Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (629)

Search Parameters:
Keywords = inorganic dispersants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2667 KB  
Article
Pressure Effects on Structure and Optical Properties in Sn(II)-Doped Cs2ZnCl4 All-Inorganic Zero-Dimensional Halide Perovskite
by Ting Geng, Mengqing Wang, Yuhan Qin, Zhuo Chen, Ao Zhang, Chunmei Zhang, Yongguang Li and Guanjun Xiao
Inorganics 2025, 13(8), 264; https://doi.org/10.3390/inorganics13080264 - 13 Aug 2025
Viewed by 269
Abstract
The toxicity of lead in conventional perovskites and their inherent chemical instability impede the commercialization of perovskite-based optoelectronics. Therefore, it is vital to develop chemically stable and environmentally friendly Pb-free alternatives. Recently, zero-dimensional (0D) all-inorganic Cs2ZnCl4 doped with Sn(II) has [...] Read more.
The toxicity of lead in conventional perovskites and their inherent chemical instability impede the commercialization of perovskite-based optoelectronics. Therefore, it is vital to develop chemically stable and environmentally friendly Pb-free alternatives. Recently, zero-dimensional (0D) all-inorganic Cs2ZnCl4 doped with Sn(II) has emerged as a promising candidate, exhibiting superior chemical robustness, minimal biotoxicity, and exceptional optoelectronic properties. In this work, pressure effects on structure and optical properties in Sn(II)-doped all-inorganic zero-dimensional halide perovskite are investigated both experimentally and theoretically. The structure–property relationship of Sn(II)-doped Cs2ZnCl4 is studied using high-pressure techniques. Piezochromism, accompanied by a remarkable change in emission color from orange/red and green to orange/yellow, was obtained from 1 atm to 22.5 GPa. Angle dispersive synchrotron X-ray diffraction (ADXRD) patterns and Raman spectra manifest that the material underwent an isostructural phase transition followed by amorphization with increasing pressure. The piezochromism and band gap engineering originate from the pressure-induced lattice compression and isostructural phase transition. This work advances STE emission studies and provides a robust strategy to boost emission efficiency and to construct multifunctional materials with piezochromism in environmentally friendly perovskites, thus facilitating diverse future applications. Full article
(This article belongs to the Special Issue New Semiconductor Materials for Energy Conversion)
Show Figures

Figure 1

18 pages, 3967 KB  
Article
A Thorough Investigation of the Mechanism of theAntagonistic Effect Between Phosphorus and Basic Oxide-Forming Minerals as Flame Retardants of PolymericComposite Coatings
by Evangelia Mitropoulou, Georgios N. Mathioudakis, Amaia Soto Beobide, Athanasios Porfyris, Vassilios Dracopoulos, Kerim Kılınç, Theodosios Chatzinikolaou, Deniz Savci, Cem Gunesoglu, Joannis Kallitsis and George A. Voyiatzis
Coatings 2025, 15(8), 886; https://doi.org/10.3390/coatings15080886 - 30 Jul 2025
Viewed by 378
Abstract
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising [...] Read more.
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising alternatives. Despite this, their combined use is neither straightforward nor guaranteed to be effective. This study scrutinizes the interactions between these two classes of flame retardants (FR) through a systematic analysis aimed at elucidating the antagonistic pathways that arise from their coexistence. Specifically, this study focuses on two inorganic fillers, mineral huntite and chemically precipitated magnesium hydroxide, both of which produce basic oxides upon thermal decomposition. These fillers were incorporated into a poly(butylene terephthalate) (PBT) matrix to be utilized as advanced-mattress FR coating fabric and were subjected to a series of flammability tests. The pyrolysis products of the prepared polymeric composite compounds were isolated and thoroughly characterized using a combination of analytical techniques. Thermogravimetric analysis (TGA) and differential thermogravimetric analysis (dTGA) were employed to monitor decomposition behavior, while the char residues collected at different pyrolysis stages were examined spectroscopically, using FTIR-ATR and Raman spectroscopy, to identify their structure and the chemical reactions that led to their formation. X-ray diffraction (XRD) experiments were also conducted to complement the spectroscopic findings in the chemical composition of the resulting char residues and to pinpoint the different species that constitute them. The morphological changes of the char’s structure were monitored by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). Finally, the Limited Oxygen Index (LOI) and UL94 (vertical sample mode) methods were used to assess the relative flammability of the samples, revealing a significant drop in flame retardancy when both types of flame retardants are present. This reduction is attributed to the neutralization of acidic phosphorus species by the basic oxides generated during the decomposition of the basic inorganic fillers, as confirmed by the characterization techniques employed. These findings underscore the challenge of combining organophosphorus with popular flame-retardant classes such as mineral or basic metal flame retardants, offering insight into a key difficulty in formulating next-generation halogen-free flame-retardant composite coatings. Full article
(This article belongs to the Special Issue Innovative Flame-Retardant Coatings for High-Performance Materials)
Show Figures

