Influence of Groundwater Depth on Soil Ion Distribution in the Agricultural Irrigation Areas of Northwest China
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site Overview
2.2. Soil Sampling and Groundwater Depth Monitoring
2.3. Soil Salinity and Soil Ion Testing
2.4. Soil Texture Analysis
2.5. Data Analysis Method
2.5.1. Analysis of Soil Representative Ion Content
2.5.2. PCA and HCA
2.5.3. Correlation Analysis and Statistical Testing
2.6. Limitations
3. Results
3.1. Soil Water, Salt, and Ion Distribution at Different Groundwater Depths
3.2. Analysis of Soil Representative Ion Composition at Different Groundwater Depths
3.3. Influencing Mechanisms of Groundwater Depth on Soil Ion Distribution
3.3.1. PCA and Difference Analysis
3.3.2. Correlation Analysis
4. Discussion
4.1. Research Framework on the Relationship Between Groundwater Depth and Soil Ion Distribution
4.2. Influencing Factors of Soil Ion Distribution Dynamics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Wang, W.; Zhang, Z.; Hou, X.; Duan, L.; Yao, D. Assessment of the Effect of Water-Table Depth on Riparian Vegetation along the Middle and Lower Reaches of the Manasi River, Northwest China. Hydrogeol. J. 2021, 29, 579–589. [Google Scholar] [CrossRef]
- Jie, F.; Fei, L.; Li, S.; Hao, K.; Liu, L.; Li, J.; Liu, N. Quantitative Effects of Vadose Zone Thickness on Delayed Recharge of Groundwater for an Irrigation District in an Arid Area of Northwest China. J. Hydrol. Reg. Stud. 2022, 40, 101022. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Q. Groundwater Influences on Soil Moisture and Surface Evaporation. J. Hydrol. 2004, 297, 285–300. [Google Scholar] [CrossRef]
- Irfan, M.; Safrina, S.; Koriyanti, E.; Kurniawati, N.; Saleh, K.; Iskandar, I. Effects of Climate Anomaly on Rainfall, Groundwater Depth, and Soil Moisture on Peatlands in South Sumatra, Indonesia. J. Groundw. Sci. Eng. 2023, 11, 81–88. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, X.; Zuo, X.; Chen, X.; Li, C.; Fang, H.; Li, W.; Wei, D. Impact of Deeper Groundwater Depth on Vegetation and Soil in Semi-Arid Region of Eastern China. Front. Plant Sci. 2023, 14, 1186406. [Google Scholar] [CrossRef]
- Wu, J.; Yao, J.; Zhang, Y.; Wang, Z. Remote Sensing Application Study on the Soil Salinity and the Medium & Low Yield Croplands in Yinchuan Plain. J. Remote Sens. 2007, 3, 414–419. [Google Scholar]
- Martínez-de la Torre, A.; Miguez-Macho, G. Groundwater Influence on Soil Moisture Memory and Land–Atmosphere Fluxes in the Iberian Peninsula. Hydrol. Earth Syst. Sci. 2019, 23, 4909–4932. [Google Scholar] [CrossRef]
- Chen, S.; Mao, X.; Shang, S. Response and Contribution of Shallow Groundwater to Soil Water/Salt Budget and Crop Growth in Layered Soils. Agric. Water Manag. 2022, 266, 107574. [Google Scholar] [CrossRef]
- Han, M.; Zhao, C.; Šimůnek, J.; Feng, G. Evaluating the Impact of Groundwater on Cotton Growth and Root Zone Water Balance Using Hydrus-1D Coupled with a Crop Growth Model. Agric. Water Manag. 2015, 160, 64–75. [Google Scholar] [CrossRef]
