Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (480)

Search Parameters:
Keywords = inorganic perovskites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3634 KiB  
Article
Van Der Waals Mask-Assisted Strategy for Deterministic Fabrication of Two-Dimensional Organic−Inorganic Hybrid Perovskites Lateral Heterostructures
by Bin Han, Mengke Lin, Yanren Tang, Xingyu Liu, Bingtao Lian, Qi Qiu, Shukai Ding and Bingshe Xu
Inorganics 2025, 13(8), 266; https://doi.org/10.3390/inorganics13080266 - 14 Aug 2025
Viewed by 267
Abstract
Two-dimensional (2D) organic−inorganic hybrid perovskites (OIHPs) have emerged as promising candidates for next-generation optoelectronic applications. While vertical heterostructures of 2D OIHPs have been explored through mechanical stacking, the controlled fabrication of lateral heterostructures remains a significant challenge. Here, we present a lithography-free, van [...] Read more.
Two-dimensional (2D) organic−inorganic hybrid perovskites (OIHPs) have emerged as promising candidates for next-generation optoelectronic applications. While vertical heterostructures of 2D OIHPs have been explored through mechanical stacking, the controlled fabrication of lateral heterostructures remains a significant challenge. Here, we present a lithography-free, van der Waals mask-assisted strategy for the deterministic fabrication of 2D OIHP lateral heterostructures. Mechanically exfoliated 2D materials such as graphene serve as removable masks that enable selective conversion of unmasked perovskite regions via ion exchange reaction. This technique enables the fabrication of various lateral heterostructures, such as BA2MA2Pb3I10/MAPbI3, PEAPbI4/MAPbI3, as well as BA2MAPb2I7/MAPbBr3. Furthermore, complex multiheterostructures and superlattices can be constructed through sequential masking and conversion processes. Moreover, to investigate the electronic properties and demonstrate potential device applications of the lateral heterostructures, we have fabricated an electrical diode based on a BA2MA2Pb3I10/MAPbI3 lateral heterostructure. Stable electrical rectifying behavior with a rectification ratio of around 10 was observed. This general and flexible approach provides a robust platform for constructing 2D OIHPs lateral heterostructures and opens new pathways for their integration into high-performance optoelectronic devices. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

11 pages, 2667 KiB  
Article
Pressure Effects on Structure and Optical Properties in Sn(II)-Doped Cs2ZnCl4 All-Inorganic Zero-Dimensional Halide Perovskite
by Ting Geng, Mengqing Wang, Yuhan Qin, Zhuo Chen, Ao Zhang, Chunmei Zhang, Yongguang Li and Guanjun Xiao
Inorganics 2025, 13(8), 264; https://doi.org/10.3390/inorganics13080264 - 13 Aug 2025
Viewed by 242
Abstract
The toxicity of lead in conventional perovskites and their inherent chemical instability impede the commercialization of perovskite-based optoelectronics. Therefore, it is vital to develop chemically stable and environmentally friendly Pb-free alternatives. Recently, zero-dimensional (0D) all-inorganic Cs2ZnCl4 doped with Sn(II) has [...] Read more.
The toxicity of lead in conventional perovskites and their inherent chemical instability impede the commercialization of perovskite-based optoelectronics. Therefore, it is vital to develop chemically stable and environmentally friendly Pb-free alternatives. Recently, zero-dimensional (0D) all-inorganic Cs2ZnCl4 doped with Sn(II) has emerged as a promising candidate, exhibiting superior chemical robustness, minimal biotoxicity, and exceptional optoelectronic properties. In this work, pressure effects on structure and optical properties in Sn(II)-doped all-inorganic zero-dimensional halide perovskite are investigated both experimentally and theoretically. The structure–property relationship of Sn(II)-doped Cs2ZnCl4 is studied using high-pressure techniques. Piezochromism, accompanied by a remarkable change in emission color from orange/red and green to orange/yellow, was obtained from 1 atm to 22.5 GPa. Angle dispersive synchrotron X-ray diffraction (ADXRD) patterns and Raman spectra manifest that the material underwent an isostructural phase transition followed by amorphization with increasing pressure. The piezochromism and band gap engineering originate from the pressure-induced lattice compression and isostructural phase transition. This work advances STE emission studies and provides a robust strategy to boost emission efficiency and to construct multifunctional materials with piezochromism in environmentally friendly perovskites, thus facilitating diverse future applications. Full article
(This article belongs to the Special Issue New Semiconductor Materials for Energy Conversion)
Show Figures

