Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = inland northwest China

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 12174 KiB  
Article
Spatiotemporal Trends and Exceedance Drivers of Ozone Concentration in the Yangtze River Delta Urban Agglomeration, China
by Junli Xu and Jian Wang
Atmosphere 2025, 16(8), 907; https://doi.org/10.3390/atmos16080907 - 26 Jul 2025
Viewed by 323
Abstract
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring [...] Read more.
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring stations between 2015 and 2025, this paper analyzed the spatio-temporal variation of 8 h O3 concentrations and instances of exceedance. On the basis of exploring the influence of meteorological factors on regional 8 h O3 concentration, the potential source contribution areas of pollutants under the exceedance condition were investigated using the HYSPLIT model. The results indicate a rapid increase in the 8 h O3 concentration at a rate of 0.91 ± 0.98 μg·m−3·a−1, with the average number of days exceeding concentration standards reaching 41.05 in the Yangtze River Delta urban agglomeration. Spatially, the 8 h O3 concentrations were higher in coastal areas and lower in inland regions, as well as elevated in plains compared to hilly terrains. This distribution was significantly distinct from the concentration growth trend characterized by higher levels in the northwest and lower levels in the southeast. Furthermore, it diverged from the spatial characteristics where exceedances primarily occurred in the heavily industrialized northeastern region and the lightly industrialized central region, indicating that the growth and exceedance of 8 h O3 concentrations were influenced by disparate factors. Local human activities have intensified the emissions of ozone precursor substances, which could be the key driving factor for the significant increase in regional 8 h O3 concentrations. In the context of high temperatures and low humidity, this has contributed to elevated levels of 8 h O3 concentrations. When wind speeds were below 2.5 m·s−1, the proportion of 8 h O3 concentrations exceeding the standards was nearly 0 under almost calm wind conditions, and it showed an increasing trend with rising wind speeds, indicating that the potential precursor sources that caused high O3 concentrations originated occasionally from inland regions, with very limited presence within the study area. This observation implies that the main cause of exceedances was the transport effect of pollution from outside the region. Therefore, it is recommended that the Yangtze River Delta urban agglomeration adopt economic and technological compensation mechanisms within and between regions to reduce the emission intensity of precursor substances in potential source areas, thereby effectively controlling O3 concentrations and improving public living conditions and quality of life. Full article
Show Figures

Figure 1

20 pages, 8902 KiB  
Article
Spatiotemporal Variation Patterns of and Response Differences in Water Conservation in China’s Nine Major River Basins Under Climate Change
by Qian Zhang and Yuhai Bao
Atmosphere 2025, 16(7), 837; https://doi.org/10.3390/atmos16070837 - 10 Jul 2025
Viewed by 238
Abstract
As a crucial manifestation of ecosystem water regulation and supply functions, water conservation plays a vital role in regional ecosystem development and sustainable water resource management. This study investigates nine major Chinese river basins (Songliao, Haihe, Huaihe, Yellow, Yangtze, Pearl, Southeast Rivers, Southwest [...] Read more.
As a crucial manifestation of ecosystem water regulation and supply functions, water conservation plays a vital role in regional ecosystem development and sustainable water resource management. This study investigates nine major Chinese river basins (Songliao, Haihe, Huaihe, Yellow, Yangtze, Pearl, Southeast Rivers, Southwest Rivers, and Inland Rivers) through integrated application of the InVEST model and geographical detector model. We systematically examine the spatiotemporal heterogeneity of water conservation capacity and its driving mechanisms from 1990 to 2020. The results reveal a distinct northwest–southeast spatial gradient in water conservation across China, with lower values predominating in northwestern regions. Minimum conservation values were recorded in the Inland River Basin (15.88 mm), Haihe River Basin (42.07 mm), and Yellow River Basin (43.55 mm), while maximum capacities occurred in the Pearl River Basin (483.68 mm) and Southeast Rivers Basin (517.21 mm). Temporal analysis showed interannual fluctuations, peaking in 2020 at 130.98 mm and reaching its lowest point in 2015 at 113.04 mm. Precipitation emerged as the dominant factor governing spatial patterns, with higher rainfall correlating strongly with enhanced conservation capacity. Land cover analysis revealed superior water retention in vegetated areas (forests, grasslands, and cultivated land) compared to urbanized and bare land surfaces. Our findings demonstrate that water conservation dynamics result from synergistic interactions among multiple factors rather than single-variable influences. Accordingly, we propose that future water resource policies adopt an integrated management approach addressing climate patterns, land use optimization, and socioeconomic factors to develop targeted conservation strategies. Full article
Show Figures