Figure 1

17 pages, 3944 KB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 469
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

16 pages, 3203 KB  
Article
Green Synthesised Carbon Nanodots Using the Maillard Reaction for the Rapid Detection of Elemental Selenium in Water and Carbonated Beverages
by Arjun Muthu, Duyen H. H. Nguyen, Aya Ferroudj, József Prokisch, Hassan El-Ramady, Chaima Neji and Áron Béni
Nanomaterials 2025, 15(15), 1161; https://doi.org/10.3390/nano15151161 - 28 Jul 2025
Viewed by 350
Abstract
Selenium (Se) is an essential trace element involved in antioxidant redox regulation, thyroid hormone metabolism, and cancer prevention. Among its different forms, elemental selenium (Se0), particularly at the nanoscale, has gained growing attention in food, feed, and biomedical applications due to [...] Read more.
Selenium (Se) is an essential trace element involved in antioxidant redox regulation, thyroid hormone metabolism, and cancer prevention. Among its different forms, elemental selenium (Se0), particularly at the nanoscale, has gained growing attention in food, feed, and biomedical applications due to its lower toxicity and higher bioavailability compared to inorganic selenium species. However, the detection of Se0 in real samples remains challenging as current analytical methods are time-consuming, labour-intensive, and often unsuitable for rapid analysis. In this study, we developed a method for rapidly measuring Se0 using carbon nanodots (CNDs) produced from the Maillard reaction between glucose and glycine. The fabricated CNDs were water-dispersible and strongly fluorescent, with an average particle size of 3.90 ± 1.36 nm. Comprehensive characterisation by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), fluorescence spectroscopy, and Raman spectroscopy confirmed their structural and optical properties. The CNDs were employed as fluorescent probes for the selective detection of Se0. The sensor showed a wide linear detection range (0–12.665 mmol L−1), with a low detection limit (LOD) of 0.381 mmol L−1 and a quantification limit (LOQ) of 0.465 mmol L−1. Validation with spiked real samples—including ultra-pure water, tap water, and soft drinks—yielded high recoveries (98.6–108.1%) and low relative standard deviations (<3.4%). These results highlight the potential of CNDs as a simple, reliable, and environmentally friendly sensing platform for trace-level Se0 detection in complex food and beverage matrices. Full article
Show Figures

Graphical abstract

29 pages, 42729 KB  
Article
Sustainable and Functional Polymeric Coating for Wood Preservation
by Ramona Marina Grigorescu, Rodica-Mariana Ion, Lorena Iancu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Elvira Alexandrescu, Madalina Elena David, Mariana Constantin, Iuliana Raut, Celina Maria Damian, Cristian-Andi Nicolae and Bogdan Trica
Coatings 2025, 15(8), 875; https://doi.org/10.3390/coatings15080875 - 25 Jul 2025
Viewed by 473
Abstract
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, [...] Read more.
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, the aim of the study was to obtain soda lignin particles, to graft ZnO nanoparticles onto their surface and to apply these hybrids, embedded into a biodegradable polymer matrix, as protection/preservation coating for oak wood. The organic–inorganic hybrids were characterized in terms of compositional, structural, thermal, and morphological properties that confirm the efficacy of soda lignin extraction and ZnO grafting by physical adsorption onto the decorating support and by weak interactions and coordination bonding between the components. The developed solution based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin-ZnO was applied to oak wood specimens by brushing, and the improvement in hydrophobicity (evaluated by water absorption that decreased by 48.8% more than wood, humidity tests where the treated sample had a humidity of 4.734% in comparison with 34.911% for control, and contact angle of 97.8° vs. 80.5° for untreated wood) and UV and fungal attack protection, while maintaining the color and aspect of specimens, was sustained. L.ZnO are well dispersed into the polymer matrix, ensuring a smooth and less porous wood surface. According to the results, the obtained wood coating using both a biodegradable polymeric matrix and a waste-based preservative can be applied for protection against weathering degradation factors, with limited water uptake and swelling of the wood, UV shielding, reduced wood discoloration and photo-degradation, effective protection against fungi, and esthetic quality. Full article
Show Figures