- Zhang, X.; Shu, C.; Wu, Y.; Ye, P.; Du, D. Advances of Coupled Water-Heat-Salt Theory and Test Techniques for Soils in Cold and Arid Regions: A Review. Geoderma 2023, 432, 116378. [Google Scholar] [CrossRef]
- Borch, T.; Kretzschmar, R.; Kappler, A.; Cappellen, P.V.; Ginder-Vogel, M.; Voegelin, A.; Campbell, K. Biogeochemical Redox Processes and Their Impact on Contaminant Dynamics. Environ. Sci. Technol. 2010, 44, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Furman, A. Soil Redox Dynamics under Dynamic Hydrologic Regimes—A Review. Sci. Total Environ. 2021, 763, 143026. [Google Scholar] [CrossRef] [PubMed]
- Nick, S.M.; Copty, N.K.; Saygın, S.D.; Öztürk, H.S.; Demirel, B.; Mehdi Emadian, S.; Erpul, G.; Sedighi, M.; Babaei, M. Impact of Soil Compaction and Irrigation Practices on Salt Dynamics in the Presence of a Saline Shallow Groundwater: An Experimental and Modelling Study. Hydrol. Process. 2024, 38, e15135. [Google Scholar] [CrossRef]
- Rengasamy, P.; Chittleborough, D.; Helyar, K. Root-Zone Constraints and Plant-Based Solutions for Dryland Salinity. Plant Soil 2003, 257, 249–260. [Google Scholar] [CrossRef]
- Wang, D.; Yu, Z.; Peng, G.; Zhao, C.; Ding, J.; Zhang, X. Water Use Strategies of Populus Euphratica Seedlings under Groundwater Fluctuation in the Tarim River Basin of Central Asia. Catena 2018, 166, 89–97. [Google Scholar] [CrossRef]
- Paz, A.M.; Amezketa, E.; Canfora, L.; Castanheira, N.; Falsone, G.; Gonçalves, M.C.; Gould, I.; Hristov, B.; Mastrorilli, M.; Ramos, T.; et al. Salt-Affected Soils: Field-Scale Strategies for Prevention, Mitigation, and Adaptation to Salt Accumulation. Ital. J. Agron. 2023, 18, 2166. [Google Scholar] [CrossRef]
- Li, X.; Xia, J.; Zhao, X.; Chen, Y. Effects of Planting Tamarix Chinensis on Shallow Soil Water and Salt Content under Different Groundwater Depths in the Yellow River Delta. Geoderma 2019, 335, 104–111. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, S.; Liu, D.; Zhang, Y.; Zhang, Y.; Chen, X.; Wang, H.; Li, B.; Kang, W.; Yi, B.; et al. Characteristics and Genesis of Groundwater Salinization in Coastal Areas of the Lower Reaches of Oujiang Basin. J. Groundw. Sci. Eng. 2024, 12, 190–204. [Google Scholar] [CrossRef]
- Pessoa, L.; Freire, M.B.G.d.S.; Green, C.H.M.; Miranda, M.F.A.; Filho, J.C.d.A.; Pessoa, W.R.L.S. Assessment of Soil Salinity Status under Different Land-Use Conditions in the Semiarid Region of Northeastern Brazil. Ecol. Indic. 2022, 141, 109139. [Google Scholar] [CrossRef]
- Makonko, M.P. Hydrochemical Assessment of Groundwater Quality and Its Suitability for Irrigation and Domestic Purposes in Breede Water Management Area, Western Cape. Master’s Thesis, Cape Peninsula University of Technology, Cape Town, South Africa, 2023. [Google Scholar]
- Mora, J.L.; Herrero, J.; Weindorf, D.C. Multivariate Analysis of Soil Salination-Desalination in a Semi-Arid Irrigated District of Spain. Geoderma 2017, 291, 1–10. [Google Scholar] [CrossRef]