Figure 1

18 pages, 6379 KiB  
Article
Assessing Extreme Precipitation in Northwest China’s Inland River Basin Under a Novel Low Radiative Forcing Scenario
by Mingjie Yang, Lianqing Xue, Tao Lin, Peng Zhang and Yuanhong Liu
Water 2025, 17(13), 2009; https://doi.org/10.3390/w17132009 - 4 Jul 2025
Viewed by 355
Abstract
Accelerating climate change poses significant risks to water security and ecological stability in arid regions due to the increasing frequency and intensity of extreme precipitation events. As a climate-sensitive area, the inland river basin (IRB) of Northwest China—a critical water source for local [...] Read more.
Accelerating climate change poses significant risks to water security and ecological stability in arid regions due to the increasing frequency and intensity of extreme precipitation events. As a climate-sensitive area, the inland river basin (IRB) of Northwest China—a critical water source for local ecosystems and socioeconomic activities—remains insufficiently studied in terms of future extreme precipitation dynamics. This study evaluated the spatiotemporal evolution of extreme precipitation in the IRB under a new low radiative forcing scenario (SSP1-1.9) by employing four global climate models (GCMs: GFDL-ESM4, MRI-ESM2, MIROC6, and IPSL-CM6A-LR). Eight core extreme precipitation indices were analyzed to quantify changes during the near future (NF: 2021–2050) and far future (FF: 2071–2100) periods. Our research demonstrated that all four models were capable of capturing seasonal patterns and exhibited inherent uncertainty. The annual total precipitation (PRCPTOT) in mountainous regions showed minimal variation, while desert areas were projected to experience a 2-6-fold increase in precipitation in the NF and FF. The Precipitation Intensity Index (SDII) weakened by approximately −10% in mountainous areas but strengthened by around +10% in desert regions. Most mountainous areas showed an increase in the maximum consecutive dry days (CDD), whereas desert regions exhibited extended maximum consecutive wet days (CWD). Moderate rainfall (P1025) variations primarily ranged between −5% and +20%, with greater fluctuations in desert areas. Heavy rainfall (PG25) fluctuated between −40% and +40%, reflecting stark contrasts in extreme precipitation between arid basins and mountainous zones. The maximum 1-day precipitation (Rx1day) and maximum 5-day precipitation (Rx5day) both showed significant increases, which indicated heightened risks from extreme rainfall events in the future. Moreover, the IRB region experienced increased total precipitation, enhanced rainfall intensity, more frequent alternations between drought and precipitation, more frequent moderate-to-heavy rainfall days, and higher daily precipitation extremes in both the NF and FF periods. These findings provide critical data for regional development planning and emergency response strategy formulation. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

22 pages, 5228 KiB  
Article
An Analysis of Uncertainties in Evaluating Future Climate Change Impacts on Cotton Production and Water Use in China
by Ruixue Yuan, Keyu Wang, Dandan Ren, Zhaowang Chen, Baosheng Guo, Haina Zhang, Dan Li, Cunpeng Zhao, Shumin Han, Huilong Li, Shuling Zhang, De Li Liu and Yanmin Yang
Agronomy 2025, 15(5), 1209; https://doi.org/10.3390/agronomy15051209 - 16 May 2025
Cited by 1 | Viewed by 541
Abstract
Global Climate Models (GCMs) are a primary source of uncertainty in assessing climate change impacts on agricultural production, especially when relying on limited models. Considering China’s vast territory and diverse climates, this study utilized 22 GCMs and selected three representative cotton-producing regions: Aral [...] Read more.
Global Climate Models (GCMs) are a primary source of uncertainty in assessing climate change impacts on agricultural production, especially when relying on limited models. Considering China’s vast territory and diverse climates, this study utilized 22 GCMs and selected three representative cotton-producing regions: Aral (northwest inland region), Wangdu (Yellow River basin), and Changde (Yangtze River basin). Using the APSIM model, we simulated climate change effects on cotton yield, water consumption, uncertainties, and climatic factor contributions. Results showed significant variability driven by different GCMs, with uncertainty increasing over time and under radiation forcing. Spatial variations in uncertainty were observed: Wangdu exhibited the highest uncertainties in yield and phenology, while Changde had the greatest uncertainties in ET (evapotranspiration) and irrigation amount. Key factors affecting yield varied regionally—daily maximum temperature and precipitation dominated in Aral; precipitation was a major negative factor in Wangdu; and maximum temperature and solar radiation were critical in Changde. This study provides scientific support for developing climate change adaptation measures tailored to cotton production across different regions. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

