementitious Composites)
Show Figures

Figure 1

21 pages, 18567 KiB  
Article
Mitigation of Black Streak Defects in AISI 304 Stainless Steel via Numerical Simulation and Reverse Optimization Algorithm
by Xuexia Song, Xiaocan Zhong, Wanlin Wang and Kun Dou
Materials 2025, 18(14), 3414; https://doi.org/10.3390/ma18143414 - 21 Jul 2025
Viewed by 304
Abstract
The formation mechanism of black streak defects in hot-rolled steel sheets was investigated to address the influence of the process parameters on the surface quality during the production of 304 stainless steels. Macro-/microstructural characterization revealed that the defect regions contained necessary mold slag [...] Read more.
The formation mechanism of black streak defects in hot-rolled steel sheets was investigated to address the influence of the process parameters on the surface quality during the production of 304 stainless steels. Macro-/microstructural characterization revealed that the defect regions contained necessary mold slag components (Ca, Si, Al, Mg, Na, K) which originated from the initial stage of solidification in the mold region of the continuous casting process, indicating obvious slag entrapment during continuous casting. On this basis, a three-dimensional coupled finite-element model for the molten steel flow–thermal characteristics was established to evaluate the effects of typical casting parameters using the determination of the critical slag entrapment velocity as the criterion. Numerical simulations demonstrated that the maximum surface velocity improved from 0.29 m/s to 0.37 m/s with a casting speed increasing from 1.0 m/min to 1.2 m/min, which intensified the meniscus turbulence. However, the increase in the port angle and the depth of the submerged entry nozzle (SEN) effectively reduced the maximum surface velocity to 0.238 m/s and 0.243 m/s, respectively, with a simultaneous improvement in the slag–steel interface temperature. Through MATLAB (version 2023b)-based reverse optimization combined with critical velocity analysis, the optimal mold slag properties were determined to be 2800 kg/m3 for the density, 4.756 × 10−6 m2/s for the kinematic viscosity, and 0.01 N/m for the interfacial tension. This systematic approach provides theoretical guidance for process optimization and slag design enhancement in industrial production. Full article
Show Figures

Figure 1

17 pages, 2519 KiB  
Article
Gel Electrophoresis of an Oil Drop
by Hiroyuki Ohshima
Gels 2025, 11(7), 555; https://doi.org/10.3390/gels11070555 - 18 Jul 2025
Viewed by 287
Abstract
We present a theoretical model for the electrophoresis of a weakly charged oil drop migrating through an uncharged polymer gel medium saturated with an aqueous electrolyte solution. The surface charge of the drop arises from the specific adsorption of ions onto its interface. [...] Read more.
We present a theoretical model for the electrophoresis of a weakly charged oil drop migrating through an uncharged polymer gel medium saturated with an aqueous electrolyte solution. The surface charge of the drop arises from the specific adsorption of ions onto its interface. Unlike solid particles, liquid drops exhibit internal fluidity and interfacial dynamics, leading to distinct electrokinetic behavior. In this study, the drop motion is driven by long-range hydrodynamic effects from the surrounding gel, which are treated using the Debye–Bueche–Brinkman continuum framework. A simplified version of the Baygents–Saville theory is adopted, assuming that no ions are present inside the drop and that the surface charge distribution results from linear ion adsorption. An approximate analytical expression is derived for the electrophoretic mobility of the drop under the condition of low zeta potential. Importantly, the derived expression explicitly includes the Marangoni effect, which arises from spatial variations in interfacial tension due to non-uniform ion adsorption. This model provides a physically consistent and mathematically tractable basis for understanding the electrophoretic transport of oil drops in soft porous media such as hydrogels, with potential applications in microfluidics, separation processes, and biomimetic systems. These results also show that the theory could be applied to more complicated or biologically important soft materials. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