Figure 1

22 pages, 3957 KiB  
Review
Vapor-Deposited Inorganic Perovskite Solar Cells from Fundamentals to Scalable Commercial Pathways
by Padmini Pandey and Dong-Won Kang
Electronics 2025, 14(16), 3171; https://doi.org/10.3390/electronics14163171 - 8 Aug 2025
Viewed by 323
Abstract
Inorganic halide perovskites have garnered significant attention as promising candidates for photovoltaic and optoelectronic applications, owing to their enhanced thermal and chemical stability relative to hybrid perovskite materials. This review synthesizes recent progress in vapor-phase deposition methodologies, such as co-evaporation, close space sublimation [...] Read more.
Inorganic halide perovskites have garnered significant attention as promising candidates for photovoltaic and optoelectronic applications, owing to their enhanced thermal and chemical stability relative to hybrid perovskite materials. This review synthesizes recent progress in vapor-phase deposition methodologies, such as co-evaporation, close space sublimation (CSS), continuous flash sublimation (CFS), and chemical vapor deposition (CVD), which enable the precise modulation of film composition and morphology. Advances in material systems, including the stabilization of CsPbI2Br, the introduction of tin-doped phases, and the investigation of lead-free double perovskites like Cs2AgSbI6 and Cs2AgBiCl6, are critically evaluated with respect to their impact on device performance. The incorporation of these materials into photovoltaic devices and tandem configurations is explored, with particular emphasis on improvements in power conversion efficiency and operational durability. Furthermore, interface engineering approaches tailored to vacuum-deposited films—such as defect passivation and energy-level alignment—are examined in detail. The potential for scalable manufacturing is assessed through simulation analyses, throughput modeling, and pilot-scale demonstrations, underscoring the feasibility of industrial-scale production. By offering a comprehensive overview of these advancements, this review provides valuable perspectives on the current landscape and prospective trajectories of vapor-deposited inorganic perovskite technologies. Full article
(This article belongs to the Special Issue Materials and Properties for Solar Cell Application)
Show Figures

Figure 1

20 pages, 4322 KiB  
Article
The 1D Hybrid Material Allylimidazolium Iodoantimonate: A Combined Experimental and Theoretical Study
by Hela Ferjani, Rim Bechaieb, Diego M. Gil and Axel Klein
Inorganics 2025, 13(7), 243; https://doi.org/10.3390/inorganics13070243 - 15 Jul 2025
Viewed by 594
Abstract
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void [...] Read more.
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void analysis through Mercury CSD software confirmed a densely packed lattice with a calculated void volume of 1.1%. Integrated quantum theory of atoms in molecules (QTAIM) and non-covalent interactions index (NCI) analyses showed that C–H···I interactions between the cations and the 1[SbI5]2− network predominantly stabilize the supramolecular assembly followed by N–H···I hydrogen bonds. The calculated growth morphology (GM) model fits very well to the experimental morphology. UV–Vis diffuse reflectance spectroscopy allowed us to determine the optical band gap to 3.15 eV. Density functional theory (DFT) calculations employing the B3LYP, CAM-B3LYP, and PBE0 functionals were benchmarked against experimental data. CAM-B3LYP best reproduced Sb–I bond lengths, while PBE0 more accurately captured the HOMO–LUMO gap and the associated electronic descriptors. These results support the assignment of an inorganic-to-organic [Sb–I] → π* charge-transfer excitation, and clarify how structural dimensionality and cation identity shape the material’s optoelectronic properties. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

