Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = inorganic liquid crystals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4395 KiB  
Article
Tuning the Properties of Dodecylpyridinium Metallosurfactants: The Role of Iron-Based Counterions
by Mirta Rubčić, Mirta Herak, Ana Ivančić, Edi Topić, Emma Beriša, Ivana Tartaro Bujak and Darija Domazet Jurašin
Int. J. Mol. Sci. 2025, 26(6), 2540; https://doi.org/10.3390/ijms26062540 - 12 Mar 2025
Cited by 1 | Viewed by 708
Abstract
Metallosurfactants combine the unique soft-matter properties of surfactants with magnetic functionalities of metal ions. The inclusion of iron-based species, in particular, can further boost the functionality of the material, owing to iron’s ability to adopt multiple oxidation states and form both high-spin and [...] Read more.
Metallosurfactants combine the unique soft-matter properties of surfactants with magnetic functionalities of metal ions. The inclusion of iron-based species, in particular, can further boost the functionality of the material, owing to iron’s ability to adopt multiple oxidation states and form both high-spin and low-spin complexes. Motivated by this, a series of hybrid inorganic-organic dodecylpyridinium metallosurfactants with iron-containing counterions was developed. It was established that using either divalent or trivalent iron halides in a straightforward synthetic procedure yields C12Py-metallosurfactants with distinct complex counterions: (C12Py)2[Fe2X6O] and (C12Py)[FeX4] (X = Cl or Br), respectively. A combination of techniques—including conductometry, dynamic and electrophoretic light scattering, single-crystal and thermogravimetric analysis, and magnetic measurements—provided in-depth insights into their solution and solid-state properties. The presence of different iron-based counterions significantly influences the crystal structure (interdigitated vs. non-interdigitated bilayers), magnetic properties (paramagnetic vs. nonmagnetic singlet ground state), and self-assembly (vesicles vs. micelles) of the dodecylpyridinium series. To our knowledge, this is the first report on the synthesis and characterization of hybrid organic-inorganic metallosurfactants containing the μ-oxo-hexahalo-diferrate anion. Full article
(This article belongs to the Special Issue Hybrid Organic–Inorganic Materials: From Synthesis to Applications)
Show Figures

Figure 1

11 pages, 3987 KiB  
Article
Induced Chirality in CuO Nanostructures Using Amino Acid-Mediated Chemical Bath Deposition
by Lama Jabreen and Yitzhak Mastai
Crystals 2025, 15(3), 236; https://doi.org/10.3390/cryst15030236 - 28 Feb 2025
Viewed by 598
Abstract
This study explored the controlled formation of chiral copper(II) oxide (CuO) crystals using chiral amino acids as chirality-inducing agents. Utilizing chemical bath deposition (CBD) as the fabrication method, we achieved simple, reproducible synthesis suitable for industrial-scale applications. Our characterization of the induced chirality [...] Read more.
This study explored the controlled formation of chiral copper(II) oxide (CuO) crystals using chiral amino acids as chirality-inducing agents. Utilizing chemical bath deposition (CBD) as the fabrication method, we achieved simple, reproducible synthesis suitable for industrial-scale applications. Our characterization of the induced chirality through high-performance liquid chromatography (HPLC), circular dichroism (CD), and isothermal titration calorimetry (ITC) revealed distinctive chiral features. These findings not only advance our understanding of chirality control in inorganic nanostructures but also establish CBD as a viable technique for the large-scale production of chiral materials. Full article
(This article belongs to the Topic Advances in Molecular Symmetry and Chirality Research)
Show Figures

