Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (143)

Search Parameters:
Keywords = intelligent photovoltaic power generation system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5872 KiB  
Article
Application of Twisting Controller and Modified Pufferfish Optimization Algorithm for Power Management in a Solar PV System with Electric-Vehicle and Load-Demand Integration
by Arunesh Kumar Singh, Rohit Kumar, D. K. Chaturvedi, Ibraheem, Gulshan Sharma, Pitshou N. Bokoro and Rajesh Kumar
Energies 2025, 18(14), 3785; https://doi.org/10.3390/en18143785 - 17 Jul 2025
Viewed by 257
Abstract
To combat the catastrophic effects of climate change, the usage of renewable energy sources (RESs) has increased dramatically in recent years. The main drivers of the increase in solar photovoltaic (PV) system grid integrations in recent years have been lowering energy costs and [...] Read more.
To combat the catastrophic effects of climate change, the usage of renewable energy sources (RESs) has increased dramatically in recent years. The main drivers of the increase in solar photovoltaic (PV) system grid integrations in recent years have been lowering energy costs and pollution. Active and reactive powers are controlled by a proportional–integral controller, whereas energy storage batteries improve the quality of energy by storing both current and voltage, which have an impact on steady-state error. Since traditional controllers are unable to maximize the energy output of solar systems, artificial intelligence (AI) is essential for enhancing the energy generation of PV systems under a variety of climatic conditions. Nevertheless, variations in the weather can have an impact on how well photovoltaic systems function. This paper presents an intelligent power management controller (IPMC) for obtaining power management with load and electric-vehicle applications. The architecture combines the solar PV, battery with electric-vehicle load, and grid system. Initially, the PV architecture is utilized to generate power from the irradiance. The generated power is utilized to compensate for the required load demand on the grid side. The remaining PV power generated is utilized to charge the batteries of electric vehicles. The power management of the PV is obtained by considering the proposed control strategy. The power management controller is a combination of the twisting sliding-mode controller (TSMC) and Modified Pufferfish Optimization Algorithm (MPOA). The proposed method is implemented, and the application results are matched with the Mountain Gazelle Optimizer (MSO) and Beluga Whale Optimization (BWO) Algorithm by evaluating the PV power output, EV power, battery-power and battery-energy utilization, grid power, and grid price to show the merits of the proposed work. Full article
(This article belongs to the Special Issue Power Quality and Disturbances in Modern Distribution Networks)
Show Figures

Figure 1

23 pages, 6850 KiB  
Article
Optimizing Energy Consumption in Public Institutions Using AI-Based Load Shifting and Renewable Integration
by Otilia Elena Dragomir, Florin Dragomir and Marius Păun
J. Sens. Actuator Netw. 2025, 14(4), 74; https://doi.org/10.3390/jsan14040074 - 15 Jul 2025
Viewed by 357
Abstract
This paper details the development and implementation of an intelligent energy efficiency system for an electrical grid that incorporates renewable energy sources, specifically photovoltaic systems. The system is applied in a small locality of approximately 8000 inhabitants and aims to optimize energy consumption [...] Read more.
This paper details the development and implementation of an intelligent energy efficiency system for an electrical grid that incorporates renewable energy sources, specifically photovoltaic systems. The system is applied in a small locality of approximately 8000 inhabitants and aims to optimize energy consumption in public institutions by scheduling electrical appliances during periods of surplus PV energy production. The proposed solution employs a hybrid neuro-fuzzy approach combined with scheduling techniques to intelligently shift loads and maximize the use of locally generated green energy. This enables appliances, particularly schedulable and schedulable non-interruptible ones, to operate during peak PV production hours, thereby minimizing reliance on the national grid and improving overall energy efficiency. This directly reduces the cost of electricity consumption from the national grid. Furthermore, a comprehensive power quality analysis covering variables including harmonic distortion and voltage stability is proposed. The results indicate that while photovoltaic systems, being switching devices, can introduce some harmonic distortion, particularly during peak inverter operation or transient operating regimes, and flicker can exceed standard limits during certain periods, the overall voltage quality is maintained if proper inverter controls and grid parameters are adhered to. The system also demonstrates potential for scalability and integration with energy storage systems for enhanced future performance. Full article
(This article belongs to the Section Network Services and Applications)
Show Figures

