Evaluation of Microhardness in Conservative Root Dentin Treatment Techniques After Irrigation with Iron Oxide Nanoparticles Delivered with an External Magnetic Field
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Selection
2.3. Sample Preparation
2.4. Generation of the Magnetic Field to Agitate IONPs
2.5. Preparation of IONP Irrigation Solution
2.6. Sample Grouping
2.6.1. Control Group
- No instrumentation or irrigation treatment.
2.6.2. Five Experimental Groups
- UN group: an ultrasound device (Guilin Woodpecker U 600 Medical Instrument Co., Ltd., Guilin, China) used continuous irrigation to agitate normal saline irrigant solution.
- UI group: an ultrasound device was used to agitate the IONPs irrigant solution.
- MSI group: a magnetic field and an endodontic needle with a syringe were used to agitate the IONPs irrigant solution.
- MUI group: a magnetic field and an ultrasound device were used to agitate the IONPs irrigant solution.
- EDTA group: Irrigation with ethylenediaminetetraacetic acid solution (Meta BioMed’s, Cheongju-si, Chungcheong Buk-do, Korea) using a double-sided needle access gauge 30 at a concentration of 17% for one minute.
2.7. Vickers Hardness Testing Machine
2.8. EDS (Energy-Dispersive X-Ray Spectroscopy) Analysis
2.9. Statistical Analysis
3. Results
3.1. Analysis of the First Point at 50 µm Subsurface from the Border of the Root Canal Lumen
3.2. Analysis of the Second Point at 100 µm Subsurface from the Border of the Root Canal Lumen
3.3. Analysis of the Third Point at 1 mm Above the Midpoint of Each Third of the Root Section at the Lumen Surface
3.4. Analysis of the Fourth Point at 1 mm Below Midpoint of Each Third of the Root Section at the Lumen Surface
3.5. Assessment of the Concentrations of Calcium (Ca) and Phosphorus (P) Ratio and Concentration of Iron Ion by Energy-Dispersive X-Ray Spectroscopy (EDS)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | analysis of variance |
AWG | american wire gauge |
Ca | calcium |
Ca/P ratio | calcium phosphorus ratio |
DC | direct current |
EDS | energy-dispersive X-ray spectroscopy |
EDTA | ethylenediaminetetraacetic acid |
Fe | iron |
FE-SEM | field emission scan electron microscopy |
Fe3O4 | iron oxide |
Gauss | unit of magnetic field density |
IONP | iron oxide nanomagnet particles |
mL/min | milliliters per minute |
µm | micrometer |
mm | millimeter |
MNPs | magnetic nanoparticles |
MSI | magnetic field, endodontic needle, and IONP |
MUI | magnetic field, ultrasound device, and IONP |
NaOCl | sodium hypochlorite |
nm | nanometer |
P | phosphorus |
rpm | revolutions Per Minute. |
SPIONs | superparamagnetic iron oxide nanoparticles solution |
UN | ultrasound device and normal saline |
UI | ultrasound device and IONPs |
V | voltage |
VHN | vicker hardness number |
References