11 pages, 1525 KiB  
Article
Photodetection Enhancement via Dipole–Dipole Coupling in BA2MAPb2I7/PEA2MA2Pb3I10 Perovskite Heterostructures
by Bin Han, Bingtao Lian, Qi Qiu, Xingyu Liu, Yanren Tang, Mengke Lin, Shukai Ding and Bingshe Xu
Inorganics 2025, 13(7), 240; https://doi.org/10.3390/inorganics13070240 - 11 Jul 2025
Viewed by 483
Abstract
Two-dimensional (2D) hybrid organic–inorganic perovskites (HOIPs) have attracted considerable attention in optoelectronic applications, owing to their remarkable characteristics. Nevertheless, the application of 2D HOIPs encounters inherent challenges due to the presence of insulating organic spacers, which create barriers for efficient interlayer charge transport [...] Read more.
Two-dimensional (2D) hybrid organic–inorganic perovskites (HOIPs) have attracted considerable attention in optoelectronic applications, owing to their remarkable characteristics. Nevertheless, the application of 2D HOIPs encounters inherent challenges due to the presence of insulating organic spacers, which create barriers for efficient interlayer charge transport (CT). To tackle this issue, we propose a BA2MAPb2I7/PEA2MA2Pb3I10 bilayer heterostructure, where efficient interlayer energy transfer (ET) facilitates compensation for the restricted charge transport across the organic spacer. Our findings reveal that under 532 nm light illumination, the BA2MAPb2I7/PEA2MA2Pb3I10 heterostructure photodetector exhibits a significant photocurrent enhancement compared with that of the pure PEA2MA2Pb3I10 device, mainly due to the contribution of the ET process. In contrast, under 600 nm light illumination, where ET is absent, the enhancement is rather limited, emphasizing the critical role of ET in boosting device performance. The overlap of the PL emission peak of BA2MAPb2I7 with the absorption spectra of PEA2MA2Pb3I10, alongside the PL quenching of BA2MAPb2I7 and the enhanced emission of PEA2MA2Pb3I10 provide confirmation of the existence of ET in the BA2MAPb2I7/PEA2MA2Pb3I10 heterostructure. Furthermore, the PL enhancement factor followed a 1/d2 relationship with the thickness of the hBN layer, indicating that ET originates from 2D-to-2D dipole–dipole coupling. This study not only highlights the potential of leveraging ET mechanisms to overcome the limitations of interlayer CT, but also contributes to the fundamental understanding required for engineering advanced 2D HOIP optoelectronic systems. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

12 pages, 2267 KiB  
Article
Composite Polymer Electrolytes with Tailored Ion-Conductive Networks for High-Performance Sodium-Ion Batteries
by Caizhen Yang, Zongyou Li, Qiyao Yu and Jianguo Zhang
Materials 2025, 18(13), 3106; https://doi.org/10.3390/ma18133106 - 1 Jul 2025
Viewed by 375
Abstract
Gel-polymer electrolytes offer a promising route toward safer and more stable sodium-ion batteries, but conventional polymer systems often suffer from low ionic conductivity and limited voltage stability. In this study, we developed composite GPEs by embedding methylammonium lead chloride (CH3NH3 [...] Read more.
Gel-polymer electrolytes offer a promising route toward safer and more stable sodium-ion batteries, but conventional polymer systems often suffer from low ionic conductivity and limited voltage stability. In this study, we developed composite GPEs by embedding methylammonium lead chloride (CH3NH3PbCl3, MPCl) into a UV-crosslinked ethoxylated trimethylolpropane triacrylate (ETPTA) matrix, with sodium alginate (SA) as an ionic conduction enhancer. Three types of membranes—GPE-P, GPE-El, and GPE-Eh—were synthesized and systematically compared. Among them, the high-MPCl formulation (GPE-Eh) exhibited the best performance, achieving a high ionic conductivity of 2.14 × 10−3 S·cm−1, a sodium-ion transference number of 0.66, and a wide electrochemical window of approximately 4.9 V vs. Na+/Na. In symmetric Na|GPE|Na cells, GPE-Eh enabled stable sodium plating/stripping for over 600 h with low polarization. In Na|GPE|NVP cells, it delivered a high capacity retention of ~79% after 500 cycles and recovered ~89% of its initial capacity after high-rate cycling. These findings demonstrate that the perovskite–polymer composite structure significantly improves ion transport, interfacial stability, and electrochemical durability, offering a viable path for the development of next-generation quasi-solid-state sodium-ion batteries. Full article
Show Figures