Figure 1

18 pages, 1945 KiB  
Article
Research on an Active Distribution Network Planning Strategy Considering Diversified Flexible Resource Allocation
by Minglei Jiang, Youqing Xu, Dachi Zhang, Yuanqi Liu, Qiushi Du, Xiaofeng Gao, Shiwei Qi and Hongbo Zou
Processes 2025, 13(7), 2254; https://doi.org/10.3390/pr13072254 - 15 Jul 2025
Viewed by 289
Abstract
When planning distributed intelligent power distribution networks, it is necessary to take into account the interests of various distributed generation (DG) operators and power supply enterprises, thereby diversifying and complicating planning models. Additionally, the integration of a high proportion of distributed resources has [...] Read more.
When planning distributed intelligent power distribution networks, it is necessary to take into account the interests of various distributed generation (DG) operators and power supply enterprises, thereby diversifying and complicating planning models. Additionally, the integration of a high proportion of distributed resources has triggered a transformation in the power flow pattern of active distribution networks, shifting from the traditional unidirectional flow mode to a bidirectional interactive mode. The intermittent and fluctuating operation modes of distributed photovoltaic and wind power generation have also increased the difficulty of distribution network planning. To address the aforementioned challenges, this paper proposes an active distribution network planning strategy that considers the allocation of diverse flexible resources, exploring scheduling flexibility from both the power supply side and the load side. Firstly, a bi-level optimization model integrating planning and operation is constructed, where the upper-level model determines the optimal capacity of investment and construction equipment, and the lower-level model formulates an economic dispatching scheme. Through iterative solving of the upper and lower levels, the final planning strategy is determined. Meanwhile, to reduce the complexity of problem-solving, this paper employs an improved PSO-CS hybrid algorithm for iterative optimization. Finally, the effectiveness and feasibility of the proposed algorithm are demonstrated through validation using an improved IEEE-33-bus test system. Compared with conventional algorithms, the convergence speed of the method proposed in this paper can be improved by up to 21.4%, and the total investment cost can be reduced by up to 3.26%. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

22 pages, 3542 KiB  
Article
Enhanced Short-Term PV Power Forecasting via a Hybrid Modified CEEMDAN-Jellyfish Search Optimized BiLSTM Model
by Yanhui Liu, Jiulong Wang, Lingyun Song, Yicheng Liu and Liqun Shen
Energies 2025, 18(13), 3581; https://doi.org/10.3390/en18133581 - 7 Jul 2025
Viewed by 347
Abstract
Accurate short-term photovoltaic (PV) power forecasting is crucial for ensuring the stability and efficiency of modern power systems, particularly given the intermittent and nonlinear characteristics of solar energy. This study proposes a novel hybrid forecasting model that integrates complete ensemble empirical mode decomposition [...] Read more.
Accurate short-term photovoltaic (PV) power forecasting is crucial for ensuring the stability and efficiency of modern power systems, particularly given the intermittent and nonlinear characteristics of solar energy. This study proposes a novel hybrid forecasting model that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), the jellyfish search (JS) optimization algorithm, and a bidirectional long short-term memory (BiLSTM) neural network. First, the original PV power signal was decomposed into intrinsic mode functions using a modified CEEMDAN method to better capture the complex nonlinear features. Subsequently, the fast Fourier transform and improved Pearson correlation coefficient (IPCC) were applied to identify and merge similar-frequency intrinsic mode functions, forming new composite components. Each reconstructed component was then forecasted individually using a BiLSTM model, whose parameters were optimized by the JS algorithm. Finally, the predicted components were aggregated to generate the final forecast output. Experimental results on real-world PV datasets demonstrate that the proposed CEEMDAN-JS-BiLSTM model achieves an R2 of 0.9785, a MAPE of 8.1231%, and an RMSE of 37.2833, outperforming several commonly used forecasting models by a substantial margin in prediction accuracy. This highlights its effectiveness as a promising solution for intelligent PV power management. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

