Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (594)

Search Parameters:
Keywords = innovative nanomaterials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8469 KiB  
Review
Electrochemical Biosensors for Oilseed Crops: Nanomaterial-Driven Detection and Smart Agriculture
by Youwei Jiang, Kun Wan, Aiting Chen, Nana Tang, Na Liu, Tao Zhang, Qijun Xie and Quanguo He
Foods 2025, 14(16), 2881; https://doi.org/10.3390/foods14162881 - 20 Aug 2025
Viewed by 276
Abstract
Electrochemical biosensors have emerged as a promising tool for the early detection of diseases in oilseed crops such as rapeseed, soybean, and peanut. These biosensors offer high sensitivity, portability, and cost-effectiveness. Timely diagnosis is critical, as many pathogens exhibit latent infection phases or [...] Read more.
Electrochemical biosensors have emerged as a promising tool for the early detection of diseases in oilseed crops such as rapeseed, soybean, and peanut. These biosensors offer high sensitivity, portability, and cost-effectiveness. Timely diagnosis is critical, as many pathogens exhibit latent infection phases or produce invisible metabolic toxins, leading to substantial yield losses before visible symptoms occur. This review summarises recent advances in the field of nanomaterial-assisted electrochemical sensing for oilseed crop diseases, with a particular focus on sensor mechanisms, interface engineering, and biomolecular recognition strategies. The following innovations are highlighted: nanostructured electrodes, aptamer- and antibody-based probes, and signal amplification techniques. These innovations have enabled the detection of pathogen DNA, enzymes, and toxins at ultra-low concentrations. Notwithstanding these achievements, challenges persist, including signal interference from plant matrices, limitations in device miniaturization, and the absence of standardized detection protocols. Future research should explore the potential of AI-assisted data interpretation, the use of biodegradable sensor materials, and the integration of these technologies with agricultural IoT networks. The aim of this integration is to enable real-time, field-deployable disease surveillance. The integration of laboratory innovations with field applications has been demonstrated to have significant potential in supporting sustainable agriculture and strengthening food security through intelligent crop health monitoring. Full article
Show Figures