Figure 1

15 pages, 2189 KiB  
Article
First-Principles Study of Halide Modulation on Deep-Level Traps in FAPbI3
by Jiaqi Dai, Wenchao Tang, Tingfeng Li, Cuiping Xu, Min Zhao, Peiqi Ji, Xiaolei Li, Fengming Zhang, Hongling Cai and Xiaoshan Wu
Nanomaterials 2025, 15(13), 981; https://doi.org/10.3390/nano15130981 - 24 Jun 2025
Cited by 1 | Viewed by 394
Abstract
In this study, we investigate the influence of the halogen elements bromine (Br) and chlorine (Cl) on iodine defect properties primarily in FAPbI3 through first-principles calculations, aiming to understand the effect of high defect densities on the efficiency of organic–inorganic hybrid perovskite [...] Read more.
In this study, we investigate the influence of the halogen elements bromine (Br) and chlorine (Cl) on iodine defect properties primarily in FAPbI3 through first-principles calculations, aiming to understand the effect of high defect densities on the efficiency of organic–inorganic hybrid perovskite cells. The results indicate that Br and Cl interstitials minimally alter the overall band structure of FAPbI3 but significantly modify the defect energy levels. Br and Cl interstitials, with defect states closer to the valence band and lower formation energies, effectively convert deep-level traps induced by iodine interstitials (Ii) into shallow-level traps. This conversion enhances carrier transport by reducing non-radiative recombination while preserving light absorption efficiency. Excess Br/Cl co-doping in FAPbI3 synthesis thereby suppresses non-radiative recombination and mitigates the detrimental effects of iodide-related defects. Full article
Show Figures

Figure 1

19 pages, 3823 KiB  
Article
Theoretical Performance of BaSnO3-Based Perovskite Solar Cell Designs Under Variable Light Intensities, Temperatures, and Donor and Defect Densities
by Nouf Alkathran, Shubhranshu Bhandari and Tapas K. Mallick
Designs 2025, 9(3), 76; https://doi.org/10.3390/designs9030076 - 18 Jun 2025
Viewed by 480
Abstract
Barium stannate (BaSnO3) has emerged as a promising alternative electron transport material owing to its superior electron mobility, resistance to UV degradation, and energy bandgap tunability, yet BaSnO3-based perovskite solar cells have not reached the efficiency levels of TiO [...] Read more.
Barium stannate (BaSnO3) has emerged as a promising alternative electron transport material owing to its superior electron mobility, resistance to UV degradation, and energy bandgap tunability, yet BaSnO3-based perovskite solar cells have not reached the efficiency levels of TiO2-based designs. This theoretical study presents a design-driven evaluation of BaSnO3-based perovskite solar cell architectures, incorporating MAPbI3 or FAMAPbI3 perovskite materials, Spiro-OMeTAD, or Cu2O hole transport materials as well as hole-free configurations, under varying light intensity. Using a systematic device modelling approach, we explore the influence of key design variables—such as layer thickness, donor density, and interface defect concentration—of BaSnO3 and operating temperature on the power conversion efficiency (PCE). Among the proposed designs, the FTO/BaSnO3/FAMAPbI3/Cu2O/Au heterostructure exhibits an exceptionally effective arrangement with PCE of 38.2% under concentrated light (10,000 W/m2, or 10 Sun). The structure also demonstrates strong thermal robustness up to 400 K, with a low temperature coefficient of −0.078% K−1. These results underscore the importance of material and structural optimisation in PSC design and highlight the role of high-mobility, thermally stable inorganic transport layers—BaSnO3 as the electron transport material (ETM) and Cu2O as the hole transport material (HTM)—in enabling efficient and stable photovoltaic performance under high irradiance. The study contributes valuable insights into the rational design of high-performance PSCs for emerging solar technologies. Full article
Show Figures

