Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,624)

Search Parameters:
Keywords = infection reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2135 KiB  
Article
Development of Yellow Rust-Resistant and High-Yielding Bread Wheat (Triticum aestivum L.) Lines Using Marker-Assisted Backcrossing Strategies
by Bekhruz O. Ochilov, Khurshid S. Turakulov, Sodir K. Meliev, Fazliddin A. Melikuziev, Ilkham S. Aytenov, Sojida M. Murodova, Gavkhar O. Khalillaeva, Bakhodir Kh. Chinikulov, Laylo A. Azimova, Alisher M. Urinov, Ozod S. Turaev, Fakhriddin N. Kushanov, Ilkhom B. Salakhutdinov, Jinbiao Ma, Muhammad Awais and Tohir A. Bozorov
Int. J. Mol. Sci. 2025, 26(15), 7603; https://doi.org/10.3390/ijms26157603 - 6 Aug 2025
Abstract
The fungal pathogen Puccinia striiformis f. sp. tritici, which causes yellow rust disease, poses a significant economic threat to wheat production not only in Uzbekistan but also globally, leading to substantial reductions in grain yield. This study aimed to develop yellow rust-resistance [...] Read more.
The fungal pathogen Puccinia striiformis f. sp. tritici, which causes yellow rust disease, poses a significant economic threat to wheat production not only in Uzbekistan but also globally, leading to substantial reductions in grain yield. This study aimed to develop yellow rust-resistance wheat lines by introgressing Yr10 and Yr15 genes into high-yielding cultivar Grom using the marker-assisted backcrossing (MABC) method. Grom was crossed with donor genotypes Yr10/6*Avocet S and Yr15/6*Avocet S, resulting in the development of F1 generations. In the following years, the F1 hybrids were advanced to the BC2F1 and BC2F2 generations using the MABC approach. Foreground and background selection using microsatellite markers (Xpsp3000 and Barc008) were employed to identify homozygous Yr10- and Yr15-containing genotypes. The resulting BC2F2 lines, designated as Grom-Yr10 and Grom-Yr15, retained key agronomic traits of the recurrent parent cv. Grom, such as spike length (13.0–11.9 cm) and spike weight (3.23–2.92 g). Under artificial infection conditions, the selected lines showed complete resistance to yellow rust (infection type 0). The most promising BC2F2 plants were subsequently advanced to homozygous BC2F3 lines harboring the introgressed resistance genes through marker-assisted selection. This study demonstrates the effectiveness of integrating molecular marker-assisted selection with conventional breeding methods to enhance disease resistance while preserving high-yielding traits. The newly developed lines offer valuable material for future wheat improvement and contribute to sustainable agriculture and food security. Full article
(This article belongs to the Special Issue Molecular Advances in Understanding Plant-Microbe Interactions)
Show Figures

Figure 1

20 pages, 1316 KiB  
Article
Immunocapture RT-qPCR Method for DWV-A Surveillance: Eliminating Hazardous Extraction for Screening Applications
by Krisztina Christmon, Eugene V. Ryabov, James Tauber and Jay D. Evans
Appl. Biosci. 2025, 4(3), 40; https://doi.org/10.3390/applbiosci4030040 - 6 Aug 2025
Abstract
Deformed wing virus (DWV) is a major contributor to honey bee colony losses, making effective monitoring essential for apiary management. Traditional DWV detection relies on hazardous RNA extraction followed by RT-qPCR, creating barriers for widespread surveillance. We developed an immunocapture RT-qPCR (IC-RT-PCR) method [...] Read more.
Deformed wing virus (DWV) is a major contributor to honey bee colony losses, making effective monitoring essential for apiary management. Traditional DWV detection relies on hazardous RNA extraction followed by RT-qPCR, creating barriers for widespread surveillance. We developed an immunocapture RT-qPCR (IC-RT-PCR) method for screening DWV-A infections by capturing intact virus particles from bee homogenates using immobilized antibodies. Validation demonstrated strong correlation with TRIzol®-based extraction (r = 0.821), with approximately 6 Ct reduced sensitivity, consistent with other published immunocapture methods. Performance was adequate for moderate–high viral loads, while TRIzol® showed superior detection for low-dose infections. Laboratory-produced reverse transcriptase showed equivalent performance to commercial enzymes, providing cost savings. IC-RT-PCR eliminates hazardous chemicals and offers a streamlined workflow for surveillance screening where the safety and cost benefits outweigh the sensitivity reduction. This method provides a practical alternative for large-scale DWV-A surveillance programs, while TRIzol® remains preferable for low-level detection and diagnostic confirmation. Full article
Show Figures