Figure 1

47 pages, 485 KiB  
Conference Report
Abstract of the 4th International Online Conference on Crystals
by Alessandra Toncelli
Chem. Proc. 2024, 15(1), 1; https://doi.org/10.3390/chemproc2024015001 - 26 Nov 2024
Viewed by 1408
Abstract
The 4th International Online Conference on Crystals (IOCC 2024), Part of the International Electronic Conference on Crystals series, was held online from 18 to 20 September 2024. This is a new and improved initiative based on the experience from the first, second, and [...] Read more.
The 4th International Online Conference on Crystals (IOCC 2024), Part of the International Electronic Conference on Crystals series, was held online from 18 to 20 September 2024. This is a new and improved initiative based on the experience from the first, second, and third International Electronic Conference on Crystals. The fourth conference was organized around seven topics and related themes: Liquid Crystals, Crystal Engineering, Inorganic Crystalline Materials, Organic Crystalline Materials, Hybrid and Composite Crystalline Materials, Materials for Energy Applications, and Crystalline Metals and Alloys. The scope of this online conference is to bring together well-known worldwide experts who are currently working on Crystals to provide an online forum for presenting and discussing new results. The present report will start by providing an overview of the keynote speeches and the main axes around which the communication sessions revolve before moving on to more detailed abstracts, presenting each of the topics presented during the IOCC 2024 conference. Full article
(This article belongs to the Proceedings of The 4th International Online Conference on Crystals)
9 pages, 1947 KiB  
Review
Circularly Polarized Luminescence in Composite Films: A Combination of Perovskites and Chiral Nematic Liquid Crystals
by Guang Chen, Lingtong Meng, Shuting Liu and Liang Peng
Molecules 2024, 29(22), 5347; https://doi.org/10.3390/molecules29225347 - 13 Nov 2024
Cited by 3 | Viewed by 1706
Abstract
Chiral inorganic nanomaterial-based circularly polarized luminescence (CPL) materials have shown substantial promise in multiple research areas. However, the luminescence dissymmetry factor (glum), a key parameter for CPL, is far from satisfactory, especially for inorganic molecules with high luminescent quantum efficiency [...] Read more.
Chiral inorganic nanomaterial-based circularly polarized luminescence (CPL) materials have shown substantial promise in multiple research areas. However, the luminescence dissymmetry factor (glum), a key parameter for CPL, is far from satisfactory, especially for inorganic molecules with high luminescent quantum efficiency and diverse shapes and sizes. Obtaining large glum values is an urgent and crucial task in the field of CPL research. Among different approaches, the combination of inorganic nanomaterials and chiral nematic liquid crystals (N*-LCs) offers distinct advantages in achieving high glum values due to their distinctive optical characteristics and remarkable versatility. This concise review systematically investigates the recent advancements in CPL-active materials consisting of perovskites and N*-LCs. It elaborates on their preparation techniques, optical characteristics, and potential applications. Additionally, a brief outlook on their future development is offered. It is expected that this combination will assume an increasingly significant role in the CPL research field and attract more researchers to explore this area. Full article
(This article belongs to the Special Issue Stimuli-Responsive Crystals Materials and Polymers)
Show Figures

Figure 1

13 pages, 2973 KiB  
Article
Liquid Crystal Ordering in Densely Packed Colloidal Suspensions of Highly Anisotropic Monolayer Nanosheets
by Yue Shi, Min Shuai, Yongqiang Shen, Dong Chen, Joseph E. Maclennan, Zhengdong Cheng and Noel A. Clark
Crystals 2024, 14(11), 963; https://doi.org/10.3390/cryst14110963 - 6 Nov 2024
Viewed by 1073
Abstract
Monolayer nanosheets of zirconium phosphate in aqueous suspension exhibit short-range repulsion and long-range attraction, producing, at overall volume fractions larger than about half a percent, phase separation into higher-concentration liquid crystal and lower-concentration isotropic regions. At high concentrations, this phase separation takes the [...] Read more.
Monolayer nanosheets of zirconium phosphate in aqueous suspension exhibit short-range repulsion and long-range attraction, producing, at overall volume fractions larger than about half a percent, phase separation into higher-concentration liquid crystal and lower-concentration isotropic regions. At high concentrations, this phase separation takes the form of an emulsion of condensed, liquid-crystalline droplets, which anneal to form lens-shaped tactoids. These tactoids provide an opportunity to study the liquid crystal ordering of inorganic nanosheets in the limit of large shape anisotropy (diameter/thickness~400) and high packing fraction (volume fraction 70%). The internal liquid crystal structure of the tactoids remains nematic even under conditions that would usually favor ordering into lamellar smectics. Local lamellar ordering is suggested by short-range, smectic-like layer correlations, but a full transition into a smectic phase appears to be inhibited by the nanosheet edges, which act as a perturbative population of dislocation loops in the system of layers. Under conditions of thermal equilibrium, the nanoplates organize positionally to enable bend deformation of the director, a hallmark of the nematic phase and its principal distinction from the smectic, where bend must be expelled. Full article
Show Figures