24 pages, 14028 KiB  
Article
Heuristic-Based Scheduling of BESS for Multi-Community Large-Scale Active Distribution Network
by Ejikeme A. Amako, Ali Arzani and Satish M. Mahajan
Electricity 2025, 6(3), 36; https://doi.org/10.3390/electricity6030036 - 1 Jul 2025
Viewed by 375
Abstract
The integration of battery energy storage systems (BESSs) within active distribution networks (ADNs) entails optimized day-ahead charge/discharge scheduling to achieve effective peak shaving.The primary objective is to reduce peak demand and mitigate power deviations caused by intermittent photovoltaic (PV) output. Quasi-static time-series (QSTS) [...] Read more.
The integration of battery energy storage systems (BESSs) within active distribution networks (ADNs) entails optimized day-ahead charge/discharge scheduling to achieve effective peak shaving.The primary objective is to reduce peak demand and mitigate power deviations caused by intermittent photovoltaic (PV) output. Quasi-static time-series (QSTS) co-simulations for determining optimal heuristic solutions at each time interval are computationally intensive, particularly for large-scale systems. To address this, a two-stage intelligent BESS scheduling approach implemented in a MATLAB–OpenDSS environment with parallel processing is proposed in this paper. In the first stage, a rule-based decision tree generates initial charge/discharge setpoints for community BESS units. These setpoints are refined in the second stage using an optimization algorithm aimed at minimizing community net load power deviations and reducing peak demand. By assigning each ADN community to a dedicated CPU core, the proposed approach utilizes parallel processing to significantly reduce the execution time. Performance evaluations on an IEEE 8500-node test feeder demonstrate that the approach enhances peak shaving while reducing QSTS co-simulation execution time, utility peak demand, distribution network losses, and point of interconnection (POI) nodal voltage deviations. In addition, the use of smart inverter functions improves BESS operations by mitigating voltage violations and active power curtailment, thereby increasing the amount of energy shaved during peak demand periods. Full article
Show Figures

Figure 1

40 pages, 3694 KiB  
Article
AI-Enhanced MPPT Control for Grid-Connected Photovoltaic Systems Using ANFIS-PSO Optimization
by Mahmood Yaseen Mohammed Aldulaimi and Mesut Çevik
Electronics 2025, 14(13), 2649; https://doi.org/10.3390/electronics14132649 - 30 Jun 2025
Viewed by 540
Abstract
This paper presents an adaptive Maximum Power Point Tracking (MPPT) strategy for grid-connected photovoltaic (PV) systems that uses an Adaptive Neuro-Fuzzy Inference System (ANFIS) optimized by Particle Swarm Optimization (PSO) to enhance energy extraction efficiency under diverse environmental conditions. The proposed ANFIS-PSO-based MPPT [...] Read more.
This paper presents an adaptive Maximum Power Point Tracking (MPPT) strategy for grid-connected photovoltaic (PV) systems that uses an Adaptive Neuro-Fuzzy Inference System (ANFIS) optimized by Particle Swarm Optimization (PSO) to enhance energy extraction efficiency under diverse environmental conditions. The proposed ANFIS-PSO-based MPPT controller performs dynamic adjustment Pulse Width Modulation (PWM) switching to minimize Total Harmonic Distortion (THD); this will ensure rapid convergence to the maximum power point (MPP). Unlike conventional Perturb and Observe (P&O) and Incremental Conductance (INC) methods, which struggle with tracking delays and local maxima in partial shading scenarios, the proposed approach efficiently identifies the Global Maximum Power Point (GMPP), improving energy harvesting capabilities. Simulation results in MATLAB/Simulink R2023a demonstrate that under stable irradiance conditions (1000 W/m2, 25 °C), the controller was able to achieve an MPPT efficiency of 99.2%, with THD reduced to 2.1%, ensuring grid compliance with IEEE 519 standards. In dynamic irradiance conditions, where sunlight varies linearly between 200 W/m2 and 1000 W/m2, the controller maintains an MPPT efficiency of 98.7%, with a response time of less than 200 ms, outperforming traditional MPPT algorithms. In the partial shading case, the proposed method effectively avoids local power maxima and successfully tracks the Global Maximum Power Point (GMPP), resulting in a power output of 138 W. In contrast, conventional techniques such as P&O and INC typically fail to escape local maxima under similar conditions, leading to significantly lower power output, often falling well below the true GMPP. This performance disparity underscores the superior tracking capability of the proposed ANFIS-PSO approach in complex irradiance scenarios, where traditional algorithms exhibit substantial energy loss due to their limited global search behavior. The novelty of this work lies in the integration of ANFIS with PSO optimization, enabling an intelligent self-adaptive MPPT strategy that enhances both tracking speed and accuracy while maintaining low computational complexity. This hybrid approach ensures real-time adaptation to environmental fluctuations, making it an optimal solution for grid-connected PV systems requiring high power quality and stability. The proposed controller significantly improves energy harvesting efficiency, minimizes grid disturbances, and enhances overall system robustness, demonstrating its potential for next-generation smart PV systems. Full article
(This article belongs to the Special Issue AI Applications for Smart Grid)
Show Figures