20 pages, 6008 KiB  
Article
Declining Snow Resources Since 2000 in Arid Northwest China Based on Integrated Remote Sensing Indicators
by Siyu Bai, Wei Zhang, An’an Chen, Luyuan Jiang, Xuejiao Wu and Yixue Huo
Remote Sens. 2025, 17(10), 1697; https://doi.org/10.3390/rs17101697 - 12 May 2025
Viewed by 343
Abstract
Snow cover variations significantly affect the stability of regional water supply and terrestrial ecosystems in arid northwest China. This study comprehensively evaluates snow resource changes since 2000 by integrating multisource remote sensing datasets and analyzing four key indicators: snow cover area (SCA), snow [...] Read more.
Snow cover variations significantly affect the stability of regional water supply and terrestrial ecosystems in arid northwest China. This study comprehensively evaluates snow resource changes since 2000 by integrating multisource remote sensing datasets and analyzing four key indicators: snow cover area (SCA), snow phenology (SP), snow depth (SD), and snow water equivalent (SWE). The results reveal a slight downtrend in SCA over the past two decades, with an annual decline rate of 7.13 × 103 km2. The maximum SCA (1.28 × 106 km2) occurred in 2010, while the minimum (7.25 × 105 km2) was recorded in 2014. Spatially, SCA peaked in December in the north and January in the south, with high-altitude subregions (Ili River Basin (IRB), Tarim River Region (TRR), North Kunlun Mountains (NKM), and Qaidam Basin (QDB)) maintaining stable summer snow cover due to low temperatures and high precipitation. Analysis of snow phenology indicates a significant shortening of snow cover duration (SCD), with 62.40% of the study area showing a declining trend, primarily driven by earlier snowmelt. Both SD and SWE exhibited widespread declines, affecting 75.09% and 84.85% of the study area, respectively. The most pronounced SD reductions occurred in TRR (94.44%), while SWE losses were particularly severe in North Tianshan Mountains (NTM, 94.61%). The total snow mass in northwest China was estimated at 108.95 million tons, with northern Xinjiang accounting for 66.24 million tons (60.8%), followed by southern Xinjiang (37.44 million tons) and the Hexi Inland Region (5.27 million tons). Consistency analysis revealed coherent declines across all indicators in 55.56% of the study area. Significant SD and SCD reductions occurred in TRR and Tuha Basin (THB), while SWE declines were widespread in NTM and IRB, driven by rising temperatures and decreased snowfall. The findings underscore the urgent need for adaptive strategies to address emerging challenges for water security and ecological stability in the region. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

21 pages, 16334 KiB  
Article
Annual Dynamics of Phytoplankton Communities in Relation to Environmental Factors in Saline–Alkaline Lakes of Northwest China
by Yuying Ma, Linghui Hu, Ruomei Ma, Liting Yang, Qiang Huo, Yong Song, Xuyuan Lin, Zhen Sun, Sheng’ao Chen and Daoquan Ren
Diversity 2025, 17(5), 328; https://doi.org/10.3390/d17050328 - 2 May 2025
Viewed by 576
Abstract
To evaluate the change trends of plankton in inland saline–alkaline water bodies, this study investigated the ecological restoration and rational development of saline–alkaline lakes in northwest China. From June to October 2023, phytoplankton communities in a high-salinity lake in Alar City, Xinjiang, were [...] Read more.
To evaluate the change trends of plankton in inland saline–alkaline water bodies, this study investigated the ecological restoration and rational development of saline–alkaline lakes in northwest China. From June to October 2023, phytoplankton communities in a high-salinity lake in Alar City, Xinjiang, were analyzed using standard survey methods for inland natural waters. Biodiversity indices were calculated, and redundancy analysis (RDA), Spearman’s correlation analysis, and Mantel test were carried out to assess the functional community structure of phytoplankton and its environmental drivers. In total, 115 phytoplankton taxa belonging to seven phyla were identified. The densities ranged from 23.76 × 105 to 53.54 × 107 cells/L. Bacillariophyta and Cyanophyta were the dominant phyla, accounting for 41.7% and 27.8% of the total taxa, respectively. The dominant species included Microcystis spp., Merismopedia sp., Cyclotella meneghiniana, and other algae. Spearman correlation analysis revealed that salinity, water temperature (WT), Na+, TDS, HCO3, Cl, and K+ were key environmental factors significantly influencing phytoplankton community structure. Mantel tests confirmed that salinity (SAL), TDS, DO, and major ions (K+, Na+, CO32−) served as key determinants of spatiotemporal phytoplankton community distribution (p < 0.05). RDA results indicated that WT, TDS, alkalinity (ALK), pH, salinity, and Na+ were the key factors driving seasonal variations in phytoplankton communities. Notably, decreasing salinity and ion concentrations stabilized the phytoplankton community structure, maintaining high-diversity indices. This highlights the positive impact of ecological restoration measures, such as fisheries-based alkalinity control and systematic environmental management, on the health of saline–alkaline lake ecosystems. These findings provide important insights for the sustainable development of saline–alkaline fisheries and the conservation of aquatic biodiversity in arid regions. Full article
(This article belongs to the Special Issue Diversity and Ecology of Freshwater Plankton)
Show Figures