Figure 1

21 pages, 5914 KB  
Article
Simple Spin-Coating Preparation of Hydrogel and Nanoparticle-Loaded Hydrogel Thin Films
by Sara Calistri, Chiara Ciantelli, Sebastiano Cataldo, Vincenzo Cuzzola, Roberta Guzzinati, Simone Busi and Alberto Ubaldini
Coatings 2025, 15(7), 859; https://doi.org/10.3390/coatings15070859 - 21 Jul 2025
Viewed by 470
Abstract
Hydrogel films receive significant attention among researchers because they combine increased stimuli responsiveness and faster responses to the already excellent properties of their component materials. However, their preparation is complex and requires that many difficulties are overcome. The present work presents a new [...] Read more.
Hydrogel films receive significant attention among researchers because they combine increased stimuli responsiveness and faster responses to the already excellent properties of their component materials. However, their preparation is complex and requires that many difficulties are overcome. The present work presents a new study regarding the preparation of pure and nanoparticle-loaded alginate-based films by spin-coating. Two-microliter solutions of sodium alginate and calcium chloride with different concentrations were deposited on a glass substrate and subjected to rapid rotations of between 100 and 1000 RPM. Film formation can be achieved by optimizing the ratio between the viscosity of the solutions, depending on their concentrations and the rotation speed. When these conditions are in the right range, a homogeneous film is obtained, showing good adherence to the substrate and uniform thickness. Films containing silver nanoparticles were prepared, exploiting the reaction between sodium borohydride and silver nitrate. The two reagents were added to the sodium alginate and calcium nitrate solution, respectively. Their concentration is the driving force for the formation of a uniform film: particles of about 50 nm that are well-dispersed throughout the film are obtained using AgNO3 at 4 mM and NaBH4 at 2 or 0.2 mM; meanwhile, at higher concentrations, one can also obtain the precipitation of inorganic crystals. Full article
(This article belongs to the Section Thin Films)
Show Figures

Graphical abstract

36 pages, 6346 KB  
Article
Thermoresponsive Effects in Droplet Size Distribution, Chemical Composition, and Antibacterial Effectivity in a Palmarosa (Cymbopogon martini) O/W Nanoemulsion
by Erick Sánchez-Gaitán, Ramón Rivero-Aranda, Vianney González-López and Francisco Delgado
Colloids Interfaces 2025, 9(4), 47; https://doi.org/10.3390/colloids9040047 - 19 Jul 2025
Viewed by 316
Abstract
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with [...] Read more.
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with organic and inorganic materials during application. In topical applications, not only is cell contact increased, but also permeability in the cell membrane. Nanoemulsions typically achieve kinetic stability rather than thermodynamic stability, so their commercial application requires reasonable resistance to flocculation and coalescence, which can be affected by temperature changes. Therefore, their thermoresponsive characterisation becomes relevant. In this work, we analyse this response in an O/W nanoemulsion of Palmarosa for antibacterial purposes that has already shown stability for one year at controlled room temperature. We now study hysteresis processes and the behaviour of the statistical distribution in droplet size by Dynamic Light Scattering, obtaining remarkable stability under temperature changes up to 50 °C. This includes a maintained chemical composition observed using Fourier Transform Infrared Spectroscopy and the preservation of antibacterial properties analysed through optical density tests on cultures and the Spread-Plate technique for bacteria colony counting. We obtain practically closed hysteresis curves for some tracers of droplet size distributions through controlled thermal cycles between 10 °C and 50 °C, exhibiting a non-linear behaviour in their distribution. In general, the results show notable physical, chemical, and antibacterial stability, suitable for commercial applications. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Graphical abstract