Figure 1

36 pages, 6279 KiB  
Article
Eel and Grouper Optimization-Based Fuzzy FOPI-TIDμ-PIDA Controller for Frequency Management of Smart Microgrids Under the Impact of Communication Delays and Cyberattacks
by Kareem M. AboRas, Mohammed Hamdan Alshehri and Ashraf Ibrahim Megahed
Mathematics 2025, 13(13), 2040; https://doi.org/10.3390/math13132040 - 20 Jun 2025
Cited by 1 | Viewed by 497
Abstract
In a smart microgrid (SMG) system that deals with unpredictable loads and incorporates fluctuating solar and wind energy, it is crucial to have an efficient method for controlling frequency in order to balance the power between generation and load. In the last decade, [...] Read more.
In a smart microgrid (SMG) system that deals with unpredictable loads and incorporates fluctuating solar and wind energy, it is crucial to have an efficient method for controlling frequency in order to balance the power between generation and load. In the last decade, cyberattacks have become a growing menace, and SMG systems are commonly targeted by such attacks. This study proposes a framework for the frequency management of an SMG system using an innovative combination of a smart controller (i.e., the Fuzzy Logic Controller (FLC)) with three conventional cascaded controllers, including Fractional-Order PI (FOPI), Tilt Integral Fractional Derivative (TIDμ), and Proportional Integral Derivative Acceleration (PIDA). The recently released Eel and Grouper Optimization (EGO) algorithm is used to fine-tune the parameters of the proposed controller. This algorithm was inspired by how eels and groupers work together and find food in marine ecosystems. The Integral Time Squared Error (ITSE) of the frequency fluctuation (ΔF) around the nominal value is used as an objective function for the optimization process. A diesel engine generator (DEG), renewable sources such as wind turbine generators (WTGs), solar photovoltaics (PVs), and storage components such as flywheel energy storage systems (FESSs) and battery energy storage systems (BESSs) are all included in the SMG system. Additionally, electric vehicles (EVs) are also installed. In the beginning, the supremacy of the adopted EGO over the Gradient-Based Optimizer (GBO) and the Smell Agent Optimizer (SAO) can be witnessed by taking into consideration the optimization process of the recommended regulator’s parameters, in addition to the optimum design of the membership functions of the fuzzy logic controller by each of these distinct algorithms. The subsequent phase showcases the superiority of the proposed EGO-based FFOPI-TIDμ-PIDA structure compared to EGO-based conventional structures like PID and EGO-based intelligent structures such as Fuzzy PID (FPID) and Fuzzy PD-(1 + PI) (FPD-(1 + PI)); this is across diverse symmetry operating conditions and in the presence of various cyberattacks that result in a denial of service (DoS) and signal transmission delays. Based on the simulation results from the MATLAB/Simulink R2024b environment, the presented control methodology improves the dynamics of the SMG system by about 99.6% when compared to the other three control methodologies. The fitness function dropped to 0.00069 for the FFOPI-TIDμ-PIDA controller, which is about 200 times lower than the other controllers that were compared. Full article
(This article belongs to the Special Issue Mathematical Methods Applied in Power Systems, 2nd Edition)
Show Figures

