Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = interfacial assemblies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3112 KB  
Article
Porous Imprinted Microspheres with Covalent Organic Framework-Based, Precisely Designed Sites for the Specific Adsorption of Flavonoids
by Jinyu Li, Xuan Zhang, Jincheng Xu, Xi Feng and Shucheng Liu
Separations 2025, 12(10), 267; https://doi.org/10.3390/separations12100267 - 1 Oct 2025
Abstract
The application of microsphere molecularly imprinted materials for the targeted extraction and purification of flavonoids derived from agricultural waste has emerged as a prominent area of investigation. An innovative boronate affinity imprinted microsphere (MC-CD@BA-MIP) was successfully synthesized using the Pickering emulsion interfacial assembly [...] Read more.
The application of microsphere molecularly imprinted materials for the targeted extraction and purification of flavonoids derived from agricultural waste has emerged as a prominent area of investigation. An innovative boronate affinity imprinted microsphere (MC-CD@BA-MIP) was successfully synthesized using the Pickering emulsion interfacial assembly strategy for the selective separation of naringin (NRG). The double-bond functionalized covalent organic framework (COF)-based microspheres were synthesized through Schiff–base reaction and secondary interfacial emulsion polymerization. Then, the synthetic mono-(6-mercapto-6-deoxy)-β-cyclodextrin (SH-β-CD) was grafted onto the surface of the microspheres (MC) using click chemistry. The 1-allylpyridine-3-boronic acid (APBA) as a functional monomer was grafted onto the initiator (ABIB) through atom transfer radical polymerization (ATRP). Ultimately, the synthesized boronic acid-imprinted ABIB-BA-MIPs were immobilized onto the COFs microsphere surface through host–guest interactions. As expected, under neutral conditions, the MC-CD@BA-MIPs still exhibited a significant adsorption capacity (38.78 μmol g−1 at 308 K) for NRG. The regenerated MC-CD@BA-MIPs maintained 92.56% of their initial adsorption capacity through six consecutive cycles. Full article
(This article belongs to the Special Issue Recognition Materials and Separation Applications)
Show Figures

Figure 1

16 pages, 3417 KB  
Article
Optical Fiber TFBG Glucose Biosensor via pH-Sensitive Polyelectrolyte Membrane
by Fang Wang, Xinyuan Zhou, Jianzhong Zhang and Shenhang Cheng
Biosensors 2025, 15(10), 642; https://doi.org/10.3390/bios15100642 - 25 Sep 2025
Abstract
A novel glucose biosensor is developed based on a tilted fiber Bragg grating (TFBG) functionalized with a pH-responsive polyelectrolyte multilayer membrane, onto which glucose oxidase (GOD) is immobilized. The sensing film is constructed via layer-by-layer self-assembly of poly(ethylenimine) (PEI) and poly(acrylic acid) (PAA), [...] Read more.
A novel glucose biosensor is developed based on a tilted fiber Bragg grating (TFBG) functionalized with a pH-responsive polyelectrolyte multilayer membrane, onto which glucose oxidase (GOD) is immobilized. The sensing film is constructed via layer-by-layer self-assembly of poly(ethylenimine) (PEI) and poly(acrylic acid) (PAA), which undergoes reversible swelling and refractive index (RI) changes in response to local pH variations. These changes are transduced into measurable shifts in the resonance wavelengths of TFBG cladding modes. The catalytic action of GOD oxidizes glucose to gluconic acid, thereby modulating the interfacial pH and actuating the polyelectrolyte membrane. With an optimized (PEI/PAA)4(PEI/GOD)1 structure, the biosensor achieves highly sensitive glucose detection, featuring a wide measurement range (10−8 to 10−2 M), a low detection limit of 27.7 nM, and a fast response time of ~60 s. It also demonstrates excellent specificity and robust performance in complex biological matrices such as rabbit serum and artificial urine, with recovery rates of 93–102%, highlighting its strong potential for point-of-care testing applications. This platform offers significant advantages in stability, temperature insensitivity, and miniaturization, making it well-suited for clinical glucose monitoring and disease management. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

10 pages, 2457 KB  
Communication
Hydrophilic Modification of Gadolinium Oxide by Building Double Molecular Structures
by Qin Li, Jian Chen, Xingwu Zhang, Chenjie Ruan and Weiwei Wu
Nanomaterials 2025, 15(18), 1421; https://doi.org/10.3390/nano15181421 - 16 Sep 2025
Viewed by 273
Abstract
With the rapid growth of nuclear energy, effective shielding of radioactive nuclear by-products is critical for safety and environmental protection. Gadolinium (Gd) is ideal for neutron shielding due to its exceptionally high thermal neutron capture cross-section. Despite significant progress in developing various Gd-based [...] Read more.
With the rapid growth of nuclear energy, effective shielding of radioactive nuclear by-products is critical for safety and environmental protection. Gadolinium (Gd) is ideal for neutron shielding due to its exceptionally high thermal neutron capture cross-section. Despite significant progress in developing various Gd-based shielding materials, poor interfacial compatibility between Gd2O3 and polymer matrices remains a significant limitation. In this study, we addressed this challenge by successfully modifying Gd2O3 nanoparticles (Gd2O3@SIT-M) through the construction of a dual-layer molecular coating using electrostatic interactions. Initially, Gd2O3 was functionalized with the silane coupling agent 3-(trihydroxysilyl) propyl-1-propane-sulfonic acid (SIT), followed by subsequent assembly of polyether amine M2070 onto this modified surface. The combined presence of hydrophilic sulfonic acid groups from SIT and amine-ether groups from M2070 endowed Gd2O3@SIT-M nanoparticles with excellent hydrophilicity, significantly reducing their aqueous contact angle to 14.34°. Consequently, this modification strategy notably enhanced the dispersion stability of Gd2O3 nanoparticles in aqueous solutions and polymer matrices. The developed approach thus provides an effective pathway for fabricating advanced polymer-based neutron shielding materials with improved dispersibility, stability, and overall performance. Full article
Show Figures

Graphical abstract

18 pages, 3240 KB  
Article
Zn2+-Mediated Co-Deposition of Dopamine/Tannic Acid/ZIF-8 on PVDF Hollow Fiber Membranes for Enhanced Antifouling Performance and Protein Separation
by Lei Ni, Qiancheng Cui, Zhe Wang, Xueting Zhang, Jun Ma, Wenjuan Zhang and Caihong Liu
Membranes 2025, 15(9), 277; https://doi.org/10.3390/membranes15090277 - 15 Sep 2025
Viewed by 475
Abstract
The inherent hydrophobicity of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes leads to severe membrane fouling when processing proteinaceous solutions and organic contaminants, significantly limiting their practical applications. This study presents a novel metal-ion mediated co-deposition strategy for fabricating high-performance antifouling poly(vinylidene fluoride) (PVDF) hollow [...] Read more.
The inherent hydrophobicity of poly(vinylidene fluoride) (PVDF) ultrafiltration membranes leads to severe membrane fouling when processing proteinaceous solutions and organic contaminants, significantly limiting their practical applications. This study presents a novel metal-ion mediated co-deposition strategy for fabricating high-performance antifouling poly(vinylidene fluoride) (PVDF) hollow fiber ultrafiltration membranes. Through Zn2+ coordination-driven self-assembly, a uniform and stable composite coating of dopamine (DA), tannic acid (TA), and ZIF-8 nanoparticles was successfully constructed on the membrane surface under mild conditions. The modified membrane exhibited significantly enhanced hydrophilicity, with a water contact angle of 21° and zeta potential of −29.68 mV, facilitating the formation of a dense hydration layer that effectively prevented protein adhesion. The membrane demonstrated exceptional separation performance, achieving a pure water permeability of 771 L/(m2∙h∙bar) and bovine serum albumin (BSA) rejection of 97.7%. Furthermore, it showed outstanding antifouling capability with flux recovery rates exceeding 83.6%, 74.7%, and 71.5% after fouling by BSA, lysozyme, and ovalbumin, respectively. xDLVO analysis revealed substantially increased interfacial free energy and stronger repulsive interactions between the modified surface and protein foulants. The antifouling mechanism was attributed to the synergistic effects of hydration layer formation, optimized pore structure, additional water transport pathways from ZIF-8 incorporation, and electrostatic repulsion from negatively charged surface groups. This work provides valuable insights into the rational design of high-performance antifouling membranes for sustainable water treatment and protein separation applications. Full article
Show Figures

Figure 1

13 pages, 2040 KB  
Article
Microstructures as Models for Origin of Life in Hot Water: Hydrogen-Assisted Self-Assembly of Glycine and Alanine Zwitterions
by Ignat Ignatov
Hydrogen 2025, 6(3), 67; https://doi.org/10.3390/hydrogen6030067 - 9 Sep 2025
Viewed by 404
Abstract
Building on the early investigation by Sidney W. Fox that dry-heated amino acids can spontaneously form microspheres, this research studies the self-organization of glycine and alanine with hydrogen in a liquid system. This study aimed to investigate the spontaneous formation of membraneless, microscale [...] Read more.
Building on the early investigation by Sidney W. Fox that dry-heated amino acids can spontaneously form microspheres, this research studies the self-organization of glycine and alanine with hydrogen in a liquid system. This study aimed to investigate the spontaneous formation of membraneless, microscale amino acid assemblies under simulated prebiotic hydrothermal conditions, such as hot mineral sources and ponds. Aqueous solutions of glycine and alanine were prepared in a hydrogen-rich mineral buffer and thermally incubated at 75 °C. Phase-contrast microscopy, transmission electron microscopy (TEM), and molecular modeling were employed to analyze the morphology and internal organization of the resulting structures. Microscopy revealed that zwitterionic glycine and alanine spontaneously self-organize into spherical microspheres (~12 µm), in which the charged –NH3+ and –COO groups orient outward, while the hydrophobic methyl groups of alanine point inward, forming a stabilized internal core. The primary studies were performed with hot mineral water from Rupite, Bulgaria, at 73.4 °C. The resulting osmotic pressure difference Δπ ≈ 2490 Pa, derived from the van’t Hoff equalization. This suggests a chemically asymmetric system capable of sustaining directional water flux and passive molecular enrichment. The zwitterionic nature of glycine and alanine, which possesses both –NH3+ and –COO groups, supports the formation of microspheres in our experiments. Under conditions with hot mineral water and hydrogen acting as a reducing agent in the primordial atmosphere, these amino acids self-organized into dense interfacial microspheres. These findings support the idea that thermally driven, zwitterion-mediated aggregation of simple amino acids, such as glycine and alanine, with added hydrogen, could generate membraneless, selectively organized microenvironments on the early Earth. Such microspheres may represent a plausible intermediate between dispersed organisms and microspheres. Full article
Show Figures

Graphical abstract

40 pages, 3531 KB  
Review
Conductive Polymer Thin Films for Energy Storage and Conversion: Supercapacitors, Batteries, and Solar Cells
by Rashid Dallaev
Polymers 2025, 17(17), 2346; https://doi.org/10.3390/polym17172346 - 29 Aug 2025
Viewed by 1284
Abstract
Conductive polymer thin films have emerged as a versatile class of materials with immense potential in energy storage and conversion technologies due to their unique combination of electrical conductivity, mechanical flexibility, and tunable physicochemical properties. This review comprehensively explores the role of conductive [...] Read more.
Conductive polymer thin films have emerged as a versatile class of materials with immense potential in energy storage and conversion technologies due to their unique combination of electrical conductivity, mechanical flexibility, and tunable physicochemical properties. This review comprehensively explores the role of conductive polymer thin films in three critical energy applications: supercapacitors, batteries, and solar cells. The paper examines key polymers such as polyaniline (PANI), polypyrrole (PPy), and poly(3,4-ethylenedioxythiophene) (PEDOT), focusing on their synthesis techniques, structural modifications, and integration strategies to enhance device performance. Recent advances in film fabrication methods, including solution processing, electrochemical deposition, and layer-by-layer assembly, are discussed with regard to achieving optimized morphology, conductivity, and electrochemical stability. Furthermore, the review highlights current challenges such as scalability, long-term durability, and interfacial compatibility, while outlining future directions for the development of high-performance, sustainable energy systems based on conductive polymer thin films. Full article
(This article belongs to the Special Issue Advanced Preparation and Characterization of Polymer-Based Thin Films)
Show Figures

Graphical abstract

13 pages, 3355 KB  
Article
Buried SWCNTs Interlayer Promotes Hole Extraction and Stability in Inverted CsPbI2.85Br0.15 Perovskite Solar Cells
by Fangtao Yu, Dandan Chen, He Xi, Wenming Chai, Yuhao Yan, Weidong Zhu, Dazheng Chen, Long Zhou, Yimin Lei and Chunfu Zhang
Molecules 2025, 30(17), 3535; https://doi.org/10.3390/molecules30173535 - 29 Aug 2025
Viewed by 551
Abstract
Inverted (p-i-n) CsPbIxBr3−x (x = 0~3) perovskite solar cells (PSCs) are of growing interest due to their excellent thermal stability and optoelectronic performance. However, they suffer from severe energy level mismatch and significant interfacial energy losses at the bottom hole [...] Read more.
Inverted (p-i-n) CsPbIxBr3−x (x = 0~3) perovskite solar cells (PSCs) are of growing interest due to their excellent thermal stability and optoelectronic performance. However, they suffer from severe energy level mismatch and significant interfacial energy losses at the bottom hole transport layers (HTLs). Herein, we propose a strategy to simultaneously enhance the crystallinity of CsPbI2.85Br0.15 and facilitate hole extraction at the HTL/CsPbI2.85Br0.15 interface by incorporating semiconducting single-walled carbon nanotubes (SWCNTs) onto [2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl] phosphonic acid (MeO-2PACz) HTL. The unique electrical properties of SWCNTs enable the MeO-2PACz/SWCNT HTL to achieve high conductivity, optimal energy level alignment, and an adaptable surface. Consequently, the defect density is reduced, hole extraction is accelerated, and interfacial charge recombination is effectively suppressed. As a result, these synergistic benefits boost the power conversion efficiency (PCE) from 15.74% to 18.78%. Moreover, unencapsulated devices retained 92.35% of their initial PCE after 150 h of storage in ambient air and 89.03% after accelerated aging at 85 °C for 10 h. These findings highlight the strong potential of SWCNTs as an effective interlayer for inverted CsPbI2.85Br0.15 PSCs and provide a promising strategy for designing high-performance HTLs by integrating SWCNTs with self-assembled monolayers (SAMs). Full article
Show Figures

Figure 1

19 pages, 11547 KB  
Article
Impact of Polymer Molecular Weight on Aging of Poly(Ethyleneoxide)/Dextran All-Aqueous Emulsions Stabilized by Oppositely Charged Nanoparticle/Polyelectrolyte Assemblies
by Attila Kardos, Mónika Bak, Emese Kovács, György Juhász, Mihály Cserepes, József Tóvári and Róbert Mészáros
Polymers 2025, 17(17), 2305; https://doi.org/10.3390/polym17172305 - 26 Aug 2025
Viewed by 610
Abstract
Aqueous two-phase systems (ATPSs) based on two incompatible polymers have recently garnered considerable attention due to the promising characteristics of all-aqueous emulsions for a range of applications. Recent investigations have indicated strong potential for interfacial assemblies of oppositely charged components in the stabilization [...] Read more.
Aqueous two-phase systems (ATPSs) based on two incompatible polymers have recently garnered considerable attention due to the promising characteristics of all-aqueous emulsions for a range of applications. Recent investigations have indicated strong potential for interfacial assemblies of oppositely charged components in the stabilization of these emulsions. The formation of these confined assemblies is likely to depend on the size of the ATPS-constituting polymers; however, the role of this parameter remains to be elucidated. The primary objective of this study was to examine the effect of polyethylene oxide (PEO) molecular weight on the aging processes of PEO/dextran emulsions that are stabilized by the interfacial association of oppositely charged silica particles and polycations. It has been demonstrated that the stability of emulsions containing one high-molecular-weight dextran is significantly enhanced by increasing the size of the PEO molecules. Furthermore, a compression-induced bijel formation was observed in the ATPS with the largest molecular weight PEO sample. The observations were explained by the impact of the rheology of the aqueous phases on the aggregation, adsorption, and network formation capabilities of polycation/silica assemblies. These findings may facilitate the design of stable all-aqueous emulsions with optimal molecular weights for the ATPS-forming polymers. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

14 pages, 2489 KB  
Article
Ethoxylation-Dependent Self-Assembly Behavior and Enhanced Oil Recovery Performance of P(AA-AAEOn) Amphiphilic Copolymers
by Xiqiu Wang, Shixiu Wang, Kaitao Xin, Guangyu Wang, Liping Pan, Yannan Ji and Weiping Lu
Polymers 2025, 17(17), 2269; https://doi.org/10.3390/polym17172269 - 22 Aug 2025
Viewed by 527
Abstract
This study examined a novel ethoxy-segment-regulated hydrophobic associative amphiphilic copolymer, P(AA-AAEOn), and systematically evaluated its solution self-assembly behavior and enhanced oil recovery (EOR) performance. The influence of ethylene oxide (EO) chain length and polymer concentration on particle size distribution and aggregation [...] Read more.
This study examined a novel ethoxy-segment-regulated hydrophobic associative amphiphilic copolymer, P(AA-AAEOn), and systematically evaluated its solution self-assembly behavior and enhanced oil recovery (EOR) performance. The influence of ethylene oxide (EO) chain length and polymer concentration on particle size distribution and aggregation morphology was analyzed using dynamic light scattering (DLS). The results revealed a concentration-dependent transition from intramolecular to intermolecular association, accompanied by a characteristic decrease followed by an increase in hydrodynamic diameter. At a fixed AA:AAEOn molar ratio (400:1), increasing EO segment length increased aggregate size and improved colloidal stability. Viscometric analysis showed that longer EO chains markedly increased molecular chain flexibility and solution viscosity. Interfacial tension measurements demonstrated superior interfacial activity of P(AA-AAEOn) compared to polyacrylic acid (PAA), and longer EO chains further reduced oil–water interfacial tension. Emulsification tests verified its strong ability to emulsify crude oil. Sandpack flooding experiments and micromodel studies demonstrated effective conformance control and high displacement efficiency, achieving up to 30.65% incremental oil recovery. These findings offered essential insights for designing hydrophobic associative polymers with tunable interfacial properties for EOR applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

25 pages, 8316 KB  
Article
Acid-Responsive Self-Healing Waterborne Epoxy Coating: Preparation, Release Behavior, and Anticorrosion Performance Based on Bowl-Shaped Mesoporous Polydopamine Nanocontainer Loaded with 2-MBI Inhibitors
by Xiaohong Ji, Minghui Yang, Huiwen Tian, Jin Hou, Jingqiang Su, Zhen Wang, Zixue Zhang, Yuefeng Tian, Liangliang Zhou, Guanghua Hu, Yunfei Yang, Jizhou Duan and Baorong Hou
Polymers 2025, 17(16), 2265; https://doi.org/10.3390/polym17162265 - 21 Aug 2025
Viewed by 672
Abstract
We present a straightforward emulsion-induced interfacial anisotropic assembly method for in- situ synthesis of bowl-shaped, self-encapsulated mesoporous polydopamine (BMPDA) nanocontainers (M-M@P) loaded with 2-mercaptobenzimidazole (2-MBI). Results showed that the loading capacity of the bowl-shaped mesoporous polydopamine reaches 24 wt.%. The M-M@P exhibits a [...] Read more.
We present a straightforward emulsion-induced interfacial anisotropic assembly method for in- situ synthesis of bowl-shaped, self-encapsulated mesoporous polydopamine (BMPDA) nanocontainers (M-M@P) loaded with 2-mercaptobenzimidazole (2-MBI). Results showed that the loading capacity of the bowl-shaped mesoporous polydopamine reaches 24 wt.%. The M-M@P exhibits a cumulative MBI release of 91.61% after immersion in a 3.5 wt.% NaCl solution at pH = 2 for 24 h, accompanied by a corrosion inhibition efficiency of 95.54%. Additionally, the acid-responsive M-M@P not only enables controlled release of MBI but also synergistically promotes the formation of a protective film on the carbon steel substrate via the chelation of PDA-Fe3+, thereby enhancing the self-healing performance of waterborne epoxy coatings. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

21 pages, 3238 KB  
Article
Development and Characterization of a Novel Erucyl Ultra-Long-Chain Gemini Surfactant
by Guiqiang Fei and Banghua Liu
Polymers 2025, 17(16), 2257; https://doi.org/10.3390/polym17162257 - 21 Aug 2025
Viewed by 542
Abstract
To stimulate the progress of clean fracturing fluid systems, an innovative erucyl ultra-long-chain gemini surfactant (EUCGS) was devised and manufactured during the course of this study. The target product was successfully prepared via a two-step reaction involving erucyl primary amine, 3-bromopropionyl chloride, and [...] Read more.
To stimulate the progress of clean fracturing fluid systems, an innovative erucyl ultra-long-chain gemini surfactant (EUCGS) was devised and manufactured during the course of this study. The target product was successfully prepared via a two-step reaction involving erucyl primary amine, 3-bromopropionyl chloride, and 1,3-bis(dimethylamino)propanediol, with an overall yield of 78.6%. FT-IR and 1H NMR characterization confirmed the presence of C22 ultra-long chains, cis double bonds, amide bonds, and quaternary ammonium headgroups in the product structure. Performance tests showed that EUCGS exhibited an extremely low critical micelle concentration (CMC = 0.018 mmol/L) and excellent ability to reduce surface tension (γCMC = 30.0 mN/m). Rheological property studies indicated that EUCGS solutions gradually exhibited significant non-Newtonian fluid characteristics with increasing concentration, and wormlike micelles with a network structure could self-assemble at a concentration of 1.0 mmol/L. Dynamic rheological tests revealed that the solutions showed typical Maxwell fluid behavior and significant shear-thinning properties, which originated from the orientation and disruption of the wormlike micelle network structure under shear stress. In the presence of 225 mmol/L NaCl, the apparent viscosity of a 20 mmol/L EUCGS solution increased from 86 mPa·s to 256 mPa·s. A temperature resistance evaluation showed that EUCGS solutions had a good temperature resistance at high shear rates and 100 °C. The performance evaluation of fracturing fluids indicates that the proppant settling rate (0.25 cm/min) of the EUCGS-FFS system at 90 °C is significantly superior to that of the conventional system. It features the low dosage and high efficiency of the breaker, with the final core damage rate being only 0.9%. The results demonstrate that the EUCGS achieves a synergistic optimization of high-efficiency interfacial activity, controllable rheological properties, and excellent thermal–salt stability through precise molecular structure design, providing a new material choice for the development of intelligent responsive clean fracturing fluids. Full article
Show Figures

Graphical abstract

13 pages, 3810 KB  
Article
Solar-Driven Selective Benzyl Alcohol Oxidation in Pickering Emulsion Stabilized by CNTs/GCN Hybrids Photocatalyst
by Yunyi Han, Yuwei Hou, Xuezhong Gong, Yu Zhang, Meng Wang, Pekhyo Vasiliy Ivanovich, Meili Guan and Jianguo Tang
Catalysts 2025, 15(8), 753; https://doi.org/10.3390/catal15080753 - 7 Aug 2025
Viewed by 663
Abstract
Herein, a bi-functional composite photocatalyst was synthesized by integrating carbon nanotubes (CNTs) and graphitic carbon nitride (GCN) via a facile electrostatic self-assembly strategy. The resulting CNTs/GCN composite served dual roles as both a solid emulsifier and a photocatalyst, enabling highly efficient photocatalytic benzyl [...] Read more.
Herein, a bi-functional composite photocatalyst was synthesized by integrating carbon nanotubes (CNTs) and graphitic carbon nitride (GCN) via a facile electrostatic self-assembly strategy. The resulting CNTs/GCN composite served dual roles as both a solid emulsifier and a photocatalyst, enabling highly efficient photocatalytic benzyl alcohol oxidation within a Pickering emulsion system. The relationship between emulsion droplet size and solid emulsifier dosage was investigated and optimized. The enhanced photocatalytic function was supported by an improved photocurrent response and reduced charge-transfer resistance, attributed to superior charge separation efficiency. Consequently, the benzyl alcohol conversion efficiency achieved in the Pickering emulsion system (58.9%) was three-fold of that observed in a traditional oil–water non-emulsion system (19.0%). Key active species were identified as photoholes, and an interfacial reaction mechanism was proposed. This work provides a new approach for extending photocatalytic applications in aqueous environments to diverse organic conversion reactions through the construction of multifunctional photocatalysts. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Graphical abstract

18 pages, 6570 KB  
Article
Deposition Process and Interface Performance of Aluminum–Steel Joints Prepared Using CMT Technology
by Jie Zhang, Hao Du, Xinyue Wang, Yinglong Zhang, Jipeng Zhao, Penglin Zhang, Jiankang Huang and Ding Fan
Metals 2025, 15(8), 844; https://doi.org/10.3390/met15080844 - 29 Jul 2025
Cited by 1 | Viewed by 504
Abstract
The anode assembly, as a key component in the electrolytic aluminum process, is composed of steel claws and aluminum guide rods. The connection quality between the steel claws and guide rods directly affects the current conduction efficiency, energy consumption, and operational stability of [...] Read more.
The anode assembly, as a key component in the electrolytic aluminum process, is composed of steel claws and aluminum guide rods. The connection quality between the steel claws and guide rods directly affects the current conduction efficiency, energy consumption, and operational stability of equipment. Achieving high-quality joining between the aluminum alloy and steel has become a key process in the preparation of the anode assembly. To join the guide rods and steel claws, this work uses Cold Metal Transfer (CMT) technology to clad aluminum on the steel surface and employs machine vision to detect surface forming defects in the cladding layer. The influence of different currents on the interfacial microstructure and mechanical properties of aluminum alloy cladding on the steel surface was investigated. The results show that increasing the cladding current leads to an increase in the width of the fusion line and grain size and the formation of layered Fe2Al5 intermetallic compounds (IMCs) at the interface. As the current increases from 90 A to 110 A, the thickness of the Al-Fe IMC layer increases from 1.46 μm to 2.06 μm. When the current reaches 110 A, the thickness of the interfacial brittle phase is the largest, at 2 ± 0.5 μm. The interfacial region where aluminum and steel are fused has the highest hardness, and the tensile strength first increases and then decreases with the current. The highest tensile strength is 120.45 MPa at 100 A. All the fracture surfaces exhibit a brittle fracture. Full article
Show Figures

Figure 1

18 pages, 4914 KB  
Article
Preparation and Failure Behavior of Gel Electrolytes for Multilayer Structure Lithium Metal Solid-State Batteries
by Chu Chen, Wendong Qin, Qiankun Hun, Yujiang Wang, Xinghua Liang, Renji Tan, Junming Li and Yifeng Guo
Gels 2025, 11(8), 573; https://doi.org/10.3390/gels11080573 - 23 Jul 2025
Viewed by 520
Abstract
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple [...] Read more.
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple layers and large capacity currently have poor cycle life and a large gap between the actual output cycle capacity retention rate and the theoretical level. In this paper, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP)/polyacrylonitrile (PAN)—lithium perchlorate (LiClO4)—lithium lanthanum zirconium tantalate (LLZTO) gel polymer electrolytes was prepared by UV curing process using a UV curing machine at a speed of 0.01 m/min for 10 s, with the temperature controlled at 30 °C and wavelength 365 nm. In order to study the performance and failure mechanism of multilayer solid state batteries, single and three layers of solid state batteries with ceramic/polymer composite gel electrolyte were assembled. The results show that the rate and cycle performance of single-layer solid state battery with gel electrolyte are better than those of three-layer solid state battery. As the number of cycles increases, the interface impedance of both single-layer and three-layer electrolyte membrane solid-state batteries shows an increasing trend. Specifically, the three-layer battery impedance increased from 17 Ω to 42 Ω after 100 cycles, while the single-layer battery showed a smaller increase, from 2.2 Ω to 4.8 Ω, indicating better interfacial stability. After 100 cycles, the interface impedance of multi-layer solid-state batteries increases by 9.61 times that of single-layer batteries. After 100 cycles, the corresponding capacity retention rates were 48.9% and 15.6%, respectively. This work provides a new strategy for large capacity solid state batteries with gel electrolyte design. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Graphical abstract

24 pages, 4254 KB  
Review
Zein-Based Nanocarriers: Advances in Oral Drug Delivery
by Yuxin Liu, Dongyu An, Xiangjian Meng, Shiming Deng and Guijin Liu
Pharmaceutics 2025, 17(7), 944; https://doi.org/10.3390/pharmaceutics17070944 - 21 Jul 2025
Viewed by 1085
Abstract
Oral administration remains the preferred drug delivery route but faces formidable gastrointestinal barriers, including enzymatic degradation, solubility limitations, and poor epithelial absorption. Zein-based nanocarriers (ZBNs), derived from maize prolamin, provide a transformative platform to address these challenges. This review synthesizes recent advances in [...] Read more.
Oral administration remains the preferred drug delivery route but faces formidable gastrointestinal barriers, including enzymatic degradation, solubility limitations, and poor epithelial absorption. Zein-based nanocarriers (ZBNs), derived from maize prolamin, provide a transformative platform to address these challenges. This review synthesizes recent advances in ZBNs’ design, highlighting their intrinsic advantages: structural stability across pH gradients, self-assembly versatility, and a surface functionalization capacity. Critically, we detail how engineered ZBNs overcome key barriers, such as enzymatic/chemical protection via hydrophobic encapsulation, the enhanced mucus penetration or adhesion through surface engineering, and improved epithelial transport via ligand conjugation. Applications demonstrate their efficacy in stabilizing labile therapeutics, enhancing the solubility of BCS Class II/IV drugs, enabling pH-responsive release, and significantly boosting oral bioavailability. Remaining challenges in scalability and translational predictability warrant future efforts toward multifunctional systems, bio-interfacial modeling, and continuous manufacturing. This work positions ZBNs as a potential platform for the oral delivery of BCS Class II–IV drugs’ in the biopharmaceutics classification system. Full article
(This article belongs to the Special Issue Recent Advances in Peptide and Protein-Based Drug Delivery Systems)
Show Figures

Graphical abstract

Back to TopTop