18 pages, 3353 KB  
Article
An Evaluation of a Novel Air Pollution Abatement System for Ammonia Emissions Reduction in a UK Livestock Building
by Andrea Pacino, Antonino La Rocca, Donata Magrin and Fabio Galatioto
Atmosphere 2025, 16(7), 869; https://doi.org/10.3390/atmos16070869 - 17 Jul 2025
Viewed by 448
Abstract
Agriculture and animal feeding operations are responsible for 87% of ammonia emissions in the UK. Controlling NH3 concentrations below 20 ppm is crucial to preserve workers’ and livestock’s well-being. Therefore, ammonia control systems are required for maintaining adequate air quality in livestock [...] Read more.
Agriculture and animal feeding operations are responsible for 87% of ammonia emissions in the UK. Controlling NH3 concentrations below 20 ppm is crucial to preserve workers’ and livestock’s well-being. Therefore, ammonia control systems are required for maintaining adequate air quality in livestock facilities. This study assessed the ammonia reduction efficiency of a novel air pollution abatement (APA) system used in a pig farm building. The monitoring duration was 11 weeks. The results were compared with the baseline from a previous pig cycle during the same time of year in 2023. A ventilation-controlled room was monitored during a two-phase campaign, and the actual ammonia concentrations were measured at different locations within the site and at the inlet/outlet of the APA system. A 98% ammonia reduction was achieved at the APA outlet through NH3 absorption in tap water. Ion chromatography analyses of farm water samples revealed NH3 concentrations of up to 530 ppm within 83 days of APA operation. Further scanning electron microscopy and energy-dispersive X-ray inspections revealed the presence of salts and organic/inorganic matter in the solid residues. This research can contribute to meeting current ammonia regulations (NECRs), also by reusing the process water as a potential nitrogen fertiliser in agriculture. Full article
(This article belongs to the Special Issue Impacts of Anthropogenic Emissions on Air Quality)
Show Figures

Figure 1

16 pages, 4299 KB  
Article
Gas Barrier Properties of Organoclay-Reinforced Polyamide 6 Nanocomposite Liners for Type IV Hydrogen Storage Vessels
by Dávid István Kis, Pál Hansághy, Attila Bata, Nándor Nemestóthy, Péter Gerse, Ferenc Tajti and Eszter Kókai
Nanomaterials 2025, 15(14), 1101; https://doi.org/10.3390/nano15141101 - 16 Jul 2025
Viewed by 366
Abstract
This study investigates the hydrogen permeability of injection-molded polyamide 6 (PA6) nanocomposites reinforced with organo-modified montmorillonite (OMMT) at varying concentrations (1, 2.5, 5, and 10 wt. %) for potential use as Type IV composite-overwrapped pressure vessel (COPV) liners. While previous work examined their [...] Read more.
This study investigates the hydrogen permeability of injection-molded polyamide 6 (PA6) nanocomposites reinforced with organo-modified montmorillonite (OMMT) at varying concentrations (1, 2.5, 5, and 10 wt. %) for potential use as Type IV composite-overwrapped pressure vessel (COPV) liners. While previous work examined their mechanical properties, this study focuses on their crystallinity, morphology, and gas barrier performance. The precise inorganic content was determined using thermal gravimetry analysis (TGA), while differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and scanning electron microscopy (SEM) were used to characterize the structural and morphological changes induced by varying filler content. The results showed that generally higher OMMT concentrations promoted γ-phase formation but also led to increased agglomeration and reduced crystallinity. The PA6/OMMT-1 wt. % sample stood out with higher crystallinity, well-dispersed clay, and low hydrogen permeability. In contrast, the PA6/OMMT-2.5 and -5 wt. % samples showed increased permeability, which corresponded to WAXD and SEM evidence of agglomeration and DSC results indicating a lower degree of crystallinity. PA6/OMMT-10 wt. % showed the most-reduced hydrogen permeability compared to all other samples. This improvement, however, is attributed to a tortuous path effect created by the high filler loading rather than optimal crystallinity or dispersion. SEM images revealed significant OMMT agglomeration, and DSC analysis confirmed reduced crystallinity, indicating that despite the excellent barrier performance, the compromised microstructure may negatively impact mechanical reliability, showing PA6/OMMT-1 wt. % to be the most balanced candidate combining both mechanical integrity and hydrogen impermeability for Type IV COPV liners. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