- Virdee, S.; Seymour, D.W.; Farnell, D.; Bhamra, G.; Bhakta, S. Efficacy of irrigant activation techniques in removing intracanal smear layer and debris from mature permanent teeth: A systematic review and meta-analysis. Int. Endod. J. 2018, 51, 605–621. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-E.; Bae, K.-S. Scanning electron microscopy study of the adhesion of Prevotella nigrescens to the dentin of prepared root canals. J. Endod. 2002, 28, 433–437. [Google Scholar] [CrossRef] [PubMed]
- de Paz, L.C. Redefining the persistent infection in root canals: Possible role of biofilm communities. J. Endod. 2007, 33, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Versiani, M.; Martins, J.; Ordinola-Zapata, R. Anatomical complexities affecting root canal preparation: A narrative review. Aust. Dent. J. 2023, 68, S5–S23. [Google Scholar] [CrossRef]
- Alves, F.R.F.; Squeira, F.S., Jr.; Carmo, F.L.; Dos Santos, A.L.; Peixoto, R.S.; Rôças, I.N.; Rosado, A.S. Bacterial community profiling of cryogenically ground samples from the apical and coronal root segments of teeth with apical periodontitis. J. Endod. 2009, 35, 486–492. [Google Scholar] [CrossRef]
- Prado, M.; Gusman, H.; Gomes, B.P.; Simão, R.A. Scanning electron microscopic investigation of the effectiveness of phosphoric acid in smear layer removal when compared with EDTA and citric acid. J. Endod. 2011, 37, 255–258. [Google Scholar] [CrossRef]
- Taneja, S.; Kumari, M.; Anand, S. Effect of QMix, peracetic acid and ethylenediaminetetraacetic acid on calcium loss and microhardness of root dentine. J. Conserv. Dent. Endod. 2014, 17, 155–158. [Google Scholar] [CrossRef]
- Hülsmann, M.; Hahn, W. Complications during root canal irrigation—Literature review and case reports. Int. Endod. J. 2000, 33, 186–193. [Google Scholar] [CrossRef]
- Qian, W.; Shen, Y.; Haapasalo, M. Quantitative analysis of the effect of irrigant solution sequences on dentin erosion. J. Endod. 2011, 37, 1437–1441. [Google Scholar] [CrossRef]
- Ozdemir, H.O.; Buzoglu, H.D.; Çalt, S.; Çehreli, Z.C.; Varol, E.; Temel, A. Chemical and ultramorphologic effects of ethylenediaminetetraacetic acid and sodium hypochlorite in young and old root canal dentin. J. Endod. 2012, 38, 204–208. [Google Scholar] [CrossRef]
- Saha, S.G.; Sharma, V.; Bharadwaj, A.; Shrivastava, P.; Saha, M.K.; Dubey, S.; Kala, S.; Gupta, S. Effectiveness of various endodontic irrigants on the micro-hardness of the root canal dentin: An in vitro study. J. Clin. Diagn. Res. JCDR 2017, 11, ZC01–ZC04. [Google Scholar] [CrossRef] [PubMed]
- Brüngel, R.; Rückert, J.; Müller, P.; Babick, F.; Friedrich, C.M.; Ghanem, A.; Hodoroaba, V.-D.; Mech, A.; Weigel, S.; Wohlleben, W.; et al. Nanodefiner framework and e-tool revisited according to the European commission’s nanomaterial definition 2022/C 229/01. Nanomaterials 2023, 13, 990. [Google Scholar] [CrossRef] [PubMed]
- El-Boubbou, K. Magnetic iron oxide nanoparticles as drug carriers: Clinical relevance. Nanomedicine 2018, 13, 953–971. [Google Scholar] [CrossRef]
- Bukhari, S.; Kim, D.; Liu, Y.; Karabucak, B.; Koo, H. Novel endodontic disinfection approach using catalytic nanoparticles. J. Endod. 2018, 44, 806–812. [Google Scholar] [CrossRef]