Figure 1

31 pages, 7507 KiB  
Article
A Neural Network-Based Model Predictive Control for a Grid-Connected Photovoltaic–Battery System with Vehicle-to-Grid and Grid-to-Vehicle Operations
by Ossama Dankar, Mohamad Tarnini, Abdallah El Ghaly, Nazih Moubayed and Khaled Chahine
Electricity 2025, 6(2), 32; https://doi.org/10.3390/electricity6020032 - 6 Jun 2025
Viewed by 1238
Abstract
The growing integration of photovoltaic (PV) energy systems and electric vehicles (EVs) introduces new challenges in managing energy flow within smart grid environments. The intermittent nature of solar energy and the variable charging demands of EVs complicate reliable and efficient power management. Existing [...] Read more.
The growing integration of photovoltaic (PV) energy systems and electric vehicles (EVs) introduces new challenges in managing energy flow within smart grid environments. The intermittent nature of solar energy and the variable charging demands of EVs complicate reliable and efficient power management. Existing strategies for grid-connected PV–battery systems often fail to effectively handle bidirectional power flow between EVs and the grid, particularly in scenarios requiring seamless transitions between vehicle-to-grid (V2G) and grid-to-vehicle (G2V) operations. This paper presents a novel neural network-based model predictive control (NN-MPC) approach for optimizing energy management in a grid-connected PV–battery–EV system. The proposed method combines neural networks for forecasting PV generation, EV load demand, and grid conditions with a model predictive control framework that optimizes real-time power flow under various constraints. This integration enables intelligent, adaptive, and dynamic decision making across multiple objectives, including maximizing renewable energy usage, minimizing grid dependency, reducing transient responses, and extending battery life. Unlike conventional methods that treat V2G and G2V separately, the NN-MPC framework supports seamless mode switching based on real-time system status and user requirements. Simulation results demonstrate a 12.9% improvement in V2G power delivery, an 8% increase in renewable energy utilization, and a 50% reduction in total harmonic distortion (THD) compared to PI control. The results highlight the practical effectiveness and robustness of NN-MPC, making it an effective solution for future smart grids that require bidirectional energy management between distributed energy resources and electric vehicles. Full article
Show Figures

Figure 1

12 pages, 1517 KiB  
Article
Leveraging AI for Sustainable Energy Development in Solar Power Plants Operating Under Shading Conditions
by Farhad Khosrojerdi, Stéphane Gagnon and Raul Valverde
Energies 2025, 18(11), 2960; https://doi.org/10.3390/en18112960 - 4 Jun 2025
Viewed by 579
Abstract
In a photovoltaic (PV) system, shading caused by weather and environmental factors can significantly impact electricity production. For over a decade, artificial intelligence (AI) techniques have been applied to enhance energy production efficiency in the solar energy sector. This paper demonstrates how AI-based [...] Read more.
In a photovoltaic (PV) system, shading caused by weather and environmental factors can significantly impact electricity production. For over a decade, artificial intelligence (AI) techniques have been applied to enhance energy production efficiency in the solar energy sector. This paper demonstrates how AI-based control systems can improve energy output in a solar power plant under shading conditions. The findings highlight that AI contributes to the sustainable development of the solar power sector. Specifically, maximum power point tracking (MPPT) control systems, utilizing metaheuristic and computer-based algorithms, enable PV arrays to mitigate the impacts of shading effectively. The effect of shading on a PV module is also simulated using MATLAB R2018b. Using actual PV data from a solar power plant, power outputs are compared in two scenarios: (I) PV systems without a control system and (II) PV arrays equipped with MPPT boards. The System Advisor Model (SAM) is employed to calculate the monthly energy output of the case study. The results confirm that PV systems using MPPT technology generate significantly more monthly energy compared to those without MPPTs. Full article
Show Figures