Figure 1

20 pages, 15567 KiB  
Article
Rural Resilience Evaluation and Risk Governance in the Middle Reaches of the Heihe River, Northwest China: An Empirical Analysis from Ganzhou District, a Typical Irrigated Agricultural Area
by Jing Huang, Dongqian Xue and Mei Huang
Land 2025, 14(5), 926; https://doi.org/10.3390/land14050926 - 24 Apr 2025
Viewed by 499
Abstract
Conducting research on the evaluation of rural resilience and risk governance strategies in the middle reaches of the Heihe River can provide a scientific basis for the sustainable development of rural areas in the inland river basins of arid regions. Affected by water [...] Read more.
Conducting research on the evaluation of rural resilience and risk governance strategies in the middle reaches of the Heihe River can provide a scientific basis for the sustainable development of rural areas in the inland river basins of arid regions. Affected by water resource constraints, the expansion of artificial oases, and excessive exploitation of groundwater, the rural areas in the middle reaches of the Heihe River Basin, the second largest inland river in the arid region of northwest China, are confronted with prominent contradictions in the human-land relationship and urgently need to enhance their ability to cope with risks. Based on the remote sensing data of land use and major socio-economic data, this study draws on the theory of landscape ecology to construct a disturbance-resistance-adaptability evaluation system. Taking Ganzhou District, a typical irrigated agricultural area, as a case study, the study uses the entropy weight method, resilience change rate, and obstacle degree model to analyze the rural resilience level and its changing characteristics from 1990 to 2020, identifies the key obstacle factors affecting the development of rural resilience, and proposes risk governance strategies accordingly. Main conclusions: (1) The overall rural resilience index is relatively low, showing significant spatial disparities. Towns with well-developed multifunctional agriculture, nature reserves, and ecological-cultural control lines have higher resilience indices. (2) The change rate of the rural resilience index demonstrates phase heterogeneity, generally undergoing a “relative stability-increase-decrease” process, and forming a differentiation pattern of “decrease in the north and increase in the south”. (3) Internal risks to rural resilience development in the Ganzhou District mainly stem from low economic efficiency, fragile ecological environment, and unstable landscape patterns, among which efficiency-dominant and landscape-stability obstacle factors have a broader impact scope, while habitat resistance-type obstacle factors are mainly concentrated in the western part and suburban areas. Enhancing the benefits of water and soil resource utilization, strengthening habitat resistance, and stabilizing landscape patterns are key strategies for current-stage rural resilience governance in the middle reaches of the Heihe River. This study aims to optimize the human-land relationship in the rural areas of the middle reaches of the Heihe River. Full article
Show Figures

Figure 1

22 pages, 8285 KiB  
Article
Effect of Variety and Site on the Allometry Distribution of Seed Cotton Composition
by Lei Shi, Zenghui Sun, Lirong He, Guobin Liu and Chutao Liang
Agronomy 2025, 15(4), 989; https://doi.org/10.3390/agronomy15040989 - 20 Apr 2025
Viewed by 403
Abstract
As the area of land being reclaimed for cotton cultivation in the inland cotton region of Northwest China continues to expand, new requirements for variety selection and promotion have emerged. Therefore, research on the effects of cotton varieties and the environment is becoming [...] Read more.
As the area of land being reclaimed for cotton cultivation in the inland cotton region of Northwest China continues to expand, new requirements for variety selection and promotion have emerged. Therefore, research on the effects of cotton varieties and the environment is becoming increasingly essential. This study focuses on the role of variety and site factors in cotton production, specifically examining the impact of these factors on lint, seed cotton, and lint percentage. The research extends the application of the allometry allocation model by analyzing long-term experimental data from ecological network sites and national regional trials of cotton varieties. The results indicated that between 2012 and 2018, the average seed cotton yield in the regional trials in the inland northwest cotton region ranged from 44,667.8 kg/ha to 5462.7 kg/ha, while lint yield ranged from 2044.4 kg/ha to 2261.5 kg/ha. The fluctuations in seed cotton and lint yields were not consistent. Using the GGE model to evaluate the zoning of sites, it was found that cotton performance in the inland northwest cotton region showed considerable variation between subzones, with most sites exhibiting significant differentiation across years or indicators. At the site scale, lint yield and seed weight generally aligned with the allometry distribution model. For example, the allometry distribution index fluctuated year-to-year in sites like Shihezi, Tahe, and Aksu, while interannual fluctuations were smaller at sites like Kuqa and Shache. The results from the GGE model analysis of lint percentage differentiation were consistent with the allometry distribution index. These findings suggest that the allometry distribution model can effectively assess interannual variations in varietal differences across sites. These research findings provide a theoretical foundation for future crop variety selection, habitat selection, and variety structure development in the inland cotton region of Northwest China and similar regions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