Graphical abstract

25 pages, 365 KiB  
Review
Nanomaterials in COPD: Emerging Therapeutic and Diagnostic Frontiers with a Focus on Metal–Organic Frameworks
by Antonio Tiralosi, Manuela Cambria, Mariachiara Campanella, Vincenzo Paratore, Cristina Russo, Lucia Malaguarnera, Maria Stella Valle and Maria Teresa Cambria
Int. J. Mol. Sci. 2025, 26(16), 8025; https://doi.org/10.3390/ijms26168025 - 19 Aug 2025
Viewed by 217
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. Although conventional therapies are effective in controlling symptoms, they remain limited in altering the course of the disease and significantly reducing the chronic inflammation and oxidative stress [...] Read more.
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. Although conventional therapies are effective in controlling symptoms, they remain limited in altering the course of the disease and significantly reducing the chronic inflammation and oxidative stress underlying it. In this context, nanoparticles and nanomaterials are emerging as innovative tools capable of overcoming traditional pharmacological barriers due to their ability to deliver therapeutic oligonucleotides, antioxidants, and drugs in a targeted manner, modulate immune responses, and improve the bioavailability of active compounds. In particular, metal–organic frameworks (MOFs) stand out as ideal candidates for inhalable drug delivery in COPD, owing to their permanent crystalline porous structure, high specific surface area, and versatile chemical functionalization. This review provides the most recent preclinical evidence on the use of different nanoparticles in COPD, with a focus on the therapeutic and diagnostic potential of MOFs. It discusses their biocompatibility, drug loading strategies, and controlled release mechanisms and explores future perspectives for clinical translation. Full article
(This article belongs to the Section Molecular Nanoscience)
26 pages, 4059 KiB  
Review
Instability Mechanisms and Wellbore-Stabilizing Drilling Fluids for Marine Gas Hydrate Reservoirs: A Review
by Qian Liu, Bin Xiao, Guanzheng Zhuang, Yun Li and Qiang Li
Energies 2025, 18(16), 4392; https://doi.org/10.3390/en18164392 - 18 Aug 2025
Viewed by 349
Abstract
The safe exploitation of marine natural gas hydrates, a promising cleaner energy resource, is hindered by reservoir instability during drilling. The inherent temperature–pressure sensitivity and cementation of hydrate-bearing sediments leads to severe operational risks, including borehole collapse, gas invasion, and even blowouts. This [...] Read more.
The safe exploitation of marine natural gas hydrates, a promising cleaner energy resource, is hindered by reservoir instability during drilling. The inherent temperature–pressure sensitivity and cementation of hydrate-bearing sediments leads to severe operational risks, including borehole collapse, gas invasion, and even blowouts. This review synthesizes the complex instability mechanisms and evaluates the state of the art in inhibitive, wellbore-stabilizing drilling fluids. The analysis first deconstructs the multiphysics-coupled failure process, where drilling-induced disturbances trigger a cascade of thermodynamic decomposition, kinetic-driven gas release, and geomechanical strength degradation. Subsequently, current drilling fluid strategies are critically assessed. This includes evaluating the limitations of conventional thermodynamic inhibitors (salts, alcohols, and amines) and the advancing role of kinetic inhibitors and anti-agglomerants. Innovations in wellbore reinforcement using nanomaterials and functional polymers to counteract mechanical failure are also highlighted. Finally, a forward-looking perspective is proposed, emphasizing the need for multiscale predictive models that bridge molecular interactions with macroscopic behavior. Future research should prioritize the development of “smart”, multifunctional, and green drilling fluid materials, integrated with real-time monitoring and control systems. This integrated approach is essential for unlocking the potential of marine gas hydrates safely and efficiently. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

21 pages, 1307 KiB  
Review
Synergistic Catalysis for Algae Control: Integrating Sonocavitation and Chemical Catalysis
by Yunxi Zhang, Xiaoge Wu and Muthupandian Ashokkumar
Catalysts 2025, 15(8), 784; https://doi.org/10.3390/catal15080784 - 17 Aug 2025
Viewed by 399
Abstract
This review systematically summarizes recent advances in ultrasound–chemical catalytic synergistic technology for controlling harmful algae blooms, focusing on the multi-mechanism cooperation of catalysts, oxidants, and nanomaterials within sonocavitation systems. The technology enhances coupling efficiency between cavitation effects and radical oxidation while leveraging interfacial [...] Read more.
This review systematically summarizes recent advances in ultrasound–chemical catalytic synergistic technology for controlling harmful algae blooms, focusing on the multi-mechanism cooperation of catalysts, oxidants, and nanomaterials within sonocavitation systems. The technology enhances coupling efficiency between cavitation effects and radical oxidation while leveraging interfacial regulation capabilities of catalysts (e.g., charge adsorption, carrier migration) to selectively disrupt algae cell structures and efficiently degrade extracellular organic matter. Three key innovations are highlighted: (1) development of a multi-mechanism synergistic system that overcomes traditional technical limitations through moderate pre-oxidation strategies for precise algae control; (2) first systematic elucidation of the bridging role of sonoporation in ultrasound–chemical synergy; (3) decipherment of interface-targeted regulation mechanisms that enhance oxidation efficiency. Collectively, these advances establish an engineerable new paradigm characterized by high efficiency, operational stability, and minimized ecological risks. Full article
Show Figures