Figure 1

10 pages, 3051 KiB  
Article
A Novel Biomineralized Collagen Liquid Crystal Hydrogel Possessing Bone-like Nanostructures by Complete In Vitro Fabrication
by Xiaoting Li, Qiaoying Wang and Qingrong Wei
Gels 2024, 10(9), 550; https://doi.org/10.3390/gels10090550 - 25 Aug 2024
Viewed by 1759
Abstract
The microstructure of bone consists of nano-hydroxyapatite (nano-HA) crystals aligned within the interspaces of collagen fibrils. To emulate this unique microstructure of bone, this work applied two biomimetic techniques to obtain bone-like microstructures in vitro, that is, combining the construction of collagen liquid [...] Read more.
The microstructure of bone consists of nano-hydroxyapatite (nano-HA) crystals aligned within the interspaces of collagen fibrils. To emulate this unique microstructure of bone, this work applied two biomimetic techniques to obtain bone-like microstructures in vitro, that is, combining the construction of collagen liquid crystal hydrogel (CLCH) with the application of a polymer-induced liquid precursor (PILP) mineralization process. Upon the elevation of pH, the collagen macromolecules within the collagen liquid crystal (CLC) were activated to self-assemble into CLCH, whose fibrils packed into a long and dense fiber bundle in high orientation, emulating the dense-packed matrix of bone. We demonstrated that the fibrillar mineralization of CLCH, leading to a bone-like nanostructured inorganic material part, can be achieved using the PILP crystallization process to pre-mineralize the dense collagen substrates of CLCH with CaCO3, immediately followed by the in situ mineral phase transformation of CaCO3 into weak-crystalline nano-HA. The combination of CLCH with the biomineralization process of PILP, together with the mineral phase transformation, achieved the in vitro simulation of the nanostructures of both the organic extracellular matrix (ECM) and inorganic ECM of bone. This design would constitute a novel idea for the design of three-dimension biomimetic bone-like material blocks for clinical needs. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Figure 1

16 pages, 7271 KiB  
Article
The Development of a Novel Nitrate Portable Measurement System Based on a UV Paired Diode–Photodiode
by Samuel Fernandes, Mouhaydine Tlemçani, Daniele Bortoli, Manuel Feliciano and Maria Elmina Lopes
Sensors 2024, 24(16), 5367; https://doi.org/10.3390/s24165367 - 20 Aug 2024
Viewed by 1594
Abstract
Nitrates can cause severe ecological imbalances in aquatic ecosystems, with considerable consequences for human health. Therefore, monitoring this inorganic form of nitrogen is essential for any water quality management structure. This research was conducted to develop a novel Nitrate Portable Measurement System (NPMS) [...] Read more.
Nitrates can cause severe ecological imbalances in aquatic ecosystems, with considerable consequences for human health. Therefore, monitoring this inorganic form of nitrogen is essential for any water quality management structure. This research was conducted to develop a novel Nitrate Portable Measurement System (NPMS) to monitor nitrate concentrations in water samples. NPMS is a reagent-free ultraviolet system developed using low-cost electronic components. Its operation principle is based on the Beer–Lambert law for measuring nitrate concentrations in water samples through light absorption in the spectral range of 295–315 nm. The system is equipped with a ready-to-use ultraviolet sensor, light emission diode (LED), op-amp, microcontroller, liquid crystal display, quartz cuvette, temperature sensor, and battery. All the components are assembled in a 3D-printed enclosure box, which allows a very compact self-contained equipment with high portability, enabling field and near-real-time measurements. The proposed methodology and the developed instrument were used to analyze multiple nitrate standard solutions. The performance was evaluated in comparison to the Nicolet Evolution 300, a classical UV–Vis spectrophotometer. The results demonstrate a strong correlation between the retrieved measurements by both instruments within the investigated spectral band and for concentrations above 5 mg NO3/L. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