- Al-Bazaz, F.A.; Radhi, N.J.; Hubeatir, K.A. Sensitivity of Streptococcus mutans to selected nanoparticles (in vitro study). J. Baghdad Coll. Dent. 2018, 30, 69–75. [Google Scholar] [CrossRef]
- Garcia, I.M.; Balhaddad, A.A.; Lan, Y.; Simionato, A.; Ibrahim, M.S.; Weir, M.D.; Masri, R.; Xu, H.H.K.; Collares, F.M.; Melo, M.A.S. Magnetic motion of superparamagnetic iron oxide nanoparticles-loaded dental adhesives: Physicochemical/biological properties, and dentin bonding performance studied through the tooth pulpal pressure model. Acta Biomater. 2021, 134, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Sun, Y.; Wang, Z.; Ren, B.; Xu, H.H.K.; Peng, X.; Li, M.; Wang, S.; Wang, H.; Wu, Y.; et al. The preventive effect of a magnetic nanoparticle-modified root canal sealer on persistent apical periodontitis. Int. J. Mol. Sci. 2022, 23, 13137. [Google Scholar] [CrossRef]
- El-Boubbou, K. Magnetic iron oxide nanoparticles as drug carriers: Preparation, conjugation and delivery. Nanomedicine 2018, 13, 929–952. [Google Scholar] [CrossRef]
- Al-Badr, R.J.; Al-Huwaizi, H.F. Antimicrobial Evaluation for Novel Solution of Iron Oxide Nanoparticles Functionalized with Glycine and Coated by Chitosan as Root Canal Final Irrigation. Syst. Rev. Pharm. 2020, 11, 633–642. [Google Scholar]
- Teja, A.S.; Koh, P.-Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009, 55, 22–45. [Google Scholar] [CrossRef]
- Ari, H.; Erdemir, A.; Belli, S. Evaluation of the effect of endodontic irrigation solutions on the microhardness and the roughness of root canal dentin. J. Endod. 2004, 30, 792–795. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, N.; Lee, J.-S.; Liman, R.A.D.; Ruallo, J.M.S.; Villaflores, O.B.; Ger, T.-R.; Hsiao, C.-D. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules 2020, 25, 3159. [Google Scholar] [CrossRef]
- Xie, J.; Chen, K.; Huang, J.; Lee, S.; Wang, J.; Gao, J.; Li, X.; Chen, X. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 2010, 31, 3016–3022. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Zhang, H.; Yu, J.; Tong, S.; Tian, N.; Wang, Z.; Wang, X.; Su, X.; Chu, X.; Lin, J.; et al. Monodisperse Au–Fe2C Janus nanoparticles: An attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy. ACS Nano 2017, 11, 9239–9248. [Google Scholar] [CrossRef]
- Ren, Y.; Ren, Y.; Zhang, H.; Cheng, J.; Cai, X.; Liu, R.; Xia, G.; Wu, W.; Wang, S.; Ding, J.; et al. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance. Int. J. Nanomed. 2012, 7, 2261–2269. [Google Scholar]
- Vasir, J.K.; Labhasetwar, V. Targeted drug delivery in cancer therapy. Technol. Cancer Res. Treat. 2005, 4, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Karimzadeh, I.; Aghazadeh, M.; Doroudi, T.; Ganjali, M.R.; Kolivand, P.H. Superparamagnetic iron oxide (Fe3O4) nanoparticles coated with PEG/PEI for biomedical applications: A facile and scalable preparation route based on the cathodic electrochemical deposition method. Adv. Phys. Chem. 2017, 2017, 9437487. [Google Scholar] [CrossRef]