Figure 1

42 pages, 2459 KiB  
Review
Climate-Responsive Design of Photovoltaic Façades in Hot Climates: Materials, Technologies, and Implementation Strategies
by Xiaohui Wu, Yanfeng Wang, Shile Deng and Ping Su
Buildings 2025, 15(10), 1648; https://doi.org/10.3390/buildings15101648 - 14 May 2025
Cited by 2 | Viewed by 1561
Abstract
With the intensification of global climate change, buildings in hot climate zones face increasing challenges related to high energy consumption and thermal comfort. Building integrated photovoltaic (BIPV) façades, which combine power generation and energy saving potential, require further optimization in their climate-adaptive design. [...] Read more.
With the intensification of global climate change, buildings in hot climate zones face increasing challenges related to high energy consumption and thermal comfort. Building integrated photovoltaic (BIPV) façades, which combine power generation and energy saving potential, require further optimization in their climate-adaptive design. Most existing studies primarily focus on the photoelectric conversion efficiency of PV modules, yet there is a lack of systematic analysis of the coupled effects of temperature, humidity, and solar radiation intensity on PV performance. Moreover, the current literature rarely addresses the regional material degradation patterns, integrated cooling solutions, or intelligent control systems suitable for hot and humid climates. There is also a lack of practical, climate specific design guidelines that connect theoretical technologies with real world applications. This paper systematically reviews BIPV façade design strategies following a climate zoning framework, summarizing research progress from 2019 to 2025 in the areas of material innovation, thermal management, light regulation strategies, and parametric design. A climate responsive strategy is proposed to address the distinct challenges of humid hot and dry hot climates. Finally, this study discusses the barriers and challenges of BIPV system applications in hot climates and highlights future research directions. Unlike previous reviews, this paper offers a multi-dimensional synthesis that integrates climatic classification, material suitability, passive and active cooling strategies, and intelligent optimization technologies. It further provides regionally differentiated recommendations for façade design and outlines a unified framework to guide future research and practical deployment of BIPV systems in hot climates. Full article
Show Figures

Figure 1

50 pages, 7037 KiB  
Review
Advances in Modeling and Optimization of Intelligent Power Systems Integrating Renewable Energy in the Industrial Sector: A Multi-Perspective Review
by Lei Zhang, Yuxing Yuan, Su Yan, Hang Cao and Tao Du
Energies 2025, 18(10), 2465; https://doi.org/10.3390/en18102465 - 11 May 2025
Viewed by 677
Abstract
With the increasing liberalization of energy markets, the penetration of renewable clean energy sources, such as photovoltaics and wind power, has gradually increased, providing more sustainable energy solutions for energy-intensive industrial sectors or parks, such as iron and steel production. However, the issues [...] Read more.
With the increasing liberalization of energy markets, the penetration of renewable clean energy sources, such as photovoltaics and wind power, has gradually increased, providing more sustainable energy solutions for energy-intensive industrial sectors or parks, such as iron and steel production. However, the issues of the intermittency and volatility of renewable energy have become increasingly evident in practical applications, and the economic performance and operational efficiency of localized microgrid systems also demand thorough consideration, posing significant challenges to the decision and management of power system operation. A smart microgrid can effectively enhance the flexibility, reliability, and resilience of the grid, through the frequent interaction of generation–grid–load. Therefore, this paper will provide a comprehensive summary of existing knowledge and a review of the research progress on the methodologies and strategies of modeling technologies for intelligent power systems integrating renewable energy in industrial production. Full article
(This article belongs to the Special Issue Modeling Analysis and Optimization of Energy System)
Show Figures