24 pages, 31552 KiB  
Article
Using Multi-Scenario Analyses to Determine the Driving Factors of Land Use in Inland River Basins in Arid Northwest China
by Yang You, Pingan Jiang, Yakun Wang, Wen’e Wang, Dianyu Chen and Xiaotao Hu
Land 2025, 14(4), 787; https://doi.org/10.3390/land14040787 - 6 Apr 2025
Cited by 1 | Viewed by 501
Abstract
Global challenges such as climate change, ecological imbalance, and resource scarcity are closely related with land-use change. Arid land, which is 41% of the global land area, has fragile ecology and limited water resources. To ensure food security, ecological resilience, and sustainable use [...] Read more.
Global challenges such as climate change, ecological imbalance, and resource scarcity are closely related with land-use change. Arid land, which is 41% of the global land area, has fragile ecology and limited water resources. To ensure food security, ecological resilience, and sustainable use of land resources, there is a need for multi-scenario analysis of land-use change in arid regions. To carry this out, multiple spatial analysis techniques and land change indicators were used to analyze spatial land-use change in a typical inland river basin in arid Northwest China—the Tailan River Basin (TRB). Then, the PLUS model was used to analyze, in a certain time period (1980–2060), land-use change in the same basin. The scenarios used included the Natural Increase Scenario (NIS), Food Security Scenario (FSS), Economic Development Scenario (EDS), Water Protection Scenario (WPS), Ecological Protection Scenario (EPS), and Balanced Eco-economy Scenario (BES). The results show that for the period of 1980–2020, land-use change in the TRB was mainly driven by changes in cultivated land, grassland, forest land, and built-up land. For this period, there was a substantial increase in cultivated land (865.56 km2) and a significant decrease in forest land (197.44 km2) and grassland (773.55 km2) in the study area. There was a notable spatial shift in land use in the period of 1990–2010. The overall accuracy (OA) of the PLUS model was more than 90%, with a Kappa value of 85% and a Figure of Merit (FOM) of 0.18. The most pronounced expansion in cultivated land area in the 2020–2060 period was for the FSS (661.49 km2). This led to an increase in grain production and agricultural productivity in the region. The most significant increase in built-up area was under the EDS (61.7 km2), contributing to economic development and population growth. While the conversion of grassland area into other forms of land use was the smallest under the BES (606.08 km2), built-up area increased by 55.82 km2. This presented an ideal scenario under which ecological conservation was in balance with economic development. This was the most sustainable land management strategy with a harmonized balance across humans and the ecology in the TRB study area. This strategy may provide policymakers with a realistic land-use option with the potential to offer an acceptable policy solution to land use. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