Graphical abstract

11 pages, 5145 KiB  
Article
Island-like Perovskite Photoelectric Synaptic Transistor with ZnO Channel Layer Deposited by Low-Temperature Atomic Layer Deposition
by Jiahui Liu, Yuliang Ye and Zunxian Yang
Materials 2025, 18(12), 2879; https://doi.org/10.3390/ma18122879 - 18 Jun 2025
Viewed by 400
Abstract
Artificial photoelectric synapses exhibit great potential for overcoming the Von Neumann bottleneck in computational systems. All-inorganic halide perovskites hold considerable promise in photoelectric synapses due to their superior photon-harvesting efficiency. In this study, a novel wavy-structured CsPbBr3/ZnO hybrid film was realized [...] Read more.
Artificial photoelectric synapses exhibit great potential for overcoming the Von Neumann bottleneck in computational systems. All-inorganic halide perovskites hold considerable promise in photoelectric synapses due to their superior photon-harvesting efficiency. In this study, a novel wavy-structured CsPbBr3/ZnO hybrid film was realized by depositing zinc oxide (ZnO) onto island-like CsPbBr3 film via atomic layer deposition (ALD) at 70 °C. Due to the capability of ALD to grow high-quality films over small surface areas, dense and thin ZnO film filled the gaps between the island-shaped CsPbBr3 grains, thereby enabling reduced light-absorption losses and efficient charge transport between the CsPbBr3 light absorber and the ZnO electron-transport layer. This ZnO/island-like CsPbBr3 hybrid synaptic transistor could operate at a drain-source voltage of 1.0 V and a gate-source voltage of 0 V triggered by green light (500 nm) pulses with low light intensities of 0.035 mW/cm2. The device exhibited a quiescent current of ~0.5 nA. Notably, after patterning, it achieved a significantly reduced off-state current of 10−11 A and decreased the quiescent current to 0.02 nA. In addition, this transistor was able to mimic fundamental synaptic behaviors, including excitatory postsynaptic currents (EPSCs), paired-pulse facilitation (PPF), short-term to long-term plasticity (STP to LTP) transitions, and learning-experience behaviors. This straightforward strategy demonstrates the possibility of utilizing neuromorphic synaptic device applications under low voltage and weak light conditions. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

30 pages, 5617 KiB  
Review
Perovskite Quantum Dot-Based Memory Technologies: Insights from Emerging Trends
by Fateh Ullah, Zina Fredj and Mohamad Sawan
Nanomaterials 2025, 15(11), 873; https://doi.org/10.3390/nano15110873 - 5 Jun 2025
Viewed by 1124
Abstract
Perovskite quantum dots (PVK QDs) are gaining significant attention as potential materials for next-generation memory devices leveraged by their ion dynamics, quantum confinement, optoelectronic synergy, bandgap tunability, and solution-processable fabrication. In this review paper, we explore the fundamental characteristics of organic/inorganic halide PVK [...] Read more.
Perovskite quantum dots (PVK QDs) are gaining significant attention as potential materials for next-generation memory devices leveraged by their ion dynamics, quantum confinement, optoelectronic synergy, bandgap tunability, and solution-processable fabrication. In this review paper, we explore the fundamental characteristics of organic/inorganic halide PVK QDs and their role in resistive switching memory architectures. We provide an overview of halide PVK QDs synthesis techniques, switching mechanisms, and recent advancements in memristive applications. Special emphasis is placed on the ionic migration and charge trapping phenomena governing resistive switching, along with the prospects of photonic memory devices that leverage the intrinsic photosensitivity of PVK QDs. Despite their advantages, challenges such as stability, scalability, and environmental concerns remain critical hurdles. We conclude this review with insights into potential strategies for enhancing the reliability and commercial viability of PVK QD-based memory technologies. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

24 pages, 5160 KiB  
Review
Chiral Perovskite Single Crystals: Toward Promising Design and Application
by Lin Wang, Jie Ren and Hanying Li
Materials 2025, 18(11), 2635; https://doi.org/10.3390/ma18112635 - 4 Jun 2025
Viewed by 912
Abstract
Organic–inorganic hybrid halide perovskites have emerged as promising optoelectronic materials owing to their exceptional optoelectronic properties and versatile crystal structures. The introduction of chiral organic ligands into perovskite frameworks, breaking the inversion symmetry of the structure, has attracted significant attention toward chiral perovskites. [...] Read more.
Organic–inorganic hybrid halide perovskites have emerged as promising optoelectronic materials owing to their exceptional optoelectronic properties and versatile crystal structures. The introduction of chiral organic ligands into perovskite frameworks, breaking the inversion symmetry of the structure, has attracted significant attention toward chiral perovskites. Herein, the recent advances in various synthesis strategies for chiral perovskite single crystals (SCs) are systematically demonstrated. Then, we elucidate an in-depth understanding of the chirality transfer mechanisms from chiral organic ligands to perovskite inorganic frameworks. Furthermore, representative examples of chiral perovskite SC-based applications are comprehensively discussed, including circularly polarized light (CPL) photodetection, nonlinear optical (NLO) responses, and other emerging chirality-dependent applications. In the end, an outlook for future challenges and research opportunities is provided, highlighting the transformative potential of chiral perovskites in next-generation optoelectronic devices. Full article
(This article belongs to the Special Issue Halide Perovskite Crystal Materials and Optoelectronic Devices)
Show Figures