- Brogueira, M.; Cabecadas, G. Identification of Similar Environmental Areas in Tagus Estuary by Using Multivariate Analysis. Ecol. Indic. 2006, 6, 508–515. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, M.; Šimůnek, J.; van Genuchten, M.T. Evaluation of Mulched Drip Irrigation for Cotton in Arid Northwest China. Irrig. Sci. 2013, 32, 15–27. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Liu, Y.; Peng, B.; Wang, G. Focus on the Nonlinear Infiltration Process in Deep Vadose Zone. Earth-Sci. Rev. 2024, 252, 104719. [Google Scholar] [CrossRef]
- Trivedi, P.; Delgado-Baquerizo, M.; Anderson, I.C.; Singh, B.K. Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators. Front. Plant Sci. 2016, 7, 990. [Google Scholar] [CrossRef]
- Colombo, C.; Palumbo, G.; He, J.-Z.; Pinton, R.; Cesco, S. Review on Iron Availability in Soil: Interaction of Fe Minerals, Plants, and Microbes. J. Soils Sediments 2013, 14, 538–548. [Google Scholar] [CrossRef]
- Han, D.; Song, X.; Currell, M.; Cao, G.; Zhang, Y.; Kang, Y. A Survey of Groundwater Levels and Hydrogeochemistry in Irrigated Fields in the Karamay Agricultural Development Area, Northwest China: Implications for Soil and Groundwater Salinity Resulting from Surface Water Transfer for Irrigation. J. Hydrol. 2011, 405, 217–234. [Google Scholar] [CrossRef]
- Jalali, M. Effect of Sodium and Magnesium on Kinetics of Potassium Release in Some Calcareous Soils of Western Iran. Geoderma 2008, 145, 207–215. [Google Scholar] [CrossRef]
- Lilliefors, H.W. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. J. Am. Stat. Assoc. 1967, 62, 399–402. [Google Scholar] [CrossRef]
- Li, C.; Lei, J.; Zhao, Y.; Xu, X.; Li, S. Effect of Saline Water Irrigation on Soil Development and Plant Growth in the Taklimakan Desert Highway Shelterbelt. Soil Tillage Res. 2015, 146, 99–107. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Li, F. Spatial Distribution Characteristics of Soil Water-Salt Gradients in the Ecological Buffer Zone of Arid Zone Lakes and Their Influencing Factors. J. Clean. Prod. 2024, 444, 141299. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, J.; Hou, Q.; Yang, Z.; You, Y.; Yu, T.; Ji, J.; Dou, L.; Ha, X.; Sheng, W.; et al. Distribution of Potentially Toxic Elements in Soils and Sediments in Pearl River Delta, China: Natural versus Anthropogenic Source Discrimination. Sci. Total Environ. 2023, 903, 166573. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Zhang, D.; Chen, X. Vegetation Response to Groundwater Variation in Arid Environments: Visualization of Research Evolution, Synthesis of Response Types, and Estimation of Groundwater Threshold. Int. J. Environ. Res. Public Health 2019, 16, 1849. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhao, D.; Yang, F.; Wang, Z.; Dong, S.; An, F.; Ma, H.; Zhang, L.; Tibor, T. Effects of Groundwater with Various Salinities on Evaporation and Redistribution of Water and Salt in Saline-Sodic Soils in Songnen Plain, Northeast China. Chin. Geogr. Sci. 2023, 33, 1141–1152. [Google Scholar] [CrossRef]