Graphical abstract

43 pages, 3473 KiB  
Review
Biochips on the Move: Emerging Trends in Wearable and Implantable Lab-on-Chip Health Monitors
by Nikolay L. Kazanskiy, Pavel A. Khorin and Svetlana N. Khonina
Electronics 2025, 14(16), 3224; https://doi.org/10.3390/electronics14163224 - 14 Aug 2025
Viewed by 703
Abstract
Wearable and implantable Lab-on-Chip (LoC) biosensors are revolutionizing healthcare by enabling continuous, real-time monitoring of physiological and biochemical parameters in non-clinical settings. These miniaturized platforms integrate sample handling, signal transduction, and data processing on a single chip, facilitating early disease detection, personalized treatment, [...] Read more.
Wearable and implantable Lab-on-Chip (LoC) biosensors are revolutionizing healthcare by enabling continuous, real-time monitoring of physiological and biochemical parameters in non-clinical settings. These miniaturized platforms integrate sample handling, signal transduction, and data processing on a single chip, facilitating early disease detection, personalized treatment, and preventive care. This review comprehensively explores recent advancements in LoC biosensing technologies, emphasizing their application in skin-mounted patches, smart textiles, and implantable devices. Key innovations in biocompatible materials, nanostructured transducers, and flexible substrates have enabled seamless integration with the human body, while fabrication techniques such as soft lithography, 3D printing, and MEMS have accelerated development. The incorporation of nanomaterials significantly enhances sensitivity and specificity, supporting multiplexed and multi-modal sensing. We examine critical application domains, including glucose monitoring, cardiovascular diagnostics, and neurophysiological assessment. Design considerations related to biocompatibility, power management, data connectivity, and long-term stability are also discussed. Despite promising outcomes, challenges such as biofouling, signal drift, regulatory hurdles, and public acceptance remain. Future directions focus on autonomous systems powered by AI, hybrid wearable–implantable platforms, and wireless energy harvesting. This review highlights the transformative potential of LoC biosensors in shaping the future of smart, patient-centered healthcare through continuous, minimally invasive monitoring. Full article
(This article belongs to the Special Issue Lab-on-Chip Biosensors)
Show Figures

Figure 1

51 pages, 4203 KiB  
Review
Carbon Dot Nanoparticles Synthesized from Horticultural Extracts for Postharvest Shelf-Life Extension of Fruits and Vegetables
by Tshiamo B. Leta, Jerry O. Adeyemi and Olaniyi A. Fawole
Plants 2025, 14(16), 2523; https://doi.org/10.3390/plants14162523 - 13 Aug 2025
Viewed by 296
Abstract
The increasing demand for sustainable food preservation technologies has spurred interest in green-synthesized carbon dots (CDs) derived from horticultural produce, positioning them as a promising nanomaterial for prolonging the shelf life of perishable food products. Most of these green approaches offer renewable, low-cost [...] Read more.
The increasing demand for sustainable food preservation technologies has spurred interest in green-synthesized carbon dots (CDs) derived from horticultural produce, positioning them as a promising nanomaterial for prolonging the shelf life of perishable food products. Most of these green approaches offer renewable, low-cost nanoparticles with excellent ultraviolet (UV) light barrier capabilities, antioxidant, and antimicrobial properties. These features help protect food products from the growth of foodborne pathogens and retard oxidative spoilage to extend their shelf life through edible coatings and packaging. To this end, this review critically explores current breakthroughs in biosynthesis, characterization, and application of CDs generated from different agricultural extracts, the mechanism of action, and possible synergistic effects when paired with other food preservation agents, aligning with circular economic principles. Scalability challenges, regulatory limitations, and potential future directions are all explored to present a comprehensive understanding of the topic, paving the way for innovative preservation methods in the food industry. Full article
Show Figures