17 pages, 2732 KiB  
Article
Influence of Cellulose Nanocrystals and Surfactants on Catastrophic Phase Inversion and Stability of Emulsions
by Daniel Kim and Rajinder Pal
Colloids Interfaces 2025, 9(4), 46; https://doi.org/10.3390/colloids9040046 - 11 Jul 2025
Viewed by 248
Abstract
This study presents the first quantitative comparison of catastrophic phase inversion behavior of water-in-oil emulsions stabilized by nanocrystalline cellulose (NCC) and molecular surfactants with different headgroup charge types: anionic (sodium dodecyl sulfate referred to as SDS), cationic (octadecyltrimethylammonium chloride referred to as OTAC), [...] Read more.
This study presents the first quantitative comparison of catastrophic phase inversion behavior of water-in-oil emulsions stabilized by nanocrystalline cellulose (NCC) and molecular surfactants with different headgroup charge types: anionic (sodium dodecyl sulfate referred to as SDS), cationic (octadecyltrimethylammonium chloride referred to as OTAC), nonionic (C12–14 alcohol ethoxylate referred to as Alfonic), and zwitterionic (cetyl betaine referred to as Amphosol). By using conductivity measurements under controlled mixing and pendant drop tensiometry, this study shows that NCC markedly delays catastrophic phase inversion through interfacial jamming, whereas surfactant-stabilized systems exhibit concentration-dependent inversion driven by interfacial saturation. Specifically, NCC-stabilized emulsions exhibited a nonlinear increase in the critical aqueous phase volume fraction required for inversion, ranging from 0.253 (0 wt% NCC) to 0.545 (1.5 wt% NCC), consistent with enhanced resistance to inversion typically associated with the formation of rigid interfacial layers in Pickering emulsions. In contrast, surfactant-stabilized systems exhibited a concentration-dependent inversion trend with opposing effects. At low concentrations, limited interfacial coverage delayed inversion, while at higher concentrations, increased surfactant availability and interfacial saturation promoted earlier inversion and favored the formation of oil-in-water structures. Pendant drop tensiometry confirmed negligible surface activity for NCC, while all surfactants significantly lowered interfacial tension. Despite its weak surface activity, NCC imparted strong coalescence resistance above 0.2 wt%, attributed to steric stabilization. These findings establish distinct mechanisms for governing phase inversion in particle- versus surfactant-stabilized systems. To our knowledge, this is the first study to quantitively characterize the catastrophic phase inversion behavior of water-in-oil emulsions using NCC. This work supports the use of NCC as an effective stabilizer for emulsions with high internal phase volume. Full article
(This article belongs to the Special Issue Rheology of Complex Fluids and Interfaces: 2nd Edition)
Show Figures

Figure 1

37 pages, 8085 KiB  
Review
Scaling Amphiphilicity with Janus Nanoparticles: A New Frontier in Nanomaterials and Interface Science
by Mirela Honciuc and Andrei Honciuc
Nanomaterials 2025, 15(14), 1079; https://doi.org/10.3390/nano15141079 - 11 Jul 2025
Viewed by 403
Abstract
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and [...] Read more.
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and are capable of reducing interfacial tension, adsorbing spontaneously at interfaces, stabilizing emulsions and foams, and forming micelles, bilayers, or vesicles. Recent experimental, theoretical, and computational studies demonstrate that these behaviors are scalable to nanostructured colloids such as JNPs. Amphiphilic JNPs, defined by anisotropic surface chemistry on distinct hemispheres, display interfacial activity driven by directional wetting, variable interfacial immersion depth, and strong interfacial anchoring. They can stabilize liquid/liquid and liquid/gas interfaces, and enable templated or spontaneous self-assembly into supra-structures, such as monolayer sheets, vesicles, capsules, etc., both in bulk and at interfaces. Their behavior mimics the “soft” molecular amphiphiles but also includes additional particularities given by their “hard” structure, as well as contributions from capillary, van der Waals, hydrophobic, and shape-dependent forces. This review focuses on compiling the evidence supporting amphiphilicity as a scalable property, discussing how JNPs function as colloidal amphiphiles and how geometry, polarity contrast, interfacial interactions, and environmental parameters influence their behavior. By comparing surfactant behavior and JNP assembly, this work aims to clarify the transferable principles, the knowledge gap, as well as the emergent properties associated with amphiphilic Janus colloids. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Graphical abstract