- Liu, G.; Men, P.; Harris, P.L.; Rolston, R.K.; Perry, G.; Smith, M.A. Nanoparticle iron chelators: A new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci. Lett. 2006, 406, 189–193. [Google Scholar] [CrossRef]
- Balhaddad, A.A.; Xia, Y.; Lan, Y.; Mokeem, L.; Ibrahim, M.S.; Weir, M.D.; Xu, H.H.K.; Melo, M.A.S. Magnetic-responsive photosensitizer nanoplatform for optimized inactivation of dental caries-related biofilms: Technology development and proof of principle. ACS Nano 2021, 15, 19888–19904. [Google Scholar] [CrossRef]
- Nosrati, H.; Salehiabar, M.; Attari, E.; Davaran, S.; Danafar, H.; Manjili, H.K. Green and one-pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation. Appl. Organomet. Chem. 2018, 32, e4069. [Google Scholar] [CrossRef]
- Ferraz, F.S.; López, J.L.; Lacerda, S.M.; Procópio, M.S.; Figueiredo, A.F.; Martins, E.M.; Guimarães, P.P.; Ladeira, L.O.; Kitten, G.T.; Dias, F.F.; et al. Biotechnological approach to induce human fibroblast apoptosis using superparamagnetic iron oxide nanoparticles. J. Inorg. Biochem. 2020, 206, 111017. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef] [PubMed]
- Gordon, T.; Perlstein, B.; Houbara, O.; Felner, I.; Banin, E.; Margel, S. Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf. A Physicochem. Eng. Asp. 2011, 374, 1–8. [Google Scholar] [CrossRef]
- Das, S.; Diyali, S.; Vinothini, G.; Perumalsamy, B.; Balakrishnan, G.; Ramasamy, T.; Dharumadurai, D.; Biswas, B. Synthesis, morphological analysis, antibacterial activity of iron oxide nanoparticles and the cytotoxic effect on lung cancer cell line. Heliyon 2020, 6, e04953. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 2011, 63, 24–46. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, H.; Gielis, J.; Acke, M.; Cools, F.; Cos, P.; Coenye, T. The role of reactive oxygen species in antibiotic-induced cell death in Burkholderia cepacia complex bacteria. PLoS ONE 2016, 11, e0159837. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.Y.; Lee, W.I.; Nelson, K.L.; Yoon, J.; Sedlak, D.L. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 2008, 42, 4927–4933. [Google Scholar] [CrossRef]
- Rodrigues, G.R.; López-Abarrategui, C.; Gómez, I.d.l.S.; Dias, S.C.; Otero-González, A.J.; Franco, O.L. Antimicrobial magnetic nanoparticles based-therapies for controlling infectious diseases. Int. J. Pharm. 2019, 555, 356–367. [Google Scholar] [CrossRef]
- Sahebi, S.; Mofidi, H.; Abbaszadegan, A.; Gholami, A.; Eskandari, F. The effect of nanobased irrigants on the root canal dentin microhardness: An ex-vivo study. BMC Oral Health 2023, 23, 581. [Google Scholar] [CrossRef]
- Unnikrishnan, M.; Mathai, V.; Sadasiva, K.; Santakumari, R.S.M.; Girish, S.; Shailajakumari, A.K. The Evaluation of Dentin Microhardness After Use of 17% EDTA, 17% EGTA, 10% Citric Acid, MTAD Used as Chelating Agents Combined With 2.5% Sodium Hypochlorite After Rotary Instrumentation: An: In Vitro: SEM Study. J. Pharm. Bioallied Sci. 2019, 11 (Suppl. 2), S156–S163. [Google Scholar] [CrossRef]