14 pages, 2152 KiB  
Article
Experimental and Modeling Study on Methane Hydrate Equilibrium Conditions in the Presence of Inorganic Salts
by Qiang Fu, Mingqiang Chen, Weixin Pang, Zhen Xu, Zengqi Liu, Huiyun Wen and Xin Lei
Molecules 2024, 29(15), 3702; https://doi.org/10.3390/molecules29153702 - 5 Aug 2024
Cited by 2 | Viewed by 1255
Abstract
The aim of this study was to determine the influence of four inorganic salts, KCl, NaCl, KBr and NaBr, on the thermodynamic conditions of methane hydrate formation. In order to achieve this, the vapor–liquid water-hydrate (VLWH) equilibrium conditions of methane (CH [...] Read more.
The aim of this study was to determine the influence of four inorganic salts, KCl, NaCl, KBr and NaBr, on the thermodynamic conditions of methane hydrate formation. In order to achieve this, the vapor–liquid water-hydrate (VLWH) equilibrium conditions of methane (CH4) hydrate were measured in the temperature range of 274.15 K–282.15 K by the isothermal pressure search method. The results demonstrated that, in comparison with deionized water, the four inorganic salts exhibited a significant thermodynamic inhibition on CH4 hydrate. Furthermore, the inhibitory effect of Na+ on methane hydrate is more pronounced than that of K+, where there is no discernible difference between Cl and Br. The dissociation enthalpy (Hdiss) of CH4 hydrate in the four inorganic salt solutions is comparable to that of deionized water, indicating that the inorganic salt does not participate in the formation of hydrate crystals. The Chen–Guo hydrate model and N–NRTL–NRF activity model were employed to forecast the equilibrium conditions of CH4 hydrate in electrolyte solution. The absolute relative deviation (AARD) between the predicted and experimental values were 1.24%, 1.08%, 1.18% and 1.21%, respectively. The model demonstrated satisfactory universality and accuracy. This study presents a novel approach to elucidating the mechanism and model prediction of inorganic salt inhibition of hydrate. Full article
Show Figures

Graphical abstract

17 pages, 5227 KiB  
Article
Experimental Study on Preparation of Inorganic Fibers from Circulating Fluidized Bed Boilers Ash
by Qingjia Wang, Tuo Zhou, Zhiao Li, Yi Ding, Qiang Song, Man Zhang, Nan Hu and Hairui Yang
Materials 2024, 17(15), 3800; https://doi.org/10.3390/ma17153800 - 1 Aug 2024
Cited by 3 | Viewed by 949
Abstract
The ash generated by Circulating Fluidized Bed (CFB) boilers is featured by its looseness and porosity, low content of glassy substances, and high contents of calcium (Ca) and sulfur (S), thus resulting in a low comprehensive utilization rate. Currently, the predominant treatment approach [...] Read more.
The ash generated by Circulating Fluidized Bed (CFB) boilers is featured by its looseness and porosity, low content of glassy substances, and high contents of calcium (Ca) and sulfur (S), thus resulting in a low comprehensive utilization rate. Currently, the predominant treatment approach for CFB ash and slag is stacking, which may give rise to issues like environmental pollution. In this paper, CFB ash (with a CaO content of 7.64% and an SO3 content of 1.77%) was used as the main raw material. The high-temperature melting characteristics, viscosity–temperature characteristics, and initial crystallization temperature of samples with different acidity coefficients were investigated. The final drawing temperature range of the samples was determined, and mechanical property tests were conducted on the prepared inorganic fibers. The results show that the addition of dolomite powder has a significant reducing effect on the complete liquid phase temperature. The final drawing temperatures of the samples with different acidity coefficients range as follows: 1270–1318 °C; 1272–1351 °C; 1250–1372 °C; 1280–1380 °C; 1300–1382 °C; and 1310–1384 °C. The drawing temperature of this system is slightly lower than that of basalt fibers. Based on the test results of the mechanical properties of inorganic fibers, the Young’s modulus of the inorganic fibers prepared through the experiment lies between 55 GPa and 74 GPa, which basically meets the performance requirements of inorganic fibers. Consequently, the method of preparing inorganic fibers by using CFB ash and dolomite powder is entirely feasible. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