20 pages, 15499 KiB  
Article
Molecular Dynamics Unveiled: Temperature–Pressure–Coal Rank Triaxial Coupling Mechanisms Governing Wettability in Gas–Water–Coal Systems
by Lixin Zhang, Songhang Zhang, Shuheng Tang, Zhaodong Xi, Jianxin Li, Qian Zhang, Ke Zhang and Wenguang Tian
Processes 2025, 13(7), 2209; https://doi.org/10.3390/pr13072209 - 10 Jul 2025
Viewed by 278
Abstract
Water within coal reservoirs exerts dual effects on methane adsorption–desorption by competing for adsorption sites and reducing permeability. The bound water effect, caused by coal wettability, significantly constrains coalbed methane (CBM) production, rendering investigations into coal wettability crucial for efficient CBM development. Compared [...] Read more.
Water within coal reservoirs exerts dual effects on methane adsorption–desorption by competing for adsorption sites and reducing permeability. The bound water effect, caused by coal wettability, significantly constrains coalbed methane (CBM) production, rendering investigations into coal wettability crucial for efficient CBM development. Compared with other geological formations, coals are characterized by a highly developed microporous structure, making the CO2 sequestration mechanism in coal seams closely linked to the microscale interactions among gas, water, and coal matrixes. However, the intrinsic mechanisms remain poorly understood. In this study, molecular dynamics simulations are employed to investigate the wettability behaviors of CO2, CH4, and water on different coal matrix surfaces under varying temperature and pressure conditions, for coal macromolecules representative of four coal ranks. The study reveals the evolution of water wettability in response to CO2 and CH4 injection, identifies wettability differences among coal ranks, and analyzes the microscopic mechanisms governing wettability. The results show the following: (1) The contact angle increases with gas pressure, and the variation in wettability is more pronounced in CO2 environments than in CH4. As pressure increases, the number of hydrogen bonds decreases, while the peak gas density of CH4 and CO2 increases, leading to larger contact angles. (2) Simulations under different temperatures for the four coal ranks indicate that temperature has minimal influence on low-rank Hegu coal, whereas for higher-rank coals, gas adsorption on the coal surface increases, resulting in reduced wettability. Interfacial tension analysis further suggests that higher temperatures reduce water surface tension, cause dispersion of water molecules, and consequently improve wettability. Understanding the wettability variations among different coal ranks under variable pressure–temperature conditions provides a fundamental model and theoretical basis for investigating deep coal seam gas–water interactions and CO2 geological sequestration mechanisms. These findings have significant implications for the advancement of CO2-ECBM technology. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

13 pages, 4246 KiB  
Article
Study on the Characteristics of CO2 Displacing Non-Newtonian Fluids
by Yu-Ting Wu, Sung-Ki Lyu, Zhen Qin, Yanjun Qin, Hua Qiao and Bing Li
Lubricants 2025, 13(7), 300; https://doi.org/10.3390/lubricants13070300 - 8 Jul 2025
Viewed by 323
Abstract
CO2 displacement is a key technique that was examined through numerical methods in a 3D Hele–Shaw cell, with CO2 as the displacing phase and shear-thinning fluids as the displaced phase. Without interfacial tension effects, the displacement shows branching patterns forming two [...] Read more.
CO2 displacement is a key technique that was examined through numerical methods in a 3D Hele–Shaw cell, with CO2 as the displacing phase and shear-thinning fluids as the displaced phase. Without interfacial tension effects, the displacement shows branching patterns forming two vertically symmetric fingers, regardless of whether the displacing fluid is air or CO2. Under CO2 displacement, viscous fingering propagates farther and achieves higher displacement efficiency than air. Compared with air displacement, the finger advancing distance increases by 0.0035 m, and the displacement efficiency is 15.2% higher than that of air displacement. Shear-thinning behavior significantly influences the process; stronger shear thinning enhances interfacial stability and suppresses fingering. As the power-law index n increases (reducing shear thinning), the fingering length extends. Variations in interfacial tension reveal it notably affects fingering initiation and velocity in CO2 displacement of non-Newtonian fluids, but has a weaker impact on fingering formation. Interfacial tension suppresses short-wavelength perturbations, critical to interface stability, jet breakup, and flows, informing applications like foam-assisted oil recovery and microfluidics. Full article
Show Figures

Figure 1

17 pages, 3528 KiB  
Article
Polyunsaturated Fatty Acid-Rich Waste Vegetable Oil-Derived Bio-Based Zwitterionic Surfactants with High Interfacial Activity for Enhanced Oil Recovery
by Xue-Mei Zhang, Shi-Zhong Yang, Homely Isaya Mtui and Bo-Zhong Mu
Processes 2025, 13(7), 2159; https://doi.org/10.3390/pr13072159 - 7 Jul 2025
Viewed by 367
Abstract
Recently, vegetable oil-derived monounsaturated fatty acids (MUFAs) have predominantly been utilized in producing bio-based surfactants, resulting in low bioresource utilization and high separation costs. Although polyunsaturated fatty acids (PUFAs) are abundant and often co-exist with MUFAs, bio-based surfactants synthesized from PUFA-rich feedstocks have [...] Read more.
Recently, vegetable oil-derived monounsaturated fatty acids (MUFAs) have predominantly been utilized in producing bio-based surfactants, resulting in low bioresource utilization and high separation costs. Although polyunsaturated fatty acids (PUFAs) are abundant and often co-exist with MUFAs, bio-based surfactants synthesized from PUFA-rich feedstocks have been less researched due to concerns regarding their interfacial performance. In this study, a novel series of PUFA-based zwitterionic surfactants with strong interfacial activity was synthesized from waste vegetable oils via an eco-friendly three-step process, optimized through an orthogonal experimental design. The structures and conversion rates of the surfactants were confirmed using GC-MS, LC-MS, and ESI-MS. At 0.5 g/L and 3.0 g/L (typical concentrations often used in most oil fields), the bio-based surfactants derived from waste soybean oil (PUFA-to-MUFA ratio ≈ 2.11, C18:2, and C18:1 in large contents) could reduce the interfacial tension between Daqing crude oil and simulated formation groundwater to an ultra-low level of ~10−3 mN/m. These results confirm our hypothesis that bio-based zwitterionic surfactants derived from PUFA-rich feedstocks possess excellent interfacial activity, providing a potential sustainable option to be considered for chemically enhanced oil recovery. Full article
(This article belongs to the Special Issue Green Chemistry: From Wastes to Value-Added Products (2nd Edition))
Show Figures