- Aksel, H.; Arslan, E.; Puralı, N.; Uyanık, Ö.; Nagaş, E. Effect of ultrasonic activation on dentinal tubule penetration of calcium silicate-based cements. Microsc. Res. Tech. 2019, 82, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Al Bazaz, F.; Radhi, N.J.; Hubeatir, K.A.; Alghazali, M.W. Effect of CO2 laser and selected nanoparticles on the microhardness of human dental enamel in vitro study. J. Med. Chem. Sci. 2023, 6, 1487–1497. [Google Scholar]
- Wu, K.; Liu, J.; Saha, R.; Peng, C.; Su, D.; Wang, Y.A.; Wang, J.-P. Investigation of commercial iron oxide nanoparticles: Structural and magnetic property characterization. ACS Omega 2021, 6, 6274–6283. [Google Scholar] [CrossRef]
- Aksu Demirezen, D.; Yılmaz, Ş.; Yılmaz, D.D.; Yıldız, Y.Ş. Green synthesis of iron oxide nanoparticles using Ceratonia siliqua L. aqueous extract: Improvement of colloidal stability by optimizing synthesis parameters, and evaluation of antibacterial activity against Gram-positive and Gram-negative bacteria. Int. J. Mater. Res. 2022, 113, 849–861. [Google Scholar] [CrossRef]
- Carlson, J.; Kawatra, S. Factors affecting zeta potential of iron oxides. Miner. Process. Extr. Metall. Rev. 2013, 34, 269–303. [Google Scholar] [CrossRef]
- Gutiérrez-Salazar, M.d.P.; Reyes-Gasga, J. Microhardness and chemical composition of human tooth. Mater. Res. 2003, 6, 367–373. [Google Scholar] [CrossRef]
- Salem-Milani, A.; Zand, V.; Asghari-Jafarabadi, M.; Zakeri-Milani, P.; Banifatemeh, A. The effect of protocol for disinfection of extracted teeth recommended by center for disease control (CDC) on microhardness of enamel and dentin. J. Clin. Exp. Dent. 2015, 7, e552. [Google Scholar]
- Zhang, Y.-R.; Du, W.; Zhou, X.-D.; Yu, H.-Y. Review of research on the mechanical properties of the human tooth. Int. J. Oral Sci. 2014, 6, 61–69. [Google Scholar] [CrossRef]
- Baldasso, F.E.R.; Roleto, L.; da Silva, V.D.; Morgental, R.D.; Kopper, P.M.P. Effect of final irrigation protocols on microhardness reduction and erosion of root canal dentin. Braz. Oral Res. 2017, 31, e40. [Google Scholar] [CrossRef]
- Saghiri, M.A.; Delvarani, A.; Mehrvarzfar, P.; Malganji, G.; Lotfi, M.; Dadresanfar, B.; Saghiri, A.M.; Dadvand, S. A study of the relation between erosion and microhardness of root canal dentin. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 108, e29–e34. [Google Scholar] [CrossRef]
- Zheng, J.; Nagashima, K.; Parmiter, D.; de la Cruz, J.; Patri, A.K. SEM X-ray microanalysis of nanoparticles present in tissue or cultured cell thin sections. Charact. Nanoparticles Intend. Drug Deliv. 2011, 697, 93–99. [Google Scholar]
- Ali, M.M.M. Testing Different Properties of A Light-Cured Denture Base Material After Addition of Silicon Oxide Nanofiller (An in Vitro Study). J. Baghdad Coll. Dent. 2017, 29, 47–54. [Google Scholar] [CrossRef]
- Bazrafshan, A.A.; Hajati, S.; Ghaedi, M.; Asfaram, A. Synthesis and characterization of antibacterial chromium iron oxide nanoparticle-loaded activated carbon for ultrasound-assisted wastewater treatment. Appl. Organomet. Chem. 2018, 32, e3981. [Google Scholar] [CrossRef]
- Haapasalo, M.; Shen, Y.; Wang, Z.; Gao, Y. Irrigation in endodontics. Dent. Clin. 2010, 54, 291–312. [Google Scholar] [CrossRef] [PubMed]
- Berutti, E.; Marini, R.; Angeretti, A. Penetration ability of different irrigants into dentinal tubules. J. Endod. 1997, 23, 725–727. [Google Scholar] [CrossRef]
- Haapasalo, M.; Ørstavik, D. In vitro infection and of dentinal tubules. J. Dent. Res. 1987, 66, 1375–1379. [Google Scholar] [CrossRef]
- Van der Sluis, L.W.M.; Versluis, M.; Wu, M.K.; Wesselink, P.R. Passive ultrasonic irrigation of the root canal: A review of the literature. Int. Endod. J. 2007, 40, 415–426. [Google Scholar] [CrossRef]
- Ghisi, A.C.; Kopper, P.M.P.; Baldasso, F.E.R.; Stürmer, C.P.; Rossi-Fedele, G.; Steier, L.; de Figueiredo, J.A.P.; Morgental, R.D.; Vier-Pelisser, F.V. Effect of super-oxidized water, sodium hypochlorite and EDTA on dentin microhardness. Braz. Dent. J. 2014, 25, 420–424. [Google Scholar] [CrossRef]
- Arends, J.; Ten Bosch, J. Demineralization and remineralization evaluation techniques. J. Dent. Res. 1992, 71, 924–928. [Google Scholar] [CrossRef]
- Gupta, C.; Singh, G.; Singh, M.P.; Agarwal, M.; Singh, K.S.; Mishra, A. Effect of QMix 2 in 1, BioPure MTAD and 17% Ethylenediaminetetraacetic Acid on Microhardness of Root Canal Dentin: An in vitro Study. Int. J. Prosthodont. Restor. Dent. 2017, 7, 17–20. [Google Scholar]
- Cameron, J. The use of ultrasonics in the removal of the smear layer: A scanning electron microscope study. J. Endod. 1983, 9, 289–292. [Google Scholar] [CrossRef]
- Koga, E.; NaimKassis, E.; Filho, I.; Linhares de Castro, F.P. EDTA as final irrigating gold standard in endodontics. Int. J. Recent Sci. Res. 2015, 6, 7818–7821. [Google Scholar]
- Paragliola, R.; Franco, V.; Fabiani, C.; Mazzoni, A.; Nato, F.; Tay, F.R.; Breschi, L.; Grandini, S. Final rinse optimization: Influence of different agitation protocols. J. Endod. 2010, 36, 282–285. [Google Scholar] [CrossRef]
- Alyahya, A.A.; Rekab, M.S.; O Al-Ostwani, A.E.; Abdo, A.; Kayed, K. The Effect of a Novel Silver-Citrate Root Canal Irrigation Solution (BioAkt), Ethylenediamine Tetraacetic Acid (EDTA), and Citric Acid on the Microhardness of Root Canal Dentin: A Comparative In Vitro Study. Cureus 2022, 14, e31255. [Google Scholar] [CrossRef]
- El-Banna, A.; Elmesellawy, M.Y.; Elsayed, M.A. Flexural strength and microhardness of human radicular dentin sticks after conditioning with different endodontic chelating agents. J. Conserv. Dent. Endod. 2023, 26, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Panighi, M.; G’Sell, C. Effect of the tooth microstructure on the shear bond strength of a dental composite. J. Biomed. Mater. Res. 1993, 27, 975–981. [Google Scholar] [CrossRef]
- Pashley, D.H.; Okabe, A.; Parham, P.L. The relationship between dentin microhardness and tubule density. Endod. Dent. Traumatol. 1985, 1 5, 176–179. [Google Scholar] [CrossRef]
- Carrigan, P.; Morse, D.R.; Furst, M.L.; Sinai, I.H. A scanning electron microscopic evaluation of human dentinal tubules according to age and location. J. Endod. 1984, 10, 359–363. [Google Scholar] [CrossRef] [PubMed]
- De-Deus, G.; Reis, C.; Fidel, S.; Fidel, R.A.S.; Paciornik, S. Longitudinal and quantitative evaluation of dentin demineralization when subjected to EDTA, EDTAC, and citric acid: A co-site digital optical microscopy study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008, 105, 391–397. [Google Scholar] [CrossRef]
- Ratih, D.N.; Enggardipta, R.A.; Kartikaningtyas, A.T. The effect of chitosan nanoparticle as a final irrigation solution on the smear layer removal, micro-hardness and surface roughness of root canal dentin. Open Dent. J. 2020, 14, 19–26. [Google Scholar] [CrossRef]
Section | Group | N | Mean | Std. Deviation | Minimum | Maximum | p-Value |
---|---|---|---|---|---|---|---|
Coronal | Control | 10 | 39.33 | 8.18 | 26.17 | 48.93 | 0.044 |
UN | 10 | 32.35 | 7.83 | 21.65 | 44.88 | ||
UI | 10 | 30.15 | 7.68 | 18.55 | 42.57 | ||
MSI | 10 | 28.97 | 7.90 | 10.60 | 37.98 | ||
MUI | 10 | 30.02 | 6.98 | 22.51 | 42.66 | ||
EDTA | 10 | 29.03 | 10.44 | 11.25 | 44.66 | ||
Middle | Control | 10 | 39.24 | 4.88 | 30.73 | 47.29 | 0.08 |
UN | 10 | 33.60 | 6.41 | 22.52 | 43.81 | ||
UI | 10 | 33.55 | 9.18 | 15.00 | 45.36 | ||
MSI | 10 | 33.60 | 6.40 | 20.05 | 43.81 | ||
MUI | 10 | 35.31 | 7.93 | 25.00 | 50.77 | ||
EDTA | 10 | 30.82 | 6.22 | 22.74 | 43.60 | ||
Apical | Control | 10 | 37.75 | 6.75 | 27.13 | 51.51 | 0.537 |
UN | 10 | 34.55 | 8.39 | 16.30 | 44.06 | ||
UI | 10 | 36.99 | 8.15 | 25.00 | 52.83 | ||
MSI | 10 | 35.69 | 6.19 | 26.56 | 41.78 | ||
MUI | 10 | 31.68 | 4.49 | 23.51 | 39.67 | ||
EDTA | 10 | 31.68 | 6.71 | 24.56 | 47.76 |
Section | Group | N | Mean | Std. Deviation | Minimum | Maximum | p-Value |
---|---|---|---|---|---|---|---|
Coronal | Control | 10 | 48.70 a | 6.62 | 39.38 | 60.20 | 0.002 |
UN | 10 | 43.02 | 6.08 | 30.87 | 52.72 | ||
UI | 10 | 47.30 | 15.78 | 32.07 | 89.82 | ||
MSI | 10 | 38.74 | 9.82 | 17.70 | 53.62 | ||
MUI | 10 | 42.60 | 6.47 | 31.16 | 52.05 | ||
EDTA | 10 | 31.91 a | 8.78 | 19.54 | 43.80 | ||
Middle | Control | 10 | 46.70 | 8.40 | 33.70 | 64.64 | 0.199 |
UN | 10 | 41.35 | 7.25 | 29.44 | 53.05 | ||
UI | 10 | 39.41 | 7.21 | 26.36 | 50.30 | ||
MSI | 10 | 41.18 | 8.60 | 29.84 | 57.33 | ||
MUI | 10 | 45.50 | 11.51 | 33.30 | 66.33 | ||
EDTA | 10 | 37.50 | 7.60 | 26.64 | 53.62 | ||
Apical | Control | 10 | 45.94 | 10.47 | 34.62 | 63.74 | 0.259 |
UN | 10 | 39.57 | 8.77 | 25.19 | 51.41 | ||
UI | 10 | 45.37 | 5.17 | 37.05 | 53.81 | ||
MSI | 10 | 44.00 | 8.03 | 32.97 | 59.77 | ||
MUI | 10 | 41.79 | 7.09 | 30.24 | 51.95 | ||
EDTA | 10 | 37.33 | 7.88 | 30.46 | 56.83 |
Section | Group | N | Mean | Std. Deviation | Minimum | Maximum | p-Value |
---|---|---|---|---|---|---|---|
Coronal | Control | 10 | 28.81 | 8.34 | 13.09 | 39.52 | 0.18 |
UN | 10 | 30.54 | 7.32 | 15.31 | 40.18 | ||
UI | 10 | 27.51 | 6.12 | 20.26 | 36.04 | ||
MSI | 10 | 28.98 | 6.17 | 18.67 | 41.44 | ||