Graphical abstract

14 pages, 2098 KiB  
Article
Surface In Situ Growth of Two-Dimensional/Three-Dimensional Heterojunction Perovskite Film for Achieving High-Performance Flexible Perovskite Solar Cells
by Zhiyu Zhang, Huijing Liu, Jing Liu, Jia Xu, Zhan’ao Tan and Jianxi Yao
Nanomaterials 2025, 15(11), 798; https://doi.org/10.3390/nano15110798 - 26 May 2025
Viewed by 516
Abstract
Organic–inorganic hybrid flexible perovskite solar cells (F-PSCs) have garnered considerable interest owing to their exceptional power conversion efficiency (PCE) and stable operational characteristics. However, F-PSCs continue to exhibit significantly lower PCE than their rigid counterparts. Herein, we employed 3-chloro-4-methoxybenzylamine hydrochloride (CMBACl) treatment to [...] Read more.
Organic–inorganic hybrid flexible perovskite solar cells (F-PSCs) have garnered considerable interest owing to their exceptional power conversion efficiency (PCE) and stable operational characteristics. However, F-PSCs continue to exhibit significantly lower PCE than their rigid counterparts. Herein, we employed 3-chloro-4-methoxybenzylamine hydrochloride (CMBACl) treatment to grow in situ two-dimensional (2D) perovskite layers on three-dimensional (3D) perovskite films. Through comprehensive physicochemical characterization, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) mapping, we demonstrated that CMBACl treatment enabled the in situ growth of two-dimensional (2D) perovskite layers on three-dimensional (3D) perovskite films via chemical interactions between CMBA+ cations and undercoordinated Pb2+ sites. The organic cation (CMBA+) bound to uncoordinated Pb2+ ions and residual PbI2, while the chlorine anion (Cl) filled iodine vacancies in the perovskite lattice, thereby forming a high-quality 2D/3D heterojunction structure. The CMBACl treatment effectively passivated surface defects in the perovskite films, prolonged charge carrier lifetimes, and enhanced the operational stability of the photovoltaic devices. Additionally, the hybrid 2D/3D architecture also improved energy band matching, thereby boosting charge transfer performance. The optimized flexible devices demonstrated a PCE of 23.15%, while retaining over 82% of their initial efficiency after enduring 5000 bending cycles under a 5 mm curvature radius (R = 5 mm). The unpackaged devices retained 94% of their initial efficiency after 1000 h under ambient conditions with a relative humidity (RH) of 45 ± 5%. This strategy offers practical guidelines for selecting interface passivation materials to enhance the efficiency and stability of F-PSCs. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

16 pages, 4820 KiB  
Article
Triple-Band Warm White-Light Emission from Type II Band-Aligned Aggregation-Induced Enhanced Emission Organic Cation-Incorporated Two-Dimensional Lead Iodide Perovskite
by Almaz R. Beisenbayev, Igor Ivanov-Prianichnikov, Anatoly Peshkov, Tangsulu Adil, Davit Hayrapetyan and Chang-Keun Lim
Int. J. Mol. Sci. 2025, 26(11), 5054; https://doi.org/10.3390/ijms26115054 - 24 May 2025
Viewed by 463
Abstract
Single-phase white-light-emitting materials, particularly 2D hybrid organic–inorganic halide perovskites, have garnered significant attention due to their strong electron–phonon interactions, which lead to broad luminescence and a notable Stokes shift resulting from self-trapped exciton recombination. However, 2D lead iodide perovskites typically display these characteristics [...] Read more.
Single-phase white-light-emitting materials, particularly 2D hybrid organic–inorganic halide perovskites, have garnered significant attention due to their strong electron–phonon interactions, which lead to broad luminescence and a notable Stokes shift resulting from self-trapped exciton recombination. However, 2D lead iodide perovskites typically display these characteristics poorly, restricting their efficiency as white-light emitters. This study presents a 2D lead iodide perovskite that incorporates a fluorinated π-conjugated aggregation-induced enhanced emission luminophore, FPCSA, as a bulky organic cation to create a quasi-2D perovskite. The FPCSA cation establishes a Type II energy level alignment with the lead iodide layer in the 2D perovskite, and a significant energy offset effectively suppresses charge transfer, enabling independent emission from both the organic and inorganic layers while facilitating self-trapped exciton formation. Under 315 nm UV excitation, this material demonstrates warm white-light emission with RGB triple-band photoluminescence stemming from the electronically decoupled FPCSA and perovskite layers. These findings provide a promising new method for designing efficient single-phase white-light-emitting materials for optoelectronic applications. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

12 pages, 3483 KiB  
Article
A Cascade Bilayer Electron-Transporting Layer for Enhanced Performance and Stability of Self-Powered All-Inorganic Perovskite Photodetectors
by Yu Hyun Kim and Jae Woong Jung
Molecules 2025, 30(10), 2195; https://doi.org/10.3390/molecules30102195 - 17 May 2025
Viewed by 484
Abstract
This study aims to enhance optoelectronic properties of all-inorganic perovskite photodetectors (PDs) by incorporating a bilayer electron transport layer (ETL). The bilayer ETL composed of SnO2 and ZnO effectively optimizes energy level alignment at the interface, facilitating efficient electron extraction from the [...] Read more.
This study aims to enhance optoelectronic properties of all-inorganic perovskite photodetectors (PDs) by incorporating a bilayer electron transport layer (ETL). The bilayer ETL composed of SnO2 and ZnO effectively optimizes energy level alignment at the interface, facilitating efficient electron extraction from the CsPbI2Br perovskite layer while suppressing shunt pathways. Additionally, it enhances interfacial properties by mitigating defects and minimizing dark current leakage, thereby improving overall device performance. As a result, the bilayer ETL-based PDs exhibit broadband photoresponsivity in 300 to 700 nm with a responsivity of 0.45 A W−1 and a specific detectivity of 9 × 1013 Jones, outperforming the single-ETL devices. Additionally, they demonstrate stable cyclic photoresponsivity with fast response times (14 μs for turn-on and 32 μs for turn-off). The bilayer ETL also improves long-term reliability and thermal stability, highlighting its potential for high performance, reliability, and practical applications of all-inorganic perovskite PDs. Full article
(This article belongs to the Special Issue Chemistry Innovatives in Perovskite Based Materials)
Show Figures

Figure 1

13 pages, 2446 KiB  
Article
A Novel Pathogen Detection System Combining a Nucleic Acid Extraction Biochip with a Perovskite Photodetector
by Zhuo Gao, Pan Wang, Chang Chen, Jian Duan, Shilun Feng and Bo Liu
Micromachines 2025, 16(5), 581; https://doi.org/10.3390/mi16050581 - 15 May 2025
Viewed by 2677
Abstract
The increasing spread of infectious diseases caused by pathogenic microorganisms underscores the urgent need for highly sensitive, portable, and rapid nucleic acid detection technologies to facilitate early diagnosis and effective prevention. In this study, we developed a fluorescence-based nucleic acid detection platform that [...] Read more.
The increasing spread of infectious diseases caused by pathogenic microorganisms underscores the urgent need for highly sensitive, portable, and rapid nucleic acid detection technologies to facilitate early diagnosis and effective prevention. In this study, we developed a fluorescence-based nucleic acid detection platform that integrates a microfluidic chip with an all-inorganic perovskite photodetector. The system enables integrated operation of nucleic acid extraction, purification, and amplification on a microfluidic chip, combined with real-time electrical signal readout via a CsPbBr3 perovskite photodetector. Experimental results indicate that the photodetector exhibits high responsivity at 530 nm, aligning well with the primary emission peak of FAM. The system demonstrates a strong linear correlation between photocurrent and FAM concentration over the range of 0.01–0.4 μM (R2 = 0.928), with a low detection limit of 0.01 μM and excellent reproducibility across multiple measurements. Validation using FAM standard solutions and Escherichia coli samples confirmed the system’s reliable linearity and signal stability. This platform demonstrates strong potential for rapid pathogen screening and point-of-care diagnostic applications. Full article
(This article belongs to the Special Issue Recent Progress of Lab-on-a-Chip Assays)
Show Figures

Figure 1

Back to TopTop