16 pages, 765 KB  
Article
Evaluation of Microhardness in Conservative Root Dentin Treatment Techniques After Irrigation with Iron Oxide Nanoparticles Delivered with an External Magnetic Field
by Ehsaan S. Al-Mustwfi and Hussain F. Al-Huwaizi
Appl. Sci. 2025, 15(14), 7728; https://doi.org/10.3390/app15147728 - 10 Jul 2025
Viewed by 403
Abstract
Chemical endodontic irritants can lead to the demineralization of the inorganic tooth structure, its loss of integrity, microhardness changes, erosion, and an increased risk of fractures. We investigated the action of iron oxide nanomagnet particles (IONPs) as an irrigant solution for improving hardness [...] Read more.
Chemical endodontic irritants can lead to the demineralization of the inorganic tooth structure, its loss of integrity, microhardness changes, erosion, and an increased risk of fractures. We investigated the action of iron oxide nanomagnet particles (IONPs) as an irrigant solution for improving hardness and identifying the concentration of element ions in the root canal. There were six groups in total: a control group (no treatment) and experimental groups (UN: ultrasound agitation normal saline, UI: ultrasound agitation IONPs, MSI: magnetic field and endodontic needle with syringe agitation IONPs, MUI: magnetic field and ultrasound agitation IONPs, and EDTA: ethylenediaminetetraacetic acid). We hypothesized that IONPs with magnetic agitation would preserve microhardness better than EDTA. Vickers hardness testing was used to evaluate microhardness, which was then analyzed using energy-dispersive X-ray spectroscopy (EDS) to investigate the calcium/phosphorus ratio and the presence of iron. The IONP groups exhibit a higher VHN value than the EDTA group (p < 0.05). These results support our hypothesis, indicating that utilizing an IONP irrigant solution with an external magnetic field does not change microhardness but enhances it compared to the EDTA group, suggesting that employing an external magnetic field to deliver nanoparticles to the root canal wall does not affect the properties of the tooth structure compared to conventional instrumentation techniques, which lead to unnecessary loss of root structure. Full article
(This article belongs to the Special Issue Advanced Dental Biomaterials: Technologies and Applications)
Show Figures

Figure 1

15 pages, 2580 KB  
Article
Dual-Particle Synergy in Bio-Based Linseed Oil Pickering Emulsions: Optimising ZnO–Silica Networks for Greener Mineral Sunscreens
by Marina Barquero, Luis A. Trujillo-Cayado and Jenifer Santos
Materials 2025, 18(13), 3030; https://doi.org/10.3390/ma18133030 - 26 Jun 2025
Viewed by 442
Abstract
The development of mineral, biodegradable sunscreens that can offer both high photoprotection and long-term colloidal stability, while limiting synthetic additives, presents a significant challenge. A linseed oil nanoemulsion co-stabilised by ZnO nanoparticles and the eco-friendly surfactant Appyclean 6552 was formulated, and the effect [...] Read more.
The development of mineral, biodegradable sunscreens that can offer both high photoprotection and long-term colloidal stability, while limiting synthetic additives, presents a significant challenge. A linseed oil nanoemulsion co-stabilised by ZnO nanoparticles and the eco-friendly surfactant Appyclean 6552 was formulated, and the effect of incorporating fumed silica/alumina (Aerosil COK 84) was evaluated. A central composite response surface design was used to ascertain the oil/ZnO ratio that maximised the in vitro sun protection factor at sub-300 nm droplet size. The incorporation of Aerosil at concentrations ranging from 0 to 2 wt.% resulted in a transformation of the dispersion from a nearly Newtonian state to a weak-gel behaviour. This alteration was accompanied by a reduction in the Turbiscan Stability Index. Microscopic analysis has revealed a hierarchical particle architecture, in which ZnO forms Pickering shells around each droplet, while Aerosil aggregates bridge neighboring interfaces, creating a percolated silica scaffold that immobilises droplets and amplifies multiple UV scattering. The findings demonstrate that coupling interfacial Pickering armour with a continuous silica network yields a greener, physically robust mineral sunscreen and offers a transferable strategy for stabilising plant-oil emulsions containing inorganic actives. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