Figure 1

33 pages, 2003 KiB  
Review
Polyacrylamide-Based Solutions: A Comprehensive Review on Nanomaterial Integration, Supramolecular Design, and Sustainable Approaches for Integrated Reservoir Management
by Moamen Hassan Mohamed and Mysara Eissa Mohyaldinn Elhaj
Polymers 2025, 17(16), 2202; https://doi.org/10.3390/polym17162202 - 12 Aug 2025
Viewed by 729
Abstract
Maximizing hydrocarbon recovery from mature and complex reservoirs is constrained by heterogeneity, sand production, and harsh operational conditions. While polyacrylamide (PAM)-based systems are pivotal in addressing these challenges, a comprehensive synthesis of their transformative evolution and multifunctional capabilities remains overdue. This review critically [...] Read more.
Maximizing hydrocarbon recovery from mature and complex reservoirs is constrained by heterogeneity, sand production, and harsh operational conditions. While polyacrylamide (PAM)-based systems are pivotal in addressing these challenges, a comprehensive synthesis of their transformative evolution and multifunctional capabilities remains overdue. This review critically analyzes advancements in PAM-based materials for enhanced oil recovery (EOR), conformance control, and sand management. We show that nanomaterial integration (e.g., magnetic NPs, nanoclays) significantly augments PAM’s rheological control, thermal and salinity stability, interfacial properties, and wettability alteration. Furthermore, the emergence of supramolecular chemistry has endowed PAM systems with unprecedented resilience, enabling self-healing and adaptive performance under extreme subsurface conditions. The review highlights a crucial paradigm shift towards integrated reservoir management, synergizing these advanced chemical designs with mechanical strategies and leveraging sophisticated monitoring and predictive analytics. Critically, innovations in sustainable and bio-inspired PAM materials offer environmentally responsible solutions with enhanced biodegradability. This synthesis provides a holistic understanding of the state of the art. Despite persistent challenges in scalability and predictability, continually re-engineered PAM systems are positioned as an indispensable and increasingly sustainable cornerstone for future hydrocarbon recovery in the complex energy landscape. Full article
Show Figures

Figure 1

25 pages, 1045 KiB  
Review
Harnessing the Potential of Nanotechnology for Liquid Biopsy of Cancer
by Prince Allawadhi, Vishakha Singh, Sachin Allwadhi, Anil Kumar Banothu, Kala Kumar Bharani and Amit Khurana
Chemosensors 2025, 13(8), 302; https://doi.org/10.3390/chemosensors13080302 - 12 Aug 2025
Viewed by 403
Abstract
Liquid biopsy offers dynamic and noninvasive analysis of cellular biomarkers, thereby presenting enormous potential for early detection of cancer, cancer staging, prediction of relapse, real-time examination of therapeutic efficacy, perception of therapeutic targets, and understanding the resistance mechanisms. Nanotechnology has emerged as a [...] Read more.
Liquid biopsy offers dynamic and noninvasive analysis of cellular biomarkers, thereby presenting enormous potential for early detection of cancer, cancer staging, prediction of relapse, real-time examination of therapeutic efficacy, perception of therapeutic targets, and understanding the resistance mechanisms. Nanotechnology has emerged as a novel tool to widen the application horizon of liquid biopsy. Several nanomaterials, nanodevices, nanostructures, and nanosensors have been explored for improved application of liquid biopsy for biomarker detection. The circulating tumor cells (CTCs), circulating tumor proteins (CTP), miRNA and extracellular vesicles (EVs) are some of the important biomarkers for detection by liquid biopsy in bodily fluids. Herein, we have discussed the state of the art and beyond in advances in nanotechnology and in increasing the specificity, sensitivity, and purity with which we detect liquid biopsy biomarkers. The opportunities and prospects of these advanced innovative nanomaterials and technologies in clinical applications are explored. Furthermore, various isolation and biosensing strategies for visualization and signal amplification using nanomaterials are summarized. The utilization of nanotechnology-based liquid biopsy may provide greater insights for improved treatment, diagnosis, and prognosis of cancer. Full article
(This article belongs to the Special Issue Advanced Biosensors for Diagnostic Applications)
Show Figures