- Wang, T.; Wu, Z.; Wang, P.; Wu, T.; Zhang, Y.; Yin, J.; Yu, J.; Wang, H.; Guan, X.; Xu, H.; et al. Plant-Groundwater Interactions in Drylands: A Review of Current Research and Future Perspectives. Agric. For. Meteorol. 2023, 341, 109636. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, R.; Wan, S.; Hu, W.; Jiang, S.; Liu, S. Effects of Different Water Levels on Cotton Growth and Water Use through Drip Irrigation in an Arid Region with Saline Ground Water of Northwest China. Agric. Water Manag. 2012, 109, 117–126. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, Y.; Hao, Q.; Wang, L.; Zhang, Y.; Liu, K.; Zhu, Y.; Liu, G.; Yin, S.; Xie, Z. Geochemical Characteristics, Mechanisms and Suitability for Sustainable Municipal and Agricultural Water Supply of Confined Groundwater in Central North China Plain. Urban Clim. 2023, 49, 101459. [Google Scholar] [CrossRef]
- Wu, B.; Wan, Q.; Li, X.; Lin, S.; Jiang, Y.; Yang, X.; Li, J.; Lin, Q.; Morel, J.L.; Qiu, R. Heavy Metal Migration Dynamics and Solid-Liquid Distribution Strategy in Abandoned Tailing Soils. J. Hazard. Mater. 2024, 468, 133794. [Google Scholar] [CrossRef]
- Dong, S.; Li, L.; Shi, X.; Ma, M.; Liu, F.; Lei, J. Inorganic Carbon Migration and Transformation in Groundwater Evaporation Discharge Area. Sci. Total Environ. 2024, 949, 174994. [Google Scholar] [CrossRef]
- Yin, X.; Feng, Q.; Li, Y.; Deo, R.C.; Liu, W.; Zhu, M.; Zheng, X.; Liu, R. An Interplay of Soil Salinization and Groundwater Degradation Threatening Coexistence of Oasis-Desert Ecosystems. Sci. Total Environ. 2022, 806, 150599. [Google Scholar] [CrossRef]
- Bouselsal, B.; Saibi, H. Evaluation of Groundwater Quality and Hydrochemical Characteristics in the Shallow Aquifer of El-Oued Region (Algerian Sahara). Groundw. Sustain. Dev. 2022, 17, 100747. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Z.; Li, J. Identifying the Factors Dominating the Spatial Distribution of Water and Salt in Soil and Cotton Yield under Arid Environments of Drip Irrigation with Different Lateral Lengths. Agric. Water Manag. 2021, 250, 106834. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, C.; Ning, S.; Cao, C.; Li, K.; Dang, H.; Wu, Y.; Zhang, J. Impacts of Long-Term Saline Water Irrigation on Soil Properties and Crop Yields under Maize-Wheat Crop Rotation. Agric. Water Manag. 2023, 286, 108383. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Gong, P.; He, X.; Liu, H.; Li, L.; Wang, C.; Li, P.; Wei, J.; Yu, X. Enhanced Irrigation Volume Reduces Salinity and Improves Deep Root Zone Soil Nutrients, Phosphatase Activity and Changes Root Traits of Fruit Trees. Agric. Water Manag. 2024, 302, 109001. [Google Scholar] [CrossRef]
- Ling, H.; Zhang, P.; Xu, H.; Zhao, X. How to Regenerate and Protect Desert Riparian Populus Euphratica Forest in Arid Areas. Sci. Rep. 2015, 5, 15418. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Espírito-Santo, D. Crop Coefficients of Natural Wetlands and Riparian Vegetation to Compute Ecosystem Evapotranspiration and the Water Balance. Irrig. Sci. 2024, 42, 1171–1197. [Google Scholar] [CrossRef]