21 pages, 3691 KiB  
Article
Influence of Groundwater Depth on Soil Ion Distribution in the Agricultural Irrigation Areas of Northwest China
by Borui Peng, Rui Dong, Yujiang He, Ying Liu and Yubin Zhao
Agriculture 2025, 15(7), 747; https://doi.org/10.3390/agriculture15070747 - 31 Mar 2025
Viewed by 389
Abstract
Extensive and unregulated groundwater extraction for irrigation in the arid inland basins of Northwest China has led to a continuous increase in groundwater depth in agricultural irrigation areas. This has significantly altered the distribution of soil ions, making it difficult to predict their [...] Read more.
Extensive and unregulated groundwater extraction for irrigation in the arid inland basins of Northwest China has led to a continuous increase in groundwater depth in agricultural irrigation areas. This has significantly altered the distribution of soil ions, making it difficult to predict their evolution and dynamic patterns. In this study, we used a space-for-time substitution approach to elucidate the evolution of the soil ion distribution under changing groundwater depths. Experiments were conducted in three typical irrigation areas with varying groundwater depths, that is, below 5 m, 5–10 m, and above 10 m in Korla, Xinjiang, China. Soil samples were collected from five profiles at depths of 0–180 cm to measure the soil moisture, salinity, and major ion content. An innovative research framework was developed to examine the relationship between groundwater depth and soil ion distribution using ion ratios, principal components, hierarchical clustering, and correlation analyses. This framework aims to reveal the dynamics, correlations, and mechanisms of soil moisture, salinity, ion distribution, and representative ion composition as groundwater depth increases in the arid agricultural irrigation areas of Northwest China. The results showed that as groundwater depth increased, the soil chemical type shifted from Ca-SO4 to Na-SO4 and mixed types, with an increase in SO42− and Na+ content in the soil profile. Soil moisture, salinity, sodium adsorption ratio (SAR), and total dissolved solids (TDS) were significantly higher in shallow groundwater than in deep groundwater. Groundwater depth was negatively correlated with soil moisture, salinity, and major cations and anions (K+, Na+, Ca2+, Mg2+, Cl, SO42−, and NO3). Meanwhile, a positive correlation exists between groundwater depth and CO32−. The dynamic distribution of soil ions is primarily governed by groundwater depth and is influenced by multiple factors. Evaporation is the dominant factor in shallow groundwater areas, whereas the mineral composition of rocks plays a crucial role in deep groundwater areas. These findings provide scientific support for strategic agricultural water-resource management policies and sustainable development strategies in arid regions. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

13 pages, 2441 KiB  
Article
Effect of Compound Planting Mode on Nutrient Distribution in Cotton
by Lirong He, Lei Shi, Qiaoni Gao, Guobin Liu and Chutao Liang
Plants 2025, 14(7), 1051; https://doi.org/10.3390/plants14071051 - 28 Mar 2025
Viewed by 513
Abstract
Composite planting has become one of the primary agricultural practices promoted in recent years, especially in the northwest inland cotton regions of China, where various economic trees and crops are intercropped with cotton. However, research on the microclimatic differences affecting cotton growth and [...] Read more.
Composite planting has become one of the primary agricultural practices promoted in recent years, especially in the northwest inland cotton regions of China, where various economic trees and crops are intercropped with cotton. However, research on the microclimatic differences affecting cotton growth and the nutrient allocation strategies for cotton’s key economic organs (i.e., seed, batt, and shell) in strip composite cropping systems remains limited. In this study, we examined the nutrient allocation strategies of cotton under multiple composite cropping patterns and proposed the most suitable cultivation patterns for this region in the northwest inland region of China, utilizing an allometry partitioning index and ecological stoichiometry, based on a long-term positional experiment. The results revealed that the nutrient distribution of cotton was of equal speed with the combined planting with trees, while there was an allometric distribution index of N and P between the combined planting with maize. The effect of the compound planting mode on the nutrient-use efficiency of cotton was mainly reflected in the organ differentiation stage of its reproductive growth stage. Specifically, cotton showed lower nutrient-use efficiency in reproductive organs when intercropped with low shrubs and herbaceous crops, likely due to the insufficient protective capacity of these plants for cotton. Interestingly, strip intercropping with tall trees improved cotton’s nutrient-utilization efficiency. However, it also resulted in reduced nitrogen and phosphorus content in cotton batt. Moreover, soil indicators such as available nitrogen and electrical conductivity positively influenced the nutrient uptake of cotton shells and roots, while soil phosphorus promoted the nutrient absorption of cotton seed but inhibited the nitrogen and phosphorus of cotton shell and the nitrogen of cotton batt. These findings suggest that nutrient partitioning in cotton is influenced by a variety of soil factors. According to these results, the combined planting pattern of cotton and apple trees should be considered in practice to improve cotton yield and economic benefits in the northwest inland region of China. Full article
(This article belongs to the Special Issue Effects of Conservation Tillage on Crop Cultivation and Production)
Show Figures

Figure 1

20 pages, 10070 KiB  
Article
Analysis of the Interrelationships and Drivers of Ecosystem Services in the Heihe River Basin
by Yuxiang Yan, Xiaohuang Liu, Tao Lin, Peng Li, Jie Min, Ping Zhu, Xiaotong Liu and Chao Wang
Sustainability 2025, 17(5), 1942; https://doi.org/10.3390/su17051942 - 25 Feb 2025
Viewed by 622
Abstract
The preservation and enhancement of ecosystem services are essential for maintaining ecological balance and sustainable growth. The Heihe River Basin (HRB) is important for ecological security in Northwest China, yet is a fragile ecological environment. Understanding the dynamics and evolution of ESs is [...] Read more.
The preservation and enhancement of ecosystem services are essential for maintaining ecological balance and sustainable growth. The Heihe River Basin (HRB) is important for ecological security in Northwest China, yet is a fragile ecological environment. Understanding the dynamics and evolution of ESs is vital for balancing resource exploitation, socioeconomic development, and ecological protection. Using the InVEST model, we calculated water yield, habitat quality, and carbon stock in the HRB during 2000–2020 and examined shifts in ecosystem services. Trade-offs and synergies among ESs were assessed using GeoDa and key drivers were identified through the geodetector model. The spatial distribution of water yield, habitat quality, and carbon storage varied significantly, with high values concentrated in the upstream Qilian Mountains and low values in the downstream desert areas. High carbon storage clusters were stable, high water yield clusters increased and subsequently decreased, and high habitat quality clusters fluctuated. Carbon storage, water yield, and habitat quality exhibited a synergistic relationship. Climate and topography, particularly vapor emissions and elevation, were the primary factors influencing ESs, while socioeconomic factors had a lesser impact. These findings provide valuable insights for sustainable ecosystem management and conservation in the HRB and other arid inland watershed regions. Full article
Show Figures

Figure 1

19 pages, 2138 KiB  
Article
Application of Improved NSGA-II Multi-Objective Genetic Algorithm in Optimal Allocation of Water Resources in Main Tarim River Basin
by Kaiyi Cheng, Donghao Li, Mingjiang Deng, Xin Li and Guohua Fang
Sustainability 2025, 17(4), 1526; https://doi.org/10.3390/su17041526 - 12 Feb 2025
Viewed by 1291
Abstract
As the longest inland river in China, the Tarim River is characterized by water shortage and ecological degradation in the basin, and water resources have become the most important factor restricting the sustainable economic and social development of the basin. In this paper, [...] Read more.
As the longest inland river in China, the Tarim River is characterized by water shortage and ecological degradation in the basin, and water resources have become the most important factor restricting the sustainable economic and social development of the basin. In this paper, the optimal allocation model of water resources in the main Tarim River is constructed. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) as a classical multi-objective optimization algorithm suffers from the shortcomings of high computational complexity, long time-consuming non-dominated sorting, and difficulty in diversity preservation under high-dimensional objectives. To address these problems, good point set theory is introduced to improve the distributivity of the solution set, and a linear pressure selection mechanism is utilized to improve the convergence speed of the algorithm. The model is solved by using the improved NSGA-II, and the optimal allocation scheme of water resources in the main Tarim River is proposed. The results show that the total regional water supply remains unchanged under the optimal allocation scheme, while the guaranteed rate of agricultural water supply in the ALE-XQM Irrigation District, XQM-YBZ Irrigation District, YBZ-USM Irrigation District, and CAL-DXHZ Irrigation District is increased by 4.36%, 12.11%, 37.70%, and 0.36%, respectively. The guaranteed rate of ecological water supply is increased by 0.19%, 19.05%, 19.29%, and 36.05%, respectively. And the amount of water discharged from Daxihaizi increased by 0.51 billion m3. In addition, under the three typical hydrological frequency scenarios of moderate year, medium dry year, and extreme dry year in 2030, the guaranteed rate of agricultural and ecological water supply and the amount of water discharged from Daxihaizi can better meet the design requirements. In short, the improved algorithm has obvious superiority, which can make full use of the natural incoming water of the dry river to reduce the overall water shortage and improve the water supply guarantee rate of each region. The optimal allocation scheme can provide scientific reference for the rational allocation of water resources in the Tarim River basin and has an important application value for solving the problem of water resources shortage in Northwest Arid Region. Full article
Show Figures

Figure 1

23 pages, 7106 KiB  
Article
Spatiotemporal Variations and Influencing Factors of Arid Inland Runoff in the Shule River Basin, Northwest China
by Wenrui Zhang, Dongyuan Sun, Zuirong Niu, Yike Wang, Heping Shu, Xingfan Wang and Yanqiang Cui
Water 2025, 17(3), 457; https://doi.org/10.3390/w17030457 - 6 Feb 2025
Cited by 1 | Viewed by 878
Abstract
Considering the possibility of increasing water supply in China in the short term and the long-term threat posed by shrinking glaciers, this paper studied the spatiotemporal evolution of runoff in typical arid areas and the influence of hydrometeorological elements on runoff, aiming to [...] Read more.
Considering the possibility of increasing water supply in China in the short term and the long-term threat posed by shrinking glaciers, this paper studied the spatiotemporal evolution of runoff in typical arid areas and the influence of hydrometeorological elements on runoff, aiming to clarify the hydrological cycle law and provide a basis for adjusting water resource management strategies to cope with future uncertain changes. Based on hydrological data from 1956 to 2020, the spatial and temporal variation in runoff were discussed by means of wavelet analysis, MK test, RS analysis, and spatial interpolation. The influencing factors of runoff evolution in the Shule River Basin were determined. The results showed that the runoff in the Shule River Basin showed an increasing trend in the past 60 years. Five hydrological stations (Changmabao Station, Panjiazhuang Station, Shuangtabao Reservoir, Dangchengwan Reservoir, and Danghe Reservoir) were selected as the research objects. Among them, the runoff of Changmabao Station increased the most, which was 1.202 × 108 m3/10 a. Future projections suggest a continued rise in runoff, particularly at Shuangtabao Reservoir. The runoff exhibited positive persistence and varying degrees of mutation, with most mutations occurring in the early 21st century. The runoff in the basin has a periodicity of multiple time scales (there are 2–3 main cycles), and the main cycle of annual runoff is concentrated in 58 years. This comprehensive analysis provides valuable insights for the sustainable management of water resources in inland river basins amidst changing environmental conditions. The spatial variation in runoff in summer and autumn and the whole year showed a significant southeast to northwest decreasing pattern. During the study period, accelerated glacier melting caused by rising temperatures had the most significant impact on runoff change (p < 0.01), and the upstream of the study area also complied with this rule (temperature contribution rate [25.96%] > precipitation contribution rate [23.91%]). The contribution of temperature and precipitation changes caused by human activities in the middle stream to runoff was relatively large, which showed that the contribution rate of temperature in Guazhou Station to runoff was 34.23% and the contribution rate of precipitation in Dangchengwan to runoff was 60.27%. The research results provide a scientific basis for the rational and efficient utilization of water resources in the arid area of Northwest China. Full article
Show Figures

Figure 1

20 pages, 5362 KiB  
Article
Investigating the Water, Ecosystem, and Agriculture Nexus in Three Inland River Basins of the Arid Hexi Corridor, China, Using Integrated Hydrological Modeling
by Yuan Chen and Yong Tian
Hydrology 2025, 12(2), 27; https://doi.org/10.3390/hydrology12020027 - 6 Feb 2025
Cited by 1 | Viewed by 854
Abstract
The Water–Ecosystem–Agriculture (WEA) relationship is pivotal to the sustainable development of arid and semi-arid areas. The WEA nexus in these areas is essential for making policies towards sustainable development. This study aims to explore the WEA nexus in three large inland river basins [...] Read more.
The Water–Ecosystem–Agriculture (WEA) relationship is pivotal to the sustainable development of arid and semi-arid areas. The WEA nexus in these areas is essential for making policies towards sustainable development. This study aims to explore the WEA nexus in three large inland river basins (Heihe River Basin, Shiyang River Basin, and Shule River Basin) in the Hexi Corridor, Northwest China, using an integrated hydrological modeling approach. The integrated model was calibrated and validated against observed streamflow data, achieving Nash–Sutcliffe Efficiencies ranging from 0.83 to 0.94 in the validation period. The major findings are as follows. First, altering the amount of irrigation water significantly affects hydrological and ecological processes in both midstream and downstream areas, influencing the WEA nexus. For example, a 20% reduction in irrigation demand led to a 0.46 billion m3/year recovery in midstream groundwater storage and a 4.3% increase in downstream ecosystem health, but resulted in a 5.4% decrease in midstream agricultural productivity. Second, intense trade-offs among agricultural productivity, ecosystem health, and groundwater sustainability were identified. These trade-offs are highly sensitive to water management strategies, particularly those affecting groundwater sustainability. Third, implementing stricter groundwater-level drawdown constraints significantly improved groundwater sustainability and ecosystem health. Fourth, this study highlighted unique WEA nexus characteristics in each of the three basins. This study provides insights into the understanding the complex WEA nexus, and the quantitative results underscore the trade-offs and synergies within the WEA nexus, providing a foundation for informed decision-making in water resource management. Full article
Show Figures

Figure 1

Back to TopTop