Figure 1

19 pages, 2531 KiB  
Review
Significant Roles of Nanomaterials for Enhancing Disease Resistance in Rice: A Review
by Yi Chen, Li Zhu, Xinyao Yan, Zhangjun Liao, Wen Teng, Yule Wang, Zhiguang Xing, Yun Chen and Lijun Liu
Agronomy 2025, 15(8), 1938; https://doi.org/10.3390/agronomy15081938 - 12 Aug 2025
Viewed by 412
Abstract
Rice (Oryza sativa L.) is a staple crop for over half of the global population; however, pathogenic infections pose significant threats to its sustainable production. Although chemical pesticides are commonly employed for disease control, their prolonged usage has led to pathogen resistance, [...] Read more.
Rice (Oryza sativa L.) is a staple crop for over half of the global population; however, pathogenic infections pose significant threats to its sustainable production. Although chemical pesticides are commonly employed for disease control, their prolonged usage has led to pathogen resistance, reduced effectiveness, and non-target toxicity, rendering them unsustainable for agricultural practices. Nanomaterials (NMs) present a promising alternative due to their small size, tunable release properties, and diverse mechanisms for disease resistance. This review examines how NMs can enhance rice disease management through (1) direct pathogen suppression; (2) the activation of plant defense pathways; (3) the formation of nanoscale barriers on leaves to obstruct pathogens; (4) targeted delivery and controlled release of fungicides; and (5) modulation of the microbiome to bolster resilience. Moreover, we critically analyze the agricultural potential and environmental implications of NMs, develop optimized application strategies, and, for the first time, propose the innovative ‘NMs-Rice-Soil’ Ternary System framework. This groundbreaking approach integrates nanotechnology, plant physiology, and soil ecology. The pioneering framework offers transformative solutions for sustainable crop protection, illustrating how strategically engineered NMs can synergistically enhance rice productivity, grain quality, and global food security through science-based risk management and interdisciplinary innovation. Full article
Show Figures

Figure 1

30 pages, 4173 KiB  
Review
Recent Advances in Nanomedicine: Cutting-Edge Research on Nano-PROTAC Delivery Systems for Cancer Therapy
by Xiaoqing Wu, Yueli Shu, Yao Zheng, Peichuan Zhang, Hanwen Cong, Yingpei Zou, Hao Cai and Zhengyu Zha
Pharmaceutics 2025, 17(8), 1037; https://doi.org/10.3390/pharmaceutics17081037 - 10 Aug 2025
Viewed by 659
Abstract
Proteolysis-targeting chimeras (PROTACs) selectively degrade target proteins by recruiting intracellular E3 ubiquitin ligases, overcoming the limitations of traditional small-molecule inhibitors that merely block protein function. This approach has garnered significant interest in precision cancer therapy. However, the clinical translation of PROTACs is hindered [...] Read more.
Proteolysis-targeting chimeras (PROTACs) selectively degrade target proteins by recruiting intracellular E3 ubiquitin ligases, overcoming the limitations of traditional small-molecule inhibitors that merely block protein function. This approach has garnered significant interest in precision cancer therapy. However, the clinical translation of PROTACs is hindered by their typically high molecular weight, poor membrane permeability, and suboptimal pharmacokinetic properties. Nanodrug delivery technologies represent a promising approach to overcome the limitations of PROTACs. By encapsulating, conjugating, or integrating PROTACs into functionalized nanocarriers, these systems can substantially enhance solubility and biostability, enable tumor-targeted and stimuli-responsive delivery, and thereby effectively alleviate the “hook effect” and minimize off-target toxicity. This review systematically outlines the primary design strategies for current nano-PROTAC delivery systems, including physical encapsulation, chemical conjugation, carrier-free self-assembly systems, and intelligent “split-and-mix” delivery platforms. We provide an overview and evaluation of recent advances in diverse nanomaterial carriers—such as lipid-based nanoparticles, polymeric nanoparticles, inorganic nanoparticles, biological carriers, and hybrid nanoparticles—highlighting their synergistic therapeutic potential for PROTACs delivery. The clinical translation prospects of these innovative systems are also discussed. This comprehensive analysis aims to deepen the understanding of this rapidly evolving field, address current challenges and opportunities, promote the advancement of nano-PROTACs, and offer insights into their future development. Full article
(This article belongs to the Special Issue Prodrug Strategies for Enhancing Drug Stability and Pharmacokinetics)
Show Figures