- Eger, A.; Stevenson, B.A.; Theng, B.; Rhodes, P.; Fraser, S.; Penny, V.; Burge, O.R. Long-Term Effects of Fertilizer Application and Irrigation on Soils under Pasture Land Use. J. Soil Sci. Plant Nutr. 2022, 23, 801–818. [Google Scholar] [CrossRef]
Location | Sampling Site Number | Latitude | Longitude | Elevation (m) | Sampling Time |
---|---|---|---|---|---|
Korla | Korla1-1 | 41.596967° N | 86.180216° E | 909 | 2024.4.7 |
Korla1-2 | 41.596967° N | 86.180216° E | 909 | 2024.4.20 | |
Korla2 | 41.586451° N | 86.174886° E | 903 | 2024.5.2 | |
Korla3 | 41.580605° N | 86.166460° E | 901 | 2024.5.2 | |
PuHui | PuHui1 | 41.412950° N | 85.84983° E | 892 | 2024.5.3 |
PuHui2 | 41.36196° N | 85.94547° E | 891 | 2024.5.3 |
Site | Indicators | SWC | pH | EC | TDS | K+ | Na+ | Ca2+ | Mg2+ | Fe | Mn | Cl− | SO42− | NO3− | CO32− | HCO3− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Korla1-1 | Min | 3.2 | 6.61 | 0.19 | 81.98 | 2.16 | 4.14 | 8.63 | 3.13 | 0.003 | 0 | 9.79 | 14.27 | 0 | 0 | 11.75 |
Max | 7.95 | 8.65 | 0.52 | 305.9 | 7.89 | 30.89 | 27.08 | 15.61 | 0.079 | 0 | 31.78 | 95.19 | 19.89 | 8.25 | 68.37 | |
Mean | 6.02 | 7.98 | 0.3 | 160.6 | 3.29 | 17.43 | 14.07 | 7.39 | 0.019 | 0 | 21.66 | 45.82 | 9.44 | 0.85 | 30.94 | |
Median | 6.5 | 8.01 | 0.32 | 170.3 | 2.85 | 22.26 | 13.73 | 7.28 | 0.012 | 0 | 23.33 | 55.23 | 8.82 | 0 | 30.19 | |
Std | 1.57 | 0.48 | 0.09 | 60.78 | 1.41 | 9.61 | 4.47 | 3.07 | 0.021 | 0 | 8.1 | 22.62 | 6.18 | 2.26 | 12.81 | |
CV | 26.09 | 5.95 | 31.11 | 37.84 | 42.82 | 55.14 | 31.78 | 41.54 | 111.9 | / | 37.38 | 49.37 | 65.43 | 266.9 | 41.4 | |
K-S test | 0.25 | 0.23 | 0.21 | 0.15 | 0.27 | 0.23 | 0.25 | 0.19 | 0.27 | / | 0.16 | 0.2 | 0.16 | 0.49 | 0.19 | |
p-value | 0.33 | 0.44 | 0.56 | 0.89 | 0.26 | 0.43 | 0.33 | 0.66 | 0.26 | / | 0.86 | 0.58 | 0.86 | 0.002 | 0.7 | |
Korla1-2 | Min | 5.86 | 7.74 | 0.11 | 57.51 | 1.46 | 5.18 | 4.67 | 1.53 | 0 | 0 | 6.32 | 5.34 | 0 | 0 | 8.39 |
Max | 14.11 | 8.89 | 0.21 | 99.47 | 3.74 | 16.62 | 10.58 | 5.39 | 0.772 | 0.011 | 13.43 | 36.53 | 3.85 | 13.75 | 43.46 | |
Mean | 9.04 | 8.47 | 0.15 | 79.38 | 2.35 | 10.17 | 6.96 | 3.26 | 0.211 | 0.003 | 9.44 | 16.45 | 2.5 | 4.78 | 29.28 | |
Median | 7.86 | 8.52 | 0.16 | 80.36 | 2.3 | 10.33 | 6.52 | 3.13 | 0.087 | 0 | 9.15 | 16.48 | 3.28 | 4.4 | 30.2 | |
Std | 2.59 | 0.27 | 0.03 | 13.52 | 0.7 | 3.46 | 1.82 | 1.16 | 0.24 | 0.004 | 1.99 | 8.51 | 1.38 | 4.48 | 8.39 | |
CV | 28.71 | 3.2 | 18.55 | 17.03 | 29.86 | 34.01 | 26.18 | 35.63 | 113.8 | 148.8 | 21.04 | 51.74 | 55.16 | 93.69 | 28.66 | |
K-S test | 0.21 | 0.25 | 0.13 | 0.14 | 0.24 | 0.13 | 0.17 | 0.13 | 0.28 | 0.36 | 0.17 | 0.17 | 0.32 | 0.24 | 0.14 | |
p-value | 0.53 | 0.35 | 0.95 | 0.93 | 0.4 | 0.95 | 0.76 | 0.96 | 0.21 | 0.047 | 0.8 | 0.81 | 0.11 | 0.37 | 0.94 | |
Korla2 | Min | 5.5 | 7.05 | 0.08 | 48.32 | 1.19 | 4.57 | 6.67 | 1.9 | 0 | 0 | 8.01 | 8.89 | 0 | 0 | 17.73 |