29 pages, 3055 KiB  
Review
Liquid Nanoclay: Synthesis and Applications to Transform an Arid Desert into Fertile Land
by Kamel A. Abd-Elsalam, Mirza Abid Mehmood, Muhammad Ashfaq, Toka E. Abdelkhalek, Rawan K. Hassan and Mythili Ravichandran
Soil Syst. 2024, 8(3), 73; https://doi.org/10.3390/soilsystems8030073 - 27 Jun 2024
Cited by 2 | Viewed by 5254
Abstract
Nanoclay, a processed clay, is utilized in numerous high-performance cement nanocomposites. This clay consists of minerals such as kaolinite, illite, chlorite, and smectite, which are the primary components of raw clay materials formed in the presence of water. In addition to silica, alumina, [...] Read more.
Nanoclay, a processed clay, is utilized in numerous high-performance cement nanocomposites. This clay consists of minerals such as kaolinite, illite, chlorite, and smectite, which are the primary components of raw clay materials formed in the presence of water. In addition to silica, alumina, and water, it also contains various concentrations of inorganic ions like Mg2+, Na+, and Ca2+. These are categorized as hydrous phyllosilicates and can be located either in interlayer spaces or on the planetary surface. Clay minerals are distinguished by their two-dimensional sheets and tetrahedral (SiO4) and octahedral (Al2O3) crystal structures. Different clay minerals are classified based on the presence of tetrahedral and octahedral layers in their structure. These include kaolinite, which has a 1:1 ratio of tetrahedral to octahedral layers, the smectite group of clay minerals and chlorite with a 2:1 ratio. Clay minerals are unique due to their small size, distinct crystal structure, and properties such as high cation exchange capacity, adsorption capacity, specific surface area, and swelling behavior. These characteristics are discussed in this review. The use of nanoclays as nanocarriers for fertilizers boasts a diverse array of materials available in both anionic and cationic variations. Layered double hydroxides (LDH) possess a distinctive capacity for exchanging anions, making them suitable for facilitating the transport of borate, phosphate, and nitrate ions. Liquid nanoclays are used extensively in agriculture, specifically as fertilizers, insecticides, herbicides, and nutrients. These novel nanomaterials have numerous benefits, including improved nutrient use, controlled nutrient release, targeted nutrient delivery, and increased agricultural productivity. Arid regions face distinct challenges like limited water availability, poor soil quality, and reduced productivity. The addition of liquid nanoclay to sandy soil offers a range of benefits that contribute to improved soil quality and environmental sustainability. Liquid nanoclay is being proposed for water management in arid regions, which will necessitate a detailed examination of soil, water availability, and hydrological conditions. Small-scale trial initiatives, engagement with local governments, and regular monitoring are required to fully comprehend its benefits and drawbacks. These developments would increase the practicality and effectiveness of using liquid nanoclay in desert agriculture. Full article
Show Figures

Graphical abstract

15 pages, 14023 KiB  
Article
Modification of the Dielectric and Thermal Properties of Organic Frameworks Based on Nonterminal Epoxy Liquid Crystal with Silicon Dioxide and Titanium Dioxide
by Lidia Okrasa, Magdalena Włodarska, Maciej Kisiel and Beata Mossety-Leszczak
Polymers 2024, 16(10), 1320; https://doi.org/10.3390/polym16101320 - 8 May 2024
Cited by 1 | Viewed by 1288
Abstract
A nonterminal liquid crystal epoxy monomer is used to create an epoxy–amine network with a typical diamine 4,4′diaminodiphenylmethane. The plain matrix is compared to matrices modified with inorganic fillers: TiO2 or SiO2. Conditions of the curing reaction and glass transition [...] Read more.
A nonterminal liquid crystal epoxy monomer is used to create an epoxy–amine network with a typical diamine 4,4′diaminodiphenylmethane. The plain matrix is compared to matrices modified with inorganic fillers: TiO2 or SiO2. Conditions of the curing reaction and glass transition temperatures in the cured products are determined through differential scanning calorimetry and broadband dielectric spectroscopy. The curing process is also followed through optical and electrical observations. The dielectric response of all investigated networks reveals a segmental α-process related to structural reorientation (connected to the glass transition). In all products, a similar process associated with molecular motions of polar groups also appears. The matrix modified with TiO2 exhibits two secondary relaxation processes (β and γ). Similar processes were observed in the pure monomer. An advantage of the network with the TiO2 filler is a shorter time or lower temperature required for optimal curing conditions. The physical properties of cured matrices depend on the presence of a nematic phase in the monomer and nonterminal functional groups in the aliphatic chains. In effect, such cured matrices can have more flexibility and internal order than classical resins. Additional modifiers used in this work shift the glass transition above room temperature and influence the fragility index in both cases. Full article
Show Figures