Graphical abstract

33 pages, 8851 KiB  
Article
Advanced Research on Stimulating Ultra-Tight Reservoirs: Combining Nanoscale Wettability, High-Performance Acidizing, and Field Validation
by Charbel Ramy, Razvan George Ripeanu, Salim Nassreddine, Maria Tănase, Elias Youssef Zouein, Alin Diniță, Constantin Cristian Muresan and Ayham Mhanna
Processes 2025, 13(7), 2153; https://doi.org/10.3390/pr13072153 - 7 Jul 2025
Viewed by 410
Abstract
Unconventional hydrocarbon reservoirs with low matrix permeability (<0.3 mD), high temperatures, and sour conditions present significant challenges for stimulation and production enhancement. This study examines field trials for a large oil and gas operator in the UAE, focusing on tight carbonate deposits with [...] Read more.
Unconventional hydrocarbon reservoirs with low matrix permeability (<0.3 mD), high temperatures, and sour conditions present significant challenges for stimulation and production enhancement. This study examines field trials for a large oil and gas operator in the UAE, focusing on tight carbonate deposits with reservoir temperatures above 93 °C and high sour gas content. A novel multi-stage chemical stimulation workflow was created, beginning with a pre-flush phase that alters rock wettability and reduces interfacial tension at the micro-scale. This was followed by a second phase that increased near-wellbore permeability and ensured proper acid placement. The treatment’s core used a thermally stable, corrosion-resistant retarded acid system designed to slow reaction rates, allow deeper acid penetration, and build prolonged conductive wormholes. Simulations revealed considerable acid penetration of the formation beyond the near-wellbore zone. The post-treatment field data showed a tenfold improvement in injectivity, which corresponded closely to the acid penetration profiles predicted by modeling. Furthermore, oil production demonstrated sustained, high oil production of 515 bpd on average for several months after the treatment, in contrast to the previously unstable and low-rate production. Finally, the findings support a reproducible and technologically advanced stimulation technique for boosting recovery in ultra-tight carbonate reservoirs using the acid retardation effect where traditional stimulation fails. Full article
Show Figures

Figure 1

37 pages, 6674 KiB  
Article
Marangoni Convection of Self-Rewetting Fluid Layers with a Deformable Interface in a Square Enclosure and Driven by Imposed Nonuniform Heat Energy Fluxes
by Bashir Elbousefi, William Schupbach and Kannan N. Premnath
Energies 2025, 18(13), 3563; https://doi.org/10.3390/en18133563 - 6 Jul 2025
Viewed by 268
Abstract
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting [...] Read more.
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting fluids apart from normal fluids (NFs). The potential to improve heat transfer using self-rewetting fluids (SRFs) is garnering interest for use in various technologies, including low-gravity conditions and microfluidic systems. Our research aims to shed light on the contrasting behaviors of SRFs in comparison to NFs regarding interfacial transport phenomena. This study focuses on the thermocapillary convection in SRF layers with a deformable interface enclosed inside a closed container modeled as a square cavity, which is subject to nonuniform heating, represented using a Gaussian profile for the heat flux variation on one of its sides, in the absence of gravity. To achieve this, we have enhanced a central-moment-based lattice Boltzmann method (LBM) utilizing three distribution functions for tracking interfaces, computing two-fluid motions with temperature-dependent surface tension and energy transport, respectively. Through numerical simulations, the impacts of several characteristic parameters, including the viscosity and thermal conductivity ratios, as well as the surface tension–temperature sensitivity parameters, on the distribution and magnitude of the thermocapillary-driven motion are examined. In contrast to that in NFs, the counter-rotating pair of vortices generated in the SRF layers, due to the surface tension gradient at the interface, is found to be directed toward the SRF layers’ hotter zones. Significant interfacial deformations are observed, especially when there are contrasts in the viscosities of the SRF layers. The thermocapillary convection is found to be enhanced if the bottom SRF layer has a higher thermal conductivity or viscosity than that of the top layer or when distributed, rather than localized, heating is applied. Furthermore, the higher the magnitude of the effect of the dimensionless quadratic surface tension sensitivity coefficient on the temperature, or of the effect of the imposed heat flux, the greater the peak interfacial velocity current generated due to the Marangoni stresses. In addition, an examination of the Nusselt number profiles reveals significant redistribution of the heat transfer rates in the SRF layers due to concomitant nonlinear thermocapillary effects. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