Max | 21.2 | 8.57 | 0.27 | 150.43 | 9.43 | 13.99 | 13.17 | 6.62 | 0.46 | 0.011 | 14.24 | 28.75 | 16.45 | 15.95 | 55.51 | |
Mean | 14.04 | 7.89 | 0.15 | 75.5 | 2.8 | 7.93 | 9.16 | 3.28 | 0.071 | 0.001 | 10.87 | 16.75 | 4.98 | 5.29 | 31.62 | |
Median | 13.4 | 7.93 | 0.13 | 72.6 | 2.14 | 7.36 | 8.73 | 3.25 | 0.025 | 0 | 11.01 | 16.43 | 4.93 | 4.95 | 29.64 | |
Std | 4.5 | 0.44 | 0.05 | 24.89 | 2.04 | 2.49 | 1.76 | 1.2 | 0.12 | 0.003 | 1.96 | 6.3 | 4.2 | 5.03 | 10.35 | |
CV | 32.08 | 5.61 | 31.74 | 32.97 | 72.96 | 31.38 | 19.2 | 36.56 | 169.272 | 290.887 | 18.06 | 37.61 | 84.3 | 95.19 | 32.73 | |
K-S test | 0.11 | 0.12 | 0.18 | 0.27 | 0.26 | 0.14 | 0.16 | 0.18 | 0.29 | 0.42 | 0.17 | 0.19 | 0.2 | 0.22 | 0.12 | |
p-value | 0.99 | 0.99 | 0.73 | 0.26 | 0.28 | 0.94 | 0.83 | 0.73 | 0.18 | 0.013 | 0.79 | 0.7 | 0.6 | 0.49 | 0.98 | |
Korla3 | Min | 15.5 | 7 | 0.11 | 52.14 | 2.31 | 4.07 | 5.93 | 2.24 | 0 | 0 | 8.01 | 0.01 | 0 | 0 | 21.04 |
Max | 29.3 | 8.06 | 0.21 | 118.5 | 6.11 | 15.47 | 11.57 | 6.31 | 0.916 | 0.003 | 34.39 | 30 | 20.49 | 0 | 45.31 | |
Mean | 24.31 | 7.52 | 0.16 | 86.64 | 4.04 | 10.29 | 8.95 | 3.95 | 0.089 | 0 | 13.37 | 17.5 | 3.99 | 0 | 30.96 | |
Median | 24.5 | 7.65 | 0.17 | 91.35 | 3.96 | 10.51 | 9.05 | 3.84 | 0.017 | 0 | 11.72 | 19.83 | 3.08 | 0 | 30.2 | |
Std | 3.84 | 0.37 | 0.03 | 19.8 | 1.02 | 2.77 | 1.78 | 1.05 | 0.24 | 0.001 | 6.52 | 7.77 | 5.48 | 0 | 5.55 | |
CV | 15.8 | 4.88 | 19.85 | 22.85 | 25.19 | 26.87 | 19.87 | 26.65 | 270.741 | 217.256 | 48.77 | 44.38 | 137.35 | / | 17.91 | |
K-S test | 0.17 | 0.19 | 0.22 | 0.17 | 0.17 | 0.21 | 0.13 | 0.15 | 0.45 | 0.45 | 0.34 | 0.16 | 0.3 | / | 0.17 | |
p-value | 0.78 | 0.67 | 0.49 | 0.76 | 0.77 | 0.56 | 0.95 | 0.9 | 0.006 | 0.007 | 0.08 | 0.86 | 0.15 | / | 0.81 | |
PuHui1 | Min | 20.3 | 7.63 | 0.43 | 242.54 | 5.8 | 7.32 | 23.43 | 9.81 | 0 | 0 | 23.88 | 121.49 | 6.66 | 0 | 20.35 |
Max | 34 | 8.39 | 4.52 | 2810.3 | 48.2 | 199.4 | 351.4 | 55.24 | 0.045 | 0.009 | 455.93 | 957.35 | 152.74 | 0 | 63.34 | |
Mean | 29.3 | 8.03 | 1.83 | 1123.4 | 16.07 | 78.38 | 158.9 | 26.15 | 0.008 | 0.002 | 124.22 | 543.69 | 39.49 | 0 | 32.8 | |
Median | 30.5 | 7.99 | 1.19 | 703.7 | 11.28 | 50.7 | 99.58 | 23.49 | 0 | 0.001 | 69.74 | 459.29 | 19.53 | 0 | 32.3 | |
Std | 4.42 | 0.25 | 1.32 | 839.6 | 12.42 | 56.97 | 130.4 | 13.35 | 0.015 | 0.002 | 132.07 | 321.32 | 49.3 | 0 | 10.97 | |
CV | 15.1 | 3.11 | 72 | 74.74 | 77.27 | 72.68 | 82.08 | 51.03 | 185.856 | 140.483 | 106.33 | 59.1 | 124.85 | / | 33.45 | |
K-S test | 0.22 | 0.2 | 0.23 | 0.23 | 0.37 | 0.23 | 0.28 | 0.18 | 0.4 | 0.31 | 0.26 | 0.22 | 0.35 | / | 0.18 | |
p-value | 0.49 | 0.61 | 0.45 | 0.43 | 0.039 | 0.44 | 0.23 | 0.73 | 0.023 | 0.13 | 0.3 | 0.47 | 0.06 | / | 0.72 | |
PuHui2 | Min | 22.4 | 7.43 | 0.81 | 472.83 | 8.33 | 86.18 | 18.12 | 12.57 | 0 | 0 | 49.82 | 144.47 | 6.75 | 0 | 25.51 |
Max | 40.8 | 8.47 | 1.42 | 843.97 | 15.44 | 184.4 | 55.26 | 21.59 | 0.026 | 0.007 | 170.49 | 293.74 | 35.5 | 0 | 51.35 | |
Mean | 34.14 | 8.16 | 1.13 | 665.75 | 11.83 | 140.2 | 35.3 | 18.02 | 0.003 | 0.002 | 141.37 | 241.97 | 17.34 | 0 | 39.53 | |
Median | 34.4 | 8.23 | 1.13 | 649.63 | 11.83 | 138.0 | 31.01 | 18.6 | 0 | 0.001 | 153.37 | 247.77 | 12.04 | 0 | 39.26 | |
Std | 5.51 | 0.26 | 0.17 | 97.09 | 2.02 | 31.13 | 10.6 | 2.81 | 0.008 | 0.002 | 32.87 | 40.13 | 9.11 | 0 | 7.4 | |
CV | 16.14 | 3.23 | 14.77 | 14.58 | 17.09 | 22.21 | 30.03 | 15.58 | 244.292 | 119.896 | 23.25 | 16.58 | 52.51 | / | 18.71 | |
K-S test | 0.16 | 0.2 | 0.1 | 0.1 | 0.1 | 0.16 | 0.2 | 0.15 | 0.51 | 0.42 | 0.24 | 0.14 | 0.26 | / | 0.13 | |
p-value | 0.84 | 0.63 | 1 | 1 | 1 | 0.85 | 0.63 | 0.89 | 0.001 | 0.014 | 0.36 | 0.94 | 0.3 | / | 0.97 |
Soil Attribute | Korla | PuHui1 | PuHui2 | All | ||||
---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |
Ca2+ | 0.337 | −0.139 | 0.243 | 0.317 | −0.067 | 0.441 | 0.273 | 0.285 |
Mg2+ | 0.351 | −0.035 | 0.326 | −0.090 | −0.086 | 0.382 | 0.333 | 0.007 |
Na+ | 0.337 | 0.099 | 0.255 | −0.304 | −0.381 | −0.179 | 0.281 | −0.271 |
K+ | 0.110 | −0.300 | 0.275 | 0.054 | −0.185 | −0.005 | 0.314 | 0.048 |
Fe | −0.065 | 0.461 | 0.280 | −0.095 | −0.076 | −0.003 | −0.080 | 0.435 |
Mn | −0.098 | 0.377 | 0.067 | 0.374 | −0.170 | 0.227 | 0.052 | 0.378 |
HCO3− | 0.017 | −0.274 | −0.082 | 0.037 | −0.013 | −0.144 | 0.055 | −0.302 |
CO32− | −0.076 | 0.303 | −0.000 | 0.000 | 0.000 | −0.000 | −0.121 | 0.214 |
Cl− | 0.331 | 0.124 | 0.324 | −0.127 | −0.357 | 0.140 | 0.322 | −0.041 |
SO42− | 0.348 | −0.038 | 0.256 | 0.302 | −0.341 | −0.029 | 0.311 | 0.154 |
NO3− | 0.250 | 0.187 | 0.333 | −0.049 | 0.025 | 0.440 | 0.290 | 0.203 |
pH | −0.030 | 0.363 | −0.128 | −0.397 | 0.005 | −0.394 | −0.001 | −0.055 |
TDS | 0.364 | 0.015 | 0.333 | 0.103 | −0.386 | 0.011 | 0.337 | 0.127 |
EC | 0.357 | 0.024 | 0.333 | 0.101 | −0.390 | 0.019 | 0.338 | 0.119 |
SWC | −0.097 | −0.274 | 0.218 | −0.122 | −0.320 | −0.095 | 0.244 | −0.228 |
SAR | 0.230 | 0.195 | 0.045 | −0.442 | −0.287 | −0.334 | 0.193 | −0.396 |
Cl−/SO42− | 0.020 | 0.245 | 0.187 | −0.384 | −0.211 | 0.254 | −0.022 | 0.254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, B.; Dong, R.; He, Y.; Liu, Y.; Zhao, Y. Influence of Groundwater Depth on Soil Ion Distribution in the Agricultural Irrigation Areas of Northwest China. Agriculture 2025, 15, 747. https://doi.org/10.3390/agriculture15070747
Peng B, Dong R, He Y, Liu Y, Zhao Y. Influence of Groundwater Depth on Soil Ion Distribution in the Agricultural Irrigation Areas of Northwest China. Agriculture. 2025; 15(7):747. https://doi.org/10.3390/agriculture15070747
Chicago/Turabian StylePeng, Borui, Rui Dong, Yujiang He, Ying Liu, and Yubin Zhao. 2025. "Influence of Groundwater Depth on Soil Ion Distribution in the Agricultural Irrigation Areas of Northwest China" Agriculture 15, no. 7: 747. https://doi.org/10.3390/agriculture15070747
APA StylePeng, B., Dong, R., He, Y., Liu, Y., & Zhao, Y. (2025). Influence of Groundwater Depth on Soil Ion Distribution in the Agricultural Irrigation Areas of Northwest China. Agriculture, 15(7), 747. https://doi.org/10.3390/agriculture15070747