Figure 1

11 pages, 5970 KiB  
Article
Preparation of Two-Dimensional Polyaniline Sheets with High Crystallinity via Surfactant Interface Self-Assembly and Their Encryption Application
by Zhiwei Li
Polymers 2024, 16(9), 1285; https://doi.org/10.3390/polym16091285 - 3 May 2024
Cited by 1 | Viewed by 2038
Abstract
In recent years in the field of traditional materials, traditional polyaniline has faced a number of scientific problems such as an irregular morphology, high difficulty in crystallization, and difficulty in forming an ordered structure compared to the corresponding inorganic materials. In response to [...] Read more.
In recent years in the field of traditional materials, traditional polyaniline has faced a number of scientific problems such as an irregular morphology, high difficulty in crystallization, and difficulty in forming an ordered structure compared to the corresponding inorganic materials. In response to these urgent issues, this study determines how to prepare a highly ordered structure in polyaniline formed at the gas-liquid interface. By dynamically arranging aniline monomers into a highly ordered structure with sodium dodecyl benzene sulfonate (SDBS) surfactant, aniline polymerization is initiated at the gas-liquid interface, resulting in two-dimensional polyaniline crystal sheets with a highly ordered structure. By elucidating the microstructure, crystallization process, and molecular structure of the two-dimensional polyaniline crystal sheets, the practical application of polyaniline as an encryption label in the field of electrochromism has been further expanded, thus making polyaniline widely used in the field of information encryption. Therefore, the synthesis of flaky polyaniline crystal sheets has a role in scientific research and practical application, which will arouse the interest and exploration of researchers. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

13 pages, 4604 KiB  
Article
Near-Infrared Reflective Polymer Films Based on UV-327-Doped Zinc Oxide Nanoparticles
by Xiaohui Zhao, Yutong Liu, Yue Cao, Hui Cao, Huihui Wang, Zhou Yang, Dong Wang and Wanli He
Materials 2023, 16(24), 7660; https://doi.org/10.3390/ma16247660 - 15 Dec 2023
Cited by 3 | Viewed by 1661
Abstract
We prepared cholesteric liquid crystal (CLC) films with broadband reflective properties by admixing organic dye UV-327 into inorganic zinc oxide nanoparticles (ZnO NPs), utilizing the principle of pitch distribution from a large to a small gradient along the film thickness direction, leading to [...] Read more.
We prepared cholesteric liquid crystal (CLC) films with broadband reflective properties by admixing organic dye UV-327 into inorganic zinc oxide nanoparticles (ZnO NPs), utilizing the principle of pitch distribution from a large to a small gradient along the film thickness direction, leading to broadband reflection. ZnO NPs are poorly dispersed and easy to gather, but they do not decompose easily. The addition of UV-327 makes up for the above shortcomings. UV-327 is an organic compound with good compatibility and dispersion with liquid crystal systems. Therefore, we used the method of mixing two UV-absorbing dyes (UV-327 and ZnO NPs) to obtain CLC films. UV-absorbing dyes (UV-327 and ZnO NPs) made the liquid crystal films form a UV intensity gradient in the direction of thickness, prompting the polymerizable monomers to polymerize faster on the stronger side of the light, leading to the relative diffusion of chiral molecules and polymerizable monomers, forming the concentration gradient of chiral molecules in the direction of thickness. The pitch has a gradient distribution as the chiral concentration varies. Then, anchored by the polymer network, the pitch gradient distribution no longer changes. Broadened reflective bandwidth can reach up to 881 nm. Furthermore, the film covers the near-infrared wavelength band well, which can be applied to future smart windows or laser shielding for medical and military applications. It is also believed that this achievement will optimize the preparation technology of broadband reflective CLC films in the future. Full article
(This article belongs to the Special Issue Recent Progress of Materials for Smart Windows)
Show Figures