13 pages, 2079 KiB  
Article
Preparation and Properties of a Composite Glass Protective Lubricating Coating for the Forging of Ti-6Al-4V Alloy
by Zunqi Xiao, Qiuyue Xie, Bin Zhang, Bing Ren and Shujian Tian
Coatings 2025, 15(7), 792; https://doi.org/10.3390/coatings15070792 - 5 Jul 2025
Viewed by 359
Abstract
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with [...] Read more.
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with distinct softening temperatures, extending its operational window to 700–950 °C. The composite glass showed initial softening at 700 °C and complete melting at 800 °C, with contact angle measurements confirming superior wettability (θ < 90°) across the forging range (800~950 °C). With an increase in temperature, the surface tension of the composite glass melt decreased, and subsequently, the wettability of the composite glass melt was significantly improved. XRD revealed that the uncoated Ti-6Al-4V formed a 22 μm thick rutile TiO2 scale with a porous structure and interfacial cracks, while the coated sample retained an amorphous glass layer with no TiO2. Cross-sectional SEM showed a crack-free, poreless interface with strong metallurgical bonding, in contrast to the uncoated sample’s spalled oxide layer. EDS showed minimal oxygen diffusion of the glass coating into the substrate. Ring upsetting tests showed that the coating reduced friction from 0.5–0.7 to 0.3 (50–57% decrease). Collectively, the glass protective lubricant coating showed good performance in terms of protection and lubrication. Full article
Show Figures

Figure 1

30 pages, 5474 KiB  
Article
Multiclass Fault Diagnosis in Power Transformers Using Dissolved Gas Analysis and Grid Search-Optimized Machine Learning
by Andrew Adewunmi Adekunle, Issouf Fofana, Patrick Picher, Esperanza Mariela Rodriguez-Celis, Oscar Henry Arroyo-Fernandez, Hugo Simard and Marc-André Lavoie
Energies 2025, 18(13), 3535; https://doi.org/10.3390/en18133535 - 4 Jul 2025
Viewed by 433
Abstract
Dissolved gas analysis remains the most widely utilized non-intrusive diagnostic method for detecting incipient faults in insulating liquid-immersed transformers. Despite their prevalence, conventional ratio-based methods often suffer from ambiguity and limited potential for automation applicrations. To address these limitations, this study proposes a [...] Read more.
Dissolved gas analysis remains the most widely utilized non-intrusive diagnostic method for detecting incipient faults in insulating liquid-immersed transformers. Despite their prevalence, conventional ratio-based methods often suffer from ambiguity and limited potential for automation applicrations. To address these limitations, this study proposes a unified multiclass classification model that integrates traditional gas ratio features with supervised machine learning algorithms to enhance fault diagnosis accuracy. The performance of six machine learning classifiers was systematically evaluated using training and testing data generated through four widely recognized gas ratio schemes. Grid search optimization was employed to fine-tune the hyperparameters of each model, while model evaluation was conducted using 10-fold cross-validation and six performance metrics. Across all the diagnostic approaches, ensemble models, namely random forest, XGBoost, and LightGBM, consistently outperformed non-ensemble models. Notably, random forest and LightGBM classifiers demonstrated the most robust and superior performance across all schemes, achieving accuracy, precision, recall, and F1 scores between 0.99 and 1, along with Matthew correlation coefficient values exceeding 0.98 in all cases. This robustness suggests that ensemble models are effective at capturing complex decision boundaries and relationships among gas ratio features. Furthermore, beyond numerical classification, the integration of physicochemical and dielectric properties in this study revealed degradation signatures that strongly correlate with thermal fault indicators. Particularly, the CIGRÉ-based classification using a random forest classifier demonstrated high sensitivity in detecting thermally stressed units, corroborating trends observed in chemical deterioration parameters such as interfacial tension and CO2/CO ratios. Access to over 80 years of operational data provides a rare and invaluable perspective on the long-term performance and degradation of power equipment. This extended dataset enables a more accurate assessment of ageing trends, enhances the reliability of predictive maintenance models, and supports informed decision-making for asset management in legacy power systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop