Buried SWCNTs Interlayer Promotes Hole Extraction and Stability in Inverted CsPbI2.85Br0.15 Perovskite Solar Cells
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials and Reagents
3.2. Preparation of the Solution
3.3. Device Fabrications
3.4. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, W.; Khan, J.; Niu, G.; Tang, J. Inorganic CsPbI3 Perovskite-Based Solar Cells: A Choice for a Tandem Device. Sol. RRL 2017, 1, 1700048. [Google Scholar] [CrossRef]
- Wang, Y.; Dar, M.I.; Ono, L.K.; Zhang, T.Y.; Kan, M.; Li, Y.W.; Zhang, L.J.; Wang, X.T.; Yang, Y.G.; Gao, X.; et al. Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies > 18%. Science 2019, 365, 591–595. [Google Scholar] [CrossRef]
- Xiao, K.; Lin, R.X.; Han, Q.L.; Hou, Y.; Qin, Z.Y.; Nguyen, H.T.; Wen, J.; Wei, M.Y.; Yeddu, V.; Saidaminov, M.I.; et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 2020, 5, 870–880. [Google Scholar] [CrossRef]
- Wang, R.; Huang, T.Y.; Xue, J.J.; Tong, J.H.; Zhu, K.; Yang, Y. Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 2021, 15, 411–425. [Google Scholar] [CrossRef]
- Wang, Z.T.; Chen, Q.Y.; Xie, H.D.; Feng, X.L.; Du, Y.C.; Zhou, T.X.; Li, R.; Zhang, J.Q.; Zhang, L.; Xu, Z.; et al. Light-Driven Dynamic Defect-Passivation for Efficient Inorganic Perovskite Solar Cells. Adv. Funct. Mater. 2025, 35, 2416118. [Google Scholar] [CrossRef]
- Cao, S.H.; Wang, L.; She, X.C.; Li, W.; Wei, L.; Xiong, X.; Wang, Z.J.; Li, J.; Tian, H.B.; Cui, X.; et al. Enhanced Efficiency and Stability of Inverted CsPbI2Br Perovskite Solar Cells via Fluorinated Organic Ammonium Salt Surface Passivation. Langmuir 2024, 40, 3715–3724. [Google Scholar] [CrossRef]
- Faheem, M.B.; Khan, B.; Feng, C.; Farooq, M.U.; Raziq, F.; Xiao, Y.Q.; Li, Y.B. All-Inorganic Perovskite Solar Cells: Energetics, Key Challenges, and Strategies toward Commercialization. ACS Energy Lett. 2019, 5, 290–320. [Google Scholar] [CrossRef]
- Chai, W.M.; Zhu, W.D.; Ma, J.X.; Huangfu, S.J.; Zhang, Z.Y.; Chen, D.Z.; Zhang, J.C.; Zhang, C.F.; Hao, Y. Charge-selective-contact-dependent halide phase segregation in CsPbIBr2 perovskite solar cells and its correlation to device degradation. Appl. Surf. Sci. 2022, 595, 153544. [Google Scholar] [CrossRef]
- Yang, M.; Wang, H.X.; Cai, W.S.; Zang, Z.G. Mixed-Halide Inorganic Perovskite Solar Cells: Opportunities and Challenges. Adv. Opt. Mater. 2023, 11, 2301052. [Google Scholar] [CrossRef]
- Li, M.H.; Ma, X.B.; Fu, J.J.; Wang, S.; Wu, J.P.; Long, R.; Hu, J.S. Molecularly tailored perovskite/poly(3-hexylthiophene) interfaces for high-performance solar cells. Energy Environ. Sci. 2024, 17, 5513–5520. [Google Scholar] [CrossRef]
- Chang, Q.Y.; An, Y.D.; Cao, H.M.; Pan, Y.Z.; Zhao, L.Y.; Chen, Y.L.; We, Y.; Tsang, S.-W.; Yip, H.L.; Sun, L.C.; et al. Precursor engineering enables high-performance all-inorganic CsPbIBr2 perovskite solar cells with a record efficiency approaching 13%. J. Energy Chem. 2024, 90, 16–22. [Google Scholar] [CrossRef]
- Zeng, Q.S.; Zhang, X.Y.; Feng, X.L.; Lu, S.Y.; Chen, Z.L.; Yong, X.; Redfern, S.A.T.; Wei, H.T.; Wang, H.Y.; Shen, H.; et al. Polymer-Passivated Inorganic Cesium Lead Mixed-Halide Perovskites for Stable and Efficient Solar Cells with High Open-Circuit Voltage over 1.3 V. Adv. Mater. 2018, 30, 1705393. [Google Scholar] [CrossRef]
- Zhu, W.D.; Zhang, Z.Y.; Chen, D.D.; Chai, W.M.; Chen, D.Z.; Zhang, J.C.; Zhang, C.F.; Hao, Y. Interfacial Voids Trigger Carbon-Based, All-Inorganic CsPbIBr2 Perovskite Solar Cells with Photovoltage Exceeding 1.33 V. Nano-Micro Lett. 2020, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.C.; Chan, P.F.; Lu, X.H. A Systematic Review of Metal Halide Perovskite Crystallization and Film Formation Mechanism Unveiled by In Situ GIWAXS. Adv. Mater. 2021, 33, 2105290. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Cheng, C.; Zhang, C.; Hu, H.; Wang, K.; De Wolf, S. Organic Hole-Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells. Adv. Mater. 2022, 34, 2203794. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhu, K. Rapid advances enabling high-performance inverted perovskite solar cells. Nat. Rev. Mater. 2024, 9, 399–419. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W. Improving the stability of inverted perovskite solar cells towards commercialization. Commun. Mater. 2022, 3, 65. [Google Scholar] [CrossRef]
- Abdollahi Nejand, B.; Ritzer, D.B.; Hu, H.; Schackmar, F.; Moghadamzadeh, S.; Feeney, T.; Singh, R.; Laufer, F.; Schmager, R.; Azmi, R.; et al. Scalable Two-Terminal All-Perovskite Tandem Solar Modules with a 19.1% Efficiency. Nat. Energy 2022, 7, 620–630. [Google Scholar] [CrossRef]
- Jia, L.B.; Xia, S.M.; Li, J.; Qin, Y.; Pei, B.B.; Ding, L.; Yin, J.; Du, T.; Fang, Z.; Yin, Y.; et al. Efficient perovskite/silicon tandem with asymmetric self-assembly molecule. Nature 2025, 644, 912–919. [Google Scholar] [CrossRef]
- Available online: https://www.nrel.gov/pv/cell-efficiency (accessed on 20 July 2025).
- Zhang, X.; Wu, S.F.; Zhang, H.; Jen, A.K.Y.; Zhan, Y.Q.; Chu, J.H. Advances in inverted perovskite solar cells. Nat. Photonics 2024, 18, 1243–1253. [Google Scholar] [CrossRef]
- Levine, I.; Al-Ashouri, A.; Musiienko, A.; Hempel, H.; Magomedov, A.; Drevilkauskaite, A.; Getautis, V.; Menzel, D.; Hinrichs, K.; Unold, T.; et al. Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 2021, 5, 2915–2933. [Google Scholar] [CrossRef]
- Jiang, Q.; Tong, J.; Xian, Y.; Kerner, R.A.; Dunfield, S.P.; Xiao, C.; Scheidt, R.A.; Kuciauskas, D.; Wang, X.; Hautzinger, M.P.; et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 2022, 611, 278–283. [Google Scholar] [CrossRef]
- Chai, W.M.; Zhu, W.D.; Xi, H.; Chen, D.Z.; Dong, H.; Zhou, L.; You, H.L.; Zhang, J.; Zhang, C.; Zhu, C.; et al. Buried Interface Regulation with TbCl3 for Highly-Efficient All-Inorganic Perovskite/Silicon Tandem Solar Cells. Nano-Micro Lett. 2025, 17, 244. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.C.; Chai, W.M.; Zhu, W.D.; Chen, D.Z.; Zhang, J.C.; Zhang, C.F.; Hao, Y. CsF improved buried interface for efficient and stable inverted all-inorganic CsPbI2.85Br0.15 perovskite solar cells. Mater. Today Energy 2025, 48, 101763. [Google Scholar] [CrossRef]
- Hu, X.G.; Lin, Z.; Ding, L.; Chang, J. Recent advances of carbon nanotubes in perovskite solar cells. SusMat 2023, 3, 639–670. [Google Scholar] [CrossRef]
- Xu, J.X.; Xiao, Z.B.; Jia, C.M.; Wei, Y.; Sun, Y.N.; Kang, L.Q.; Cui, N.Y.; Li, P.X.; Lei, Y.M.; Ma, X.H. Progress in the fabrication of high-purity semiconducting carbon nanotube arrays. J. Mater. Chem. C 2025, 13, 4304–4326. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.G.; Ji, K.Y.; Zhao, S.R.; Liu, D.T.; Li, B.; Hou, P.X.; Liu, C.; Liu, L.; Stranks, S.D.; et al. High-performance bifacial perovskite solar cells enabled by single-walled carbon nanotubes. Nat. Commun. 2024, 15, 2245. [Google Scholar] [CrossRef]
- Sun, S.H.; He, B.L.; Wang, Z.Y.; Liu, W.L.; Liu, Y.; Zhu, J.W.; Wei, M.; Jiao, W.J.; Chen, H.Y.; Tang, Q. Integration of SWCNT and WO3 for efficient charge extraction in all-inorganic perovskite solar cells. Chem. Eng. J. 2024, 483, 149425. [Google Scholar] [CrossRef]
- Habisreutinger, S.N.; Noel, N.K.; Larson, B.W.; Reid, O.G.; Blackburn, J.L. Rapid Charge-Transfer Cascade through SWCNT Composites Enabling Low-Voltage Losses for Perovskite Solar Cells. ACS Energy Lett. 2019, 4, 1872–1879. [Google Scholar] [CrossRef]
- Bi, C.; Wang, Q.; Shao, Y.H.; Yuan, Y.B.; Xiao, Z.G.; Huang, J.S. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Wang, X.T.; Zhang, T.Y.; Miao, Y.F.; Qin, Z.X.; Chen, Y.T.; Zhao, Y.X. Organic Tetrabutylammonium Cation Intercalation to Heal Inorganic CsPbI3 Perovskite. Angew. Chem. Int. Ed. 2021, 60, 12351. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.Q.; Liu, S.; Zhang, Q.; Zhao, J.; Dai, J.Y.; Bai, G.D.; Wan, X.; Cheng, Q.; Castaldi, G.; et al. Space-time-coding digital metasurfaces. Nat. Commun. 2018, 9, 4334. [Google Scholar] [CrossRef]
- Dong, Q.F.; Fang, Y.J.; Shao, Y.C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J.S. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, X.Y.; Chen, H.; Shang, Y.Q.; Liu, H.F.; Wei, J.L.; Zhou, W.J.; He, H.L.; Liu, W.M.; Ning, Z. 2D-Quasi-2D-3D Hierarchy Structure for Tin Perovskite Solar Cells with Enhanced Efficiency and Stability. Joule 2018, 2, 2732–2743. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, L.Q.; Wang, H.L.; Yang, X.L.; Meng, J.H.; Liu, H.; Yin, Z.G.; Wu, J.L.; Zhang, X.W.; You, J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2016, 2, 16177. [Google Scholar] [CrossRef]
- Bube, R.H. Trap density determination by space-charge-limited currents. J. Appl. Phys. 1962, 33, 1733–1737. [Google Scholar] [CrossRef]
- Mao, Z.W.; Zhu, M.Q.; Cheng, Z.B.; Chen, J.G.; Tang, S.C.; Li, Z.H.; Xiang, S.C.; Zhang, J.D.; Zhang, Z.J. Polar molecule as passivation agent towards enhanced carrier transport properties in perovskite solar cells. Org. Electron. 2023, 120, 106841. [Google Scholar] [CrossRef]
- Agresti, A.; Pazniak, A.; Pescetelli, S.; Di Vito, A.; Rossi, D.; Pecchia, A.; Auf der Maur, M.; Liedl, A.; Larciprete, R.; Kuznetsov, D.V.; et al. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 2019, 18, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.L.; Chen, H.N.; Li, Q.; Yang, Y.L.; Wei, Z.H.; Bai, Y.; Qiu, Y.C.; Zhou, D.; Wong, K.S.; Yang, S. Boron Doping of Multiwalled Carbon Nanotubes Significantly Enhances Hole Extraction in Carbon-Based Perovskite Solar Cells. Nano Lett. 2017, 17, 2496–2505. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.Z.; Su, A.X.; Li, X.Y.; Pang, S.Z.; Zhu, W.D.; Xi, H.; Chang, J.J.; Zhang, C.F.; Zhang, C.; Hao, Y. Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO2 electron transport layer and interfacial modifier. Sol. Energy 2019, 188, 239–246. [Google Scholar] [CrossRef]
- Wang, W.T.; Chen, P.; Chiang, C.H.; Guo, T.F.; Wu, C.G.; Feng, S.P. Synergistic Reinforcement of Built-In Electric Fields for Highly Efficient and Stable Perovskite Photovoltaics. Adv. Funct. Mater. 2020, 30, 1909755. [Google Scholar] [CrossRef]
- Xue, J.J.; Wang, R.; Chen, X.H.; Yao, C.L.; Jin, X.Y.; Wang, K.-L.; Huang, W.C.; Huang, T.Y.; Zhao, Y.P.; Zhai, Y.; et al. Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science 2021, 371, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.N.; Zhu, J.J.; Yi, W.H.; Wei, Y.X.; Zhou, X.J.; Zhang, P.; Liu, Y.; Li, P.X.; Lei, Y.M.; Ma, X.H. Advances in separation of monochiral semiconducting carbon nanotubes and the application in electronics. J. Appl. Phys. 2023, 134, 230701. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, F.; Chen, D.; Xi, H.; Chai, W.; Yan, Y.; Zhu, W.; Chen, D.; Zhou, L.; Lei, Y.; Zhang, C. Buried SWCNTs Interlayer Promotes Hole Extraction and Stability in Inverted CsPbI2.85Br0.15 Perovskite Solar Cells. Molecules 2025, 30, 3535. https://doi.org/10.3390/molecules30173535
Yu F, Chen D, Xi H, Chai W, Yan Y, Zhu W, Chen D, Zhou L, Lei Y, Zhang C. Buried SWCNTs Interlayer Promotes Hole Extraction and Stability in Inverted CsPbI2.85Br0.15 Perovskite Solar Cells. Molecules. 2025; 30(17):3535. https://doi.org/10.3390/molecules30173535
Chicago/Turabian StyleYu, Fangtao, Dandan Chen, He Xi, Wenming Chai, Yuhao Yan, Weidong Zhu, Dazheng Chen, Long Zhou, Yimin Lei, and Chunfu Zhang. 2025. "Buried SWCNTs Interlayer Promotes Hole Extraction and Stability in Inverted CsPbI2.85Br0.15 Perovskite Solar Cells" Molecules 30, no. 17: 3535. https://doi.org/10.3390/molecules30173535
APA StyleYu, F., Chen, D., Xi, H., Chai, W., Yan, Y., Zhu, W., Chen, D., Zhou, L., Lei, Y., & Zhang, C. (2025). Buried SWCNTs Interlayer Promotes Hole Extraction and Stability in Inverted CsPbI2.85Br0.15 Perovskite Solar Cells. Molecules, 30(17), 3535. https://doi.org/10.3390/molecules30173535