Figure 1

13 pages, 4084 KiB  
Article
Two-Step Performance Optimization of CsPbBr3 Perovskite Nanocrystals for Wide Color Gamut Displays
by Junhu Cai, Xiaogang Chen, Wenyan Zhang, Longwen Yang, Zexi Lin, Wenxiao Zhao, Yun Ye, Sheng Xu, Tailiang Guo and Enguo Chen
Photonics 2023, 10(10), 1113; https://doi.org/10.3390/photonics10101113 - 2 Oct 2023
Cited by 12 | Viewed by 2125
Abstract
Owing to their composition-tunable and narrow emissions and high photoluminescence quantum yield (PLQY), inorganic halide perovskite quantum dots (IPQDs) are a promising option for wide color gamut displays. However, their practical applications have been limited by their lattice structure instability and surface defect [...] Read more.
Owing to their composition-tunable and narrow emissions and high photoluminescence quantum yield (PLQY), inorganic halide perovskite quantum dots (IPQDs) are a promising option for wide color gamut displays. However, their practical applications have been limited by their lattice structure instability and surface defect states. Herein, CsPbBr3:KBF4@SiO2 with improved stability and optical properties is successfully synthesized with a two-step optimization of fluorine (F) anion doping and SiO2 in situ coating. Compared with bromide (Br), higher electronegativity and a smaller radius of F lead to stronger binding energy with Pb2+. Also, F anions can occupy surface Br vacancies. Then, benefiting from the acidic environment provided by BF4 hydrolysis, tetraethyl orthosilicate (TEOS) can be more easily hydrolyzed on the CsPbBr3:KBF4 surface to generate SiO2 coating, thus further passivating lattice defects and improving environmental stability. Importantly, the PLQY of CsPbBr3:KBF4@SiO2 achieves 85%, and the stability has been greatly improved compared with pure CsPbBr3. Finally, CsPbBr3:KBF4@SiO2/PDMS, CsPbI3/PDMS, and CsPbCl3/PDMS composites with narrow emissions are applied to replace traditional phosphors as color converters for direct-view light-emitting diode (LED) displays or liquid crystal display (LCD) backlights. The color gamut reaches 118.22% under the NTSC standard. Concerning the display field, it suggests likely applications in the future. Full article
(This article belongs to the Special Issue Liquid Crystals in Photonics)
Show Figures

Figure 1

25 pages, 4202 KiB  
Article
The “Periodic Table” of 1-methylbenzotriazole: Zinc(II) Complexes
by Christina Stamou, Eleftheria Barouni, John C. Plakatouras, Michael M. Sigalas, Catherine P. Raptopoulou, Vassilis Psycharis, Evangelos G. Bakalbassis and Spyros P. Perlepes
Inorganics 2023, 11(9), 356; https://doi.org/10.3390/inorganics11090356 - 29 Aug 2023
Cited by 2 | Viewed by 2305
Abstract
In an attempt to fill in the empty Zn position in the “Periodic Table” of 1-methylbenzotriazole (Mebta), reactions between Zn(II) sources and this ligand were carried out. The detailed synthetic studies provided access to complexes [ZnX2(Mebta)2] (X = Cl, [...] Read more.
In an attempt to fill in the empty Zn position in the “Periodic Table” of 1-methylbenzotriazole (Mebta), reactions between Zn(II) sources and this ligand were carried out. The detailed synthetic studies provided access to complexes [ZnX2(Mebta)2] (X = Cl, 1; X = Br, 3; X = I, 4), (MebtaH)2[ZnCl4] (2), tet-[Zn(NO3)2(Mebta)2] (5), oct-[Zn(NO3)2(Mebta)2] (6), and [Zn(Mebta)4](Y)2 [Y = ClO4, 7; Y = PF6, 8]. Solid-state thermal decomposition of 2 leads to 1 in quantitative yield. The structures of 3, 4, 5, 6, and 7 were determined by single-crystal crystallography. The structures of the remaining complexes were proposed based on spectroscopic evidence. In all compounds, Mebta behaves as monodentate ligand using the nitrogen of the position 3 as donor. Complexes 14, 7, and 8 are tetrahedral. Complexes 5 and 6 are isostoichiometric and their preparation in pure forms depends on the reaction conditions; in the former the ZnII atom has a tetrahedral geometry, whereas in the latter the metal ion is octahedral. This case of rare isomerism arises from the monodentate (in 5) vs. bidentate (in 6) coordination of the nitrato groups. Extensive π–π stacking interactions and non-classical H bonds build interesting 3D architectures in the structurally characterized complexes. The compounds were characterized by IR, far-IR, and Raman spectroscopies in the solid state, and the data were interpreted in terms of the structures (known or proposed) of the complexes and the coordination modes of the organic and inorganic ligands involved. The solid-state structures of the complexes are not retained in solution, as proven by NMR (1H, 13C[1H]) spectroscopy and molar conductivity data. The thermal decomposition study of 1 and 3 leads to stable intermediates with 1:1 stoichiometry, i.e., ZnX2(Mebta). Based on far-IR spectra, polymeric tetrahedral structures are possible with simultaneous presence of terminal and bridging X groups. Liquid-phase ab initio (MP2) and gas-phase DFT calculations, performed on Mebta and the nitrato complexes, respectively, shed light on the tendency of Mebta for N3-coordination, and the existence and relative stabilities of 5 and 6. Full article
(This article belongs to the Special Issue Current Advances in Coordination and Bioinorganic Chemistry)
Show Figures

Graphical abstract

Back to TopTop