18 pages, 13193 KB  
Article
Tannins from Acacia mearnsii De Wild as a Sustainable Alternative for the Development of Latent Fingerprints
by Danielle Tapia Bueno, Amanda Fonseca Leitzke, Rayane Braga Martins, Daisa Hakbart Bonemann, Emanuel Gomes Bertizzolo, Gabrielly Quartieri Sejanes, Juliana Porciúncula da Silva, Lucas Minghini Gonçalves, Neftali Lenin Villarreal Carreno and Claudio Martin Pereira de Pereira
Organics 2025, 6(2), 27; https://doi.org/10.3390/org6020027 - 18 Jun 2025
Viewed by 598
Abstract
Papilloscopy, the science of human identification through fingerprints, has seen notable advancements in developing less toxic latent fingerprint developers (LFDs), especially from natural feedstock. Tannins, the second most abundant natural polyphenol, present a potential eco-friendly and cost-effective alternative, with no record of their [...] Read more.
Papilloscopy, the science of human identification through fingerprints, has seen notable advancements in developing less toxic latent fingerprint developers (LFDs), especially from natural feedstock. Tannins, the second most abundant natural polyphenol, present a potential eco-friendly and cost-effective alternative, with no record of their use as LFDs in the existing literature. This study characterized four types of tannins from black wattle, using Fourier Transform Infrared Spectroscopy, revealing key functional groups like C=O, C=C, and O–H. Ultraviolet–visible absorption spectra showed similar behaviors for all tannins, indicating phenolic and benzenoid structures. Energy-dispersive X-ray Spectroscopy identified high concentrations of chlorine, sodium, potassium, and sulfur, naturally found in biomass and soil. Finally, elements in significant concentrations, such as sodium, potassium, iron, zinc, and copper, were found through the incineration of the spent bark. On the basis of these findings, the tannin with the highest potential for LFD was selected. Combining this tannin with spent bark ash resulted in a composite whose performance was evaluated using different methods, including depletion studies, tests with various donors, and assessments on different surfaces. The results demonstrated that this combination significantly enhanced the material’s efficiency by integrating organic and inorganic properties, which improved visual contrast and powder adhesion. Full article
Show Figures

Figure 1

18 pages, 9843 KB  
Article
Study on the Surface Coating Techniques of Furniture in the Long’en Hall of Qing Changling Mausoleum
by Qirong Li, Fan Zhang, Wei Jia and Yifan Guo
Coatings 2025, 15(6), 712; https://doi.org/10.3390/coatings15060712 - 13 Jun 2025
Viewed by 694
Abstract
As a core structure within the Qing Changling Mausoleum, a UNESCO World Cultural Heritage site, Long’en Hall preserves a relatively complete set of Qing dynasty imperial lacquered furniture. These furnishings provide critical physical evidence for studying Qing dynasty sacrificial rituals and the craftsmanship [...] Read more.
As a core structure within the Qing Changling Mausoleum, a UNESCO World Cultural Heritage site, Long’en Hall preserves a relatively complete set of Qing dynasty imperial lacquered furniture. These furnishings provide critical physical evidence for studying Qing dynasty sacrificial rituals and the craftsmanship of court lacquerware. However, limited research has been conducted on the surface finishing techniques of such furnishings, posing challenges to their conservation and accurate restoration. This study focuses on representative furnishings from Long’en Hall—including an offering table, an incense pavilion, a throne, and a poke lamp—and employed a multi-method analytical approach comprising fluorescence microscopy (FM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared (FTIR) spectroscopy. The analysis was conducted on the following two levels: the lacquer layer structure and material composition. The results show that the furnishings in the Long’en Hall adopt the typical structure of “lacquer ash layer–color lacquer layer”, and the color lacquer layer is composed of raw lacquer, tung oil, animal glue, and other natural organic ingredients as film-forming materials, supplemented with inorganic mineral pigments such as red lead (Pb3O4) and Au metal, which constitutes a stable organic–inorganic composite structure with the lacquer ash layer. The multi-analysis results show a good complementary and cross-corroboration relationship, providing the necessary technical support and a theoretical reference for Qing dynasty palace lacquer wood furniture as cultural relics worthy of scientific protection and imitation. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