Figure 1

39 pages, 4438 KiB  
Review
Graphene-Based Gas Sensors: State-of-the-Art Developments for Gas Sensing Applications
by Aviraj M. Teli, Sagar M. Mane, Sonali A. Beknalkar, Rajneesh Kumar Mishra, Wookhee Jeon and Jae Cheol Shin
Micromachines 2025, 16(8), 916; https://doi.org/10.3390/mi16080916 - 8 Aug 2025
Viewed by 486
Abstract
Gas sensors based on graphene have gained considerable attention because of graphene’s remarkable properties, such as its extensive surface area, impressive electrical conductivity, and exceptional mechanical strength. This review critically analyzes recent developments in functionalization strategies designed to enhance the sensitivity, selectivity, and [...] Read more.
Gas sensors based on graphene have gained considerable attention because of graphene’s remarkable properties, such as its extensive surface area, impressive electrical conductivity, and exceptional mechanical strength. This review critically analyzes recent developments in functionalization strategies designed to enhance the sensitivity, selectivity, and stability of graphene-based sensors. It discusses various chemical, physical, and hybrid functionalization methods, illustrating how surface alterations affect graphene’s interaction with target gas molecules. The paper also investigates the fundamental sensing mechanisms, including charge transfer, carrier mobility modulation, and Schottky barrier modification, to provide a thorough understanding of sensor response characteristics. Additionally, it highlights emerging applications in environmental monitoring, healthcare diagnostics, and industrial safety, demonstrating the transformative potential of these sensors in real-world settings. Finally, the review addresses challenges concerning reproducibility, long-term stability, and large-scale production, while also offering future insights on utilizing innovative nanomaterials and artificial intelligence to advance the next generation of graphene-based gas sensing technologies. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for High-Performance Gas Sensors)
Show Figures

Figure 1

15 pages, 3102 KiB  
Article
BioGoldNCDB: A Database of Gold Nanoclusters and Related Nanoparticles with Biomedical Activity
by Eszter Erdei, András Mándoki, Andrea Deák, Balázs Balogh, László Molnár and István M. Mándity
Molecules 2025, 30(15), 3310; https://doi.org/10.3390/molecules30153310 - 7 Aug 2025
Viewed by 307
Abstract
Interest in gold nanoclusters (AuNCs) has grown significantly in recent decades. AuNCs, with a core size smaller than 2 nm, represent a unique class of functional nanomaterials. Their distinctive properties enable innovative applications across various interdisciplinary fields. Here, we introduce BioGoldNCDB, a freely [...] Read more.
Interest in gold nanoclusters (AuNCs) has grown significantly in recent decades. AuNCs, with a core size smaller than 2 nm, represent a unique class of functional nanomaterials. Their distinctive properties enable innovative applications across various interdisciplinary fields. Here, we introduce BioGoldNCDB, a freely available, fully annotated, and manually curated database of mainly about AuNCs and related AuNPs. Despite the rapid growth in biomedical applications of gold nanoclusters (AuNCs), the lack of a centralized and structured data resource hinders comparative analysis and rational design. Researchers face challenges in accessing standardized information on AuNCs’ structures, properties, and biological activities, which limits data-driven development in this emerging field. The database provides essential information, including CAS numbers and PubMed IDs, as well as specific details such as biomedical applications, cell lines used in research, particle size, and excitation/emission wavelengths. It currently covers 247 articles from 104 journals. Designed with a user-friendly and intuitive web interface, BioGoldNCDB is accessible on multiple devices, including phones, tablets, and PCs. Users can refine searches with multiple filters, and a help page is available for guidance. While offering quick insights for newcomers, BioGoldNCDB also serves as a valuable resource for researchers across various fields. Full article
Show Figures