MUI | 10 | 29.15 | 5.48 | 21.02 | 39.92 | ||
EDTA | 10 | 22.18 | 7.30 | 12.72 | 35.51 | ||
Middle | Control | 10 | 33.63 | 8.17 | 23.88 | 47.67 | 0.115 |
UN | 10 | 30.27 | 5.36 | 20.26 | 35.84 | ||
UI | 10 | 33.09 | 4.41 | 23.65 | 37.98 | ||
MSI | 10 | 32.23 | 6.42 | 24.75 | 46.84 | ||
MUI | 10 | 32.51 | 3.93 | 24.68 | 37.78 | ||
EDTA | 10 | 26.48 | 6.74 | 12.32 | 34.88 | ||
Apical | Control | 10 | 31.48 | 5.39 | 23.10 | 39.23 | 0.01 |
UN | 10 | 33.52 | 3.93 | 28.84 | 39.38 | ||
UI | 10 | 31.47 | 5.39 | 22.06 | 38.33 | ||
MSI | 10 | 35.73 a | 8.72 | 28.09 | 58.23 | ||
MUI | 10 | 36.39 b | 3.43 | 31.23 | 41.39 | ||
EDTA | 10 | 27.18 a,b | 3.92 | 21.44 | 32.97 |
Section | Group | N | Mean | Std. Deviation | Minimum | Maximum | p-Value |
---|---|---|---|---|---|---|---|
Coronal | Control | 10 | 29.07 | 8.89 | 14.67 | 40.18 | 0.467 |
UN | 10 | 28.84 | 6.41 | 14.82 | 37.92 | ||
UI | 10 | 30.87 | 8.01 | 23.15 | 48.24 | ||
MSI | 10 | 28.96 | 6.29 | 21.24 | 40.63 | ||
MUI | 10 | 29.30 | 5.83 | 23.71 | 38.60 | ||
EDTA | 10 | 23.79 | 8.66 | 12.32 | 35.71 | ||
Middle | Control | 10 | 33.16 a | 6.72 | 22.44 | 44.15 | 0.016 |
UN | 10 | 32.82 b | 5.84 | 19.71 | 39.67 | ||
UI | 10 | 31.75 | 6.18 | 21.79 | 39.65 | ||
MSI | 10 | 31.62 | 7.87 | 22.37 | 49.31 | ||
MUI | 10 | 33.51 c | 4.22 | 29.72 | 42.86 | ||
EDTA | 10 | 24.38 a,b,c | 5.93 | 15.68 | 32.80 | ||
Apical | Control | 10 | 30.41 | 6.18 | 22.43 | 39.75 | 0.154 |
UN | 10 | 31.59 | 5.46 | 24.47 | 39.09 | ||
UI | 10 | 31.82 | 5.77 | 21.88 | 37.92 | ||
MSI | 10 | 32.68 | 4.39 | 24.05 | 39.24 | ||
MUI | 10 | 35.02 | 6.43 | 24.29 | 46.54 | ||
EDTA | 10 | 27.73 | 4.33 | 21.05 | 34.27 |
Groups | Ca | P | Ca/P |
---|---|---|---|
Control | 26.32 | 9.43 | 2.79 |
UN | 26 | 8.6 | 3.02 |
UI | 27.33 | 10.47 | 2.61 |
MSI | 21.55 | 8.5 | 2.53 |
MUI | 28.5 | 11.4 | 2.5 |
EDTA | 22.85 | 10.28 | 2.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mustwfi, E.S.; Al-Huwaizi, H.F. Evaluation of Microhardness in Conservative Root Dentin Treatment Techniques After Irrigation with Iron Oxide Nanoparticles Delivered with an External Magnetic Field. Appl. Sci. 2025, 15, 7728. https://doi.org/10.3390/app15147728
Al-Mustwfi ES, Al-Huwaizi HF. Evaluation of Microhardness in Conservative Root Dentin Treatment Techniques After Irrigation with Iron Oxide Nanoparticles Delivered with an External Magnetic Field. Applied Sciences. 2025; 15(14):7728. https://doi.org/10.3390/app15147728
Chicago/Turabian StyleAl-Mustwfi, Ehsaan S., and Hussain F. Al-Huwaizi. 2025. "Evaluation of Microhardness in Conservative Root Dentin Treatment Techniques After Irrigation with Iron Oxide Nanoparticles Delivered with an External Magnetic Field" Applied Sciences 15, no. 14: 7728. https://doi.org/10.3390/app15147728
APA StyleAl-Mustwfi, E. S., & Al-Huwaizi, H. F. (2025). Evaluation of Microhardness in Conservative Root Dentin Treatment Techniques After Irrigation with Iron Oxide Nanoparticles Delivered with an External Magnetic Field. Applied Sciences, 15(14), 7728. https://doi.org/10.3390/app15147728