Figure 1

19 pages, 1579 KiB  
Article
Plasma-Treated Water Effect on Sporulating Bacillus cereus vs. Non-Sporulating Listeria monocytogenes Biofilm Cell Vitality
by Samantha Nestel, Robert Wagner, Mareike Meister, Thomas Weihe and Uta Schnabel
Appl. Microbiol. 2025, 5(3), 80; https://doi.org/10.3390/applmicrobiol5030080 - 5 Aug 2025
Abstract
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have [...] Read more.
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have compounding effects on the color, texture, flavor, and nutritional quality of the product or do not effectively reduce the pathogens that food can be exposed to. Some bacterial pathogens particularly possess traits and tactics that make them even more difficult to mitigate such as biofilm formation. Non-thermal plasma sanitation techniques, including plasma-treated water (PTW), have proven to be promising methods that significantly reduce pathogenic bacteria that food is exposed to. Published work reveals that PTW can effectively mitigate both gram-positive and gram-negative bacterial biofilms. This study presents a novel analysis of the differences in antimicrobial effects of PTW treatment between biofilm-forming gram-positive bacteria, commonly associated with foodborne illness, that are sporulating (Bacillus cereus) and non-sporulating (Listeria monocytogenes). After treatment with PTW, the results suggest the following hypotheses: (1) that the non-sporulating species experiences less membrane damage but a greater reduction in metabolic activity, leading to a possible viable but non-culturable (VBNC) state, and (2) that the sporulating species undergoes spore formation, which may subsequently convert into vegetative cells over time. PTW treatment on gram-positive bacterial biofilms that persist in food processing environments proves to be effective in reducing the proliferating abilities of the bacteria. However, the variance in PTW’s effects on metabolic activity and cell vitality between sporulating and non-sporulating species suggest that other survival tactics might be induced. This analysis further informs the application of PTW in food processing as an effective sanitation method. Full article
Show Figures

Graphical abstract

18 pages, 7274 KiB  
Article
Functional Compression Fabrics with Dual Scar-Suppressing and Antimicrobial Properties: Microencapsulation Design and Performance Evaluation
by Lihuan Zhao, Changjing Li, Mingzhu Yuan, Rong Zhang, Xinrui Liu, Xiuwen Nie and Bowen Yan
J. Funct. Biomater. 2025, 16(8), 287; https://doi.org/10.3390/jfb16080287 - 5 Aug 2025
Abstract
Pressure therapy combined with silicone has a significant effect on scar hyperplasia, but limitations such as long-term wearing of compression garments (CGs) can easily cause bacterial infection, cleanliness, and lifespan problems of CGs caused by the tedious operation of applying silicone. In this [...] Read more.
Pressure therapy combined with silicone has a significant effect on scar hyperplasia, but limitations such as long-term wearing of compression garments (CGs) can easily cause bacterial infection, cleanliness, and lifespan problems of CGs caused by the tedious operation of applying silicone. In this study, a compression garment fabric (CGF) with both inhibition of scar hyperplasia and antibacterial function was prepared. A polydimethylsiloxane (PDMS)-loaded microcapsule (PDMS-M) was prepared with chitosan quaternary ammonium salt (HACC) and sodium alginate (SA) as wall materials and PDMS as core materials by the complex coagulation method. The PDMS-Ms were finished on CGF and modified with (3-aminopropyl)triethoxysilane (APTES) to obtain PDMS-M CGF, which was further treated with HACC to produce PDMS-M-HACC CGF. X-ray Photoelectron Spectroscopy(XPS) and Fourier transform infrared spectroscopy (FTIR) analysis confirmed the formation of covalent bonding between PDMS-M and CGF. The PDMS-M CGF exhibited antibacterial rates of 94.2% against Gram-negative bacteria Escherichia coli (E. coli, AATCC 6538) and of 83.1% against Gram-positive bacteria Staphylococcus aureus (S. aureus, AATCC 25922). The antibacterial rate of PDMS-M-HACC CGF against both E. coli and S. aureus reached 99.9%, with wash durability reaching grade AA for E. coli and approaching grade A for S. aureus. The finished CGF maintained good biocompatibility and showed minimal reduction in moisture permeability compared to unfinished CGF, though with decreased elastic recovery, air permeability and softness. The finished CGF of this study is expected to improve the therapeutic effect of hypertrophic scars and improve the quality of life of patients with hypertrophic scars. Full article
Show Figures

Figure 1

16 pages, 1827 KiB  
Article
Mixed Candida albicansStaphylococcus aureus Biofilm Is Reduced by Light-Activated Nanocomposite with Phloxine B
by Jarmila Czucz Varga, Juraj Bujdák and Helena Bujdáková
J. Fungi 2025, 11(8), 582; https://doi.org/10.3390/jof11080582 - 5 Aug 2025
Abstract
Candida albicans and Staphylococcus aureus are opportunistic pathogens that cause life-threatening infections. This study focused on using photodynamic inactivation (PDI) to eliminate mixed biofilms of C. albicans–S. aureus formed on poly (urethane) (PU) discs functionalized with a nanocomposite layer containing phloxine B (PhB). [...] Read more.
Candida albicans and Staphylococcus aureus are opportunistic pathogens that cause life-threatening infections. This study focused on using photodynamic inactivation (PDI) to eliminate mixed biofilms of C. albicans–S. aureus formed on poly (urethane) (PU) discs functionalized with a nanocomposite layer containing phloxine B (PhB). Additionally, the effect of PDI on the ALS3 and HWP1 genes of C. albicans was examined in mixed biofilms. Spectral analysis showed a continuous release of PhB from the nanocomposite in Mueller–Hinton broth within 48 h, with a released amount of PhB < 5% of the total amount. The anti-biofilm effectiveness of the light-activated nanocomposite with PhB showed a reduction in the survival rate of biofilm cells to 0.35% and