18 pages, 9850 KB  
Article
Structural Water Content in Pigment-Grade TiO2 Particles Coated with Al2O3 and SiO2, and Their Effect on Polypropylene Photodegradation
by Edgar F. Armendáriz-Alonso, Nancy Rivera-García, J. Antonio Moreno-Razo, Luis Octavio Meza-Espinoza, Miguel A. Waldo-Mendoza and Elías Pérez
Coatings 2025, 15(6), 685; https://doi.org/10.3390/coatings15060685 - 6 Jun 2025
Cited by 1 | Viewed by 677
Abstract
The influence of structural water in alumina (Al2O3) and silica (SiO2) coated titanium dioxide (TiO2) pigments on the photodegradation behavior of polypropylene (PP) composites was investigated. Four commercial rutile TiO2 pigments with varying surface [...] Read more.
The influence of structural water in alumina (Al2O3) and silica (SiO2) coated titanium dioxide (TiO2) pigments on the photodegradation behavior of polypropylene (PP) composites was investigated. Four commercial rutile TiO2 pigments with varying surface inorganic coatings were incorporated into PP plaques and subjected to accelerated UV weathering to simulate outdoor exposure. Photodegradation was assessed through gloss retention measurements, the carbonyl index (CI), and stress at break retention, while pigment morphology and composition were analyzed using transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Surface charge and water content were determined through the zeta potential (ζ), Karl Fischer titration, thermogravimetric analysis (TGA), and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The results showed that low-alumina coating alone led to the lowest photodegradation resistance, the highest CI, and the lowest stress at break retention. In contrast, increasing alumina content enhanced photostability, reaching its maximum for combined alumina–silica coatings, which mitigated electron–hole pair migration. PP composites with high alumina–silica-coated TiO2 exhibited higher gloss retention (36%) compared to low-alumina samples (21%). Furthermore, statistical analysis using ANOVA revealed significant differences in coating content and ζ potential among the pigment grades. These findings provide novel insights into oxide-water interactions and the impact of structural water on the photodegradation of polymer composites. Full article
Show Figures

Figure 1

30 pages, 3841 KB  
Article
Eco-Friendly Octylsilane-Modified Amino-Functional Silicone Coatings for a Durable Hybrid Organic–Inorganic Water-Repellent Textile Finish
by Mariam Hadhri, Claudio Colleoni, Agnese D’Agostino, Mohamed Erhaim, Raphael Palucci Rosa, Giuseppe Rosace and Valentina Trovato
Polymers 2025, 17(11), 1578; https://doi.org/10.3390/polym17111578 - 5 Jun 2025
Viewed by 1413
Abstract
The widespread phase-out of long-chain per- and poly-fluoroalkyl substances (PFASs) has created an urgent need for durable, fluorine-free water-repellent finishes that match the performance of legacy chemistries while minimising environmental impact. Here, the performance of an eco-friendly hybrid organic–inorganic treatment obtained by the [...] Read more.
The widespread phase-out of long-chain per- and poly-fluoroalkyl substances (PFASs) has created an urgent need for durable, fluorine-free water-repellent finishes that match the performance of legacy chemistries while minimising environmental impact. Here, the performance of an eco-friendly hybrid organic–inorganic treatment obtained by the in situ hydrolysis–condensation of triethoxy(octyl)silane (OS) in an amino-terminated polydimethylsiloxane (APT-PDMS) aqueous dispersion was investigated. The sol was applied to plain-weave cotton and polyester by a pad-dry-cure process and benchmarked against a commercial fluorinated finish. Morphology and chemistry were characterised by SEM–EDS, ATR-FTIR, and Raman spectroscopy; wettability was assessed by static contact angle, ISO 4920 spray ratings, and AATCC 193 water/alcohol repellence; and durability, handle, and breathability were evaluated through repeated laundering, bending stiffness, and water-vapour transmission rate measurements. The silica/PDMS coating formed a uniform, strongly adherent nanostructured layer conferring static contact angles of 130° on cotton and 145° on polyester. After five ISO 105-C10 wash cycles, the treated fabrics still displayed a spray rating of 5/5 and AATCC 193 grade 7, outperforming or equalling the fluorinated control, while causing ≤5% loss of water-vapour permeability and only a marginal increase in bending stiffness. These results demonstrate that the proposed one-step, water-borne sol–gel process affords a sustainable, industrially scalable route to high-performance, durable, water-repellent finishes for both natural and synthetic textiles, offering a viable alternative to PFAS-based chemistry for outdoor apparel and technical applications. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Graphical abstract

Back to TopTop