Figure 1

15 pages, 1713 KiB  
Review
Current Developments of Iron Oxide Nanomaterials as MRI Theranostic Agents for Pancreatic Cancer
by Fong-Yu Cheng, Boguslaw Tomanek and Barbara Blasiak
J. Nanotheranostics 2025, 6(3), 22; https://doi.org/10.3390/jnt6030022 - 7 Aug 2025
Viewed by 367
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of pancreatic cancer. PDAC is difficult to diagnose due to a lack of symptoms in early stages, resulting in a survival rate of less than 10%. Moreover, often cancerous tissues cannot be surgically resected [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of pancreatic cancer. PDAC is difficult to diagnose due to a lack of symptoms in early stages, resulting in a survival rate of less than 10%. Moreover, often cancerous tissues cannot be surgically resected due to their deep abdomen location. Therefore, early detection is the essential strategy enabling effective PDAC treatment. Over the past few years, the development of nanomaterials for Magnetic Resonance Imaging (MRI) has expanded and improved imaging quality and diagnostic accuracy. Nanomaterials can be currently designed, manufactured and synthesized with other structures to provide improved diagnosis and advanced therapy. Although MRI equipped with the innovative nanomaterials became a powerful tool for the diagnosis and treatment of patients with various cancers, the detection of PDAC remains challenging. Nevertheless, recent advancements in PDAC theranostics provided progress in the detection and treatment of this challenging type of cancer. Present research in this area is focused on suitable carriers, eliminating delivery barriers, and the development of efficient anti-cancer drugs. Herein we discuss the current applications of iron oxide nanoparticles to the MRI diagnosis and treatment of pancreatic cancer. Full article
Show Figures

Figure 1

25 pages, 1534 KiB  
Review
Recent Advances in Micro- and Nano-Enhanced Intravascular Biosensors for Real-Time Monitoring, Early Disease Diagnosis, and Drug Therapy Monitoring
by Sonia Kudłacik-Kramarczyk, Weronika Kieres, Alicja Przybyłowicz, Celina Ziejewska, Joanna Marczyk and Marcel Krzan
Sensors 2025, 25(15), 4855; https://doi.org/10.3390/s25154855 - 7 Aug 2025
Viewed by 473
Abstract
Intravascular biosensors have become a crucial and novel class of devices in healthcare, enabling the constant real-time monitoring of essential physiological parameters directly within the circulatory system. Recent developments in micro- and nanotechnology have relevantly improved the sensitivity, miniaturization, and biocompatibility of these [...] Read more.
Intravascular biosensors have become a crucial and novel class of devices in healthcare, enabling the constant real-time monitoring of essential physiological parameters directly within the circulatory system. Recent developments in micro- and nanotechnology have relevantly improved the sensitivity, miniaturization, and biocompatibility of these devices, thereby enabling their application in precision medicine. This review summarizes the latest advances in intravascular biosensor technologies, with a special focus on glucose and oxygen level monitoring, blood pressure and heart rate assessment, and early disease diagnostics, as well as modern approaches to drug therapy monitoring and delivery systems. Key challenges such as long-term biostability, signal accuracy, and regulatory approval processes are critical considerations. Innovative strategies, including biodegradable implants, nanomaterial-functionalized surfaces, and integration with artificial intelligence, are regarded as promising avenues to overcome current limitations. This review provides a comprehensive roadmap for upcoming research and the clinical translation of advanced intravascular biosensors with a strong emphasis on their transformative impact on personalized healthcare. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

42 pages, 7458 KiB  
Review
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
by Nazim Uddin Emon, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang and Z. Ryan Tian
Nanomaterials 2025, 15(15), 1198; https://doi.org/10.3390/nano15151198 - 5 Aug 2025
Viewed by 833
Abstract
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses [...] Read more.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Graphical abstract

Back to TopTop