Figure 1

23 pages, 12686 KiB  
Article
A High-Precision Defect Detection Approach Based on BiFDRep-YOLOv8n for Small Target Defects in Photovoltaic Modules
by Yi Lu, Chunsong Du, Xu Li, Shaowei Liang, Qian Zhang and Zhenghui Zhao
Energies 2025, 18(9), 2299; https://doi.org/10.3390/en18092299 - 30 Apr 2025
Viewed by 579
Abstract
With the accelerated transition of the global energy structure towards decarbonization, the share of PV power generation in the power system continues to rise. IEA predicts PV will account for 80% of new global renewable installations during 2025–2030. However, latent faults emerging from [...] Read more.
With the accelerated transition of the global energy structure towards decarbonization, the share of PV power generation in the power system continues to rise. IEA predicts PV will account for 80% of new global renewable installations during 2025–2030. However, latent faults emerging from the long-term operation of photovoltaic (PV) power plants significantly compromise their operational efficiency. The existing EL detection methods in PV plants face challenges including grain boundary interference, probe band artifacts, non-uniform luminescence, and complex backgrounds, which elevate the risk of missing small defects. In this paper, we propose a high-precision defect detection method based on BiFDRep-YOLOv8n for small target defects in photovoltaic (PV) power plants, aiming to improve the detection accuracy and real-time performance and to provide an efficient solution for the intelligent detection of PV power plants. Firstly, the visual transformer RepViT is constructed as the backbone network, based on the dual-path mechanism of Token Mixer and Channel Mixer, to achieve local feature extraction and global information modeling, and combined with the structural reparameterization technique, to enhance the sensitivity of detecting small defects. Secondly, for the multi-scale characteristics of defects, the neck network is optimized by introducing a bidirectional weighted feature pyramid network (BiFPN), which adopts an adaptive weight allocation strategy to enhance feature fusion and improve the characterization of defects at different scales. Finally, the detection head part uses DyHead-DCNv3, which combines the triple attention mechanism of scale, space, and task awareness, and introduces deformable convolution (DCNv3) to improve the modeling capability and detection accuracy of irregular defects. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

15 pages, 5183 KiB  
Article
Integrating Radiant Cooling Ceilings with Ternary PCM Thermal Storage: A Synergistic Approach for Enhanced Energy Efficiency in Photovoltaic-Powered Buildings
by Zhuoyi Ling, Tianhong Zheng, Qinghua Lv, Yuehong Su, Hui Lv and Saffa Riffat
Energies 2025, 18(9), 2237; https://doi.org/10.3390/en18092237 - 28 Apr 2025
Viewed by 513
Abstract
Traditional photovoltaic-powered forced air-cooling systems face significant challenges in balancing energy efficiency and thermal comfort due to temperature sensitivity, mechanical ventilation energy consumption, and spatial constraints. This study aims to enhance building energy efficiency by integrating a radiant cooling ceiling (RCC) with a [...] Read more.
Traditional photovoltaic-powered forced air-cooling systems face significant challenges in balancing energy efficiency and thermal comfort due to temperature sensitivity, mechanical ventilation energy consumption, and spatial constraints. This study aims to enhance building energy efficiency by integrating a radiant cooling ceiling (RCC) with a phase change material (PCM) thermal storage system, addressing the limitations of traditional photovoltaic-powered cooling systems through optimized material design and dynamic energy management. A ternary PCM mixture (glycerol–alcohol–water) was optimized using differential scanning calorimetry (DSC), demonstrating superior latent heat storage (361.66 J/g) and phase transition temperature (1.91 °C) in the selected “Slushy Ice” formulation. A 3D transient thermal model and experimental validation revealed that the RCC system achieved 57% energy savings under quasi-steady operation, with radiative heat transfer contributing 55% of total cooling capacity. The system dynamically stores cold energy during peak photovoltaic generation and releases it via RCC during low-power periods, resolving the “cooling energy consumption paradox”. Key challenges, including PCM cycling stability and thermal response time mismatches, were identified, with future research directions emphasizing multi-scale simulations and intelligent encapsulation. This work provides a viable pathway for improving building energy efficiency while maintaining thermal comfort and for improving building energy efficiency in temperate zones, with future extensions to arid and tropical climates requiring targeted material and system optimizations. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

28 pages, 561 KiB  
Review
Advancements and Challenges in Photovoltaic Power Forecasting: A Comprehensive Review
by Paolo Di Leo, Alessandro Ciocia, Gabriele Malgaroli and Filippo Spertino
Energies 2025, 18(8), 2108; https://doi.org/10.3390/en18082108 - 19 Apr 2025
Cited by 4 | Viewed by 1559
Abstract
The fast growth of photovoltaic (PV) power generation requires dependable forecasting methods to support efficient integration of solar energy into power systems. This study conducts an up-to-date, systematized analysis of different models and methods used for photovoltaic power prediction. It begins with a [...] Read more.
The fast growth of photovoltaic (PV) power generation requires dependable forecasting methods to support efficient integration of solar energy into power systems. This study conducts an up-to-date, systematized analysis of different models and methods used for photovoltaic power prediction. It begins with a new taxonomy, classifying PV forecasting models according to the time horizon, architecture, and selection criteria matched to certain application areas. An overview of the most popular heterogeneous forecasting techniques, including physical models, statistical methodologies, machine learning algorithms, and hybrid approaches, is provided; their respective advantages and disadvantages are put into perspective based on different forecasting tasks. This paper also explores advanced model optimization methodologies; achieving hyperparameter tuning; feature selection, and the use of evolutionary and swarm intelligence algorithms, which have shown promise in enhancing the accuracy and efficiency of PV power forecasting models. This review includes a detailed examination of performance metrics and frameworks, as well as the consequences of different weather conditions affecting renewable energy generation and the operational and economic implications of forecasting performance. This paper also highlights recent advancements in the field, including the use of deep learning architectures, the incorporation of diverse data sources, and the development of real-time and on-demand forecasting solutions. Finally, this paper identifies key challenges and future research directions, emphasizing the need for improved model adaptability, data quality, and computational efficiency to support the large-scale integration of PV power into future energy systems. By providing a holistic and critical assessment of the PV power forecasting landscape, this review aims to serve as a valuable resource for researchers, practitioners, and decision makers working towards the sustainable and reliable deployment of solar energy worldwide. Full article
(This article belongs to the Special Issue Forecasting of Photovoltaic Power Generation and Model Optimization)
Show Figures

Figure 1

19 pages, 51492 KiB  
Article
Detection of Photovoltaic Arrays in High-Spatial-Resolution Remote Sensing Images Using a Weight-Adaptive YOLO Model
by Zhumao Lu, Xiaokai Meng, Jinsong Li, Hua Yu, Shuai Wang, Zeng Qu and Jiayun Wang
Energies 2025, 18(8), 1916; https://doi.org/10.3390/en18081916 - 9 Apr 2025
Viewed by 433
Abstract
This study addresses the issue of inadequate remote sensing monitoring accuracy for photovoltaic (PV) arrays in complex geographical environments against the backdrop of rapid global expansion in PV power generation. Particularly concerning the complex spatial distribution characteristics formed by multiple types of PV [...] Read more.
This study addresses the issue of inadequate remote sensing monitoring accuracy for photovoltaic (PV) arrays in complex geographical environments against the backdrop of rapid global expansion in PV power generation. Particularly concerning the complex spatial distribution characteristics formed by multiple types of PV power stations within China, this study overcomes traditional technical limitations that rely on very high-resolution (0.3–0.8 m) aerial imagery and manual annotation templates. Instead, it proposes an intelligent recognition method for PV arrays based on satellite remote sensing imagery. By enhancing the C3 feature extraction module of the YOLOv5 object detection model and innovatively introducing a weight-adaptive adjustment mechanism, the model’s ability to represent features of PV components across multiple scenarios is significantly improved. Experimental results demonstrate that the improved model achieves enhancements of 6.13% in recall, 3.06% in precision, 5% in F1 score, and 4.6% in mean Average Precision (mAP), respectively. Notably, the false detection rate in low-resolution (<5 m) panchromatic imagery is significantly reduced. Comparative analysis reveals that the optimized model reduces the error rate for small object detection in black-and-white imagery and complex scenarios by 19.8% compared to the baseline model. The technical solution proposed in this study provides a feasible technical pathway for constructing a dynamic monitoring system for large-scale PV facilities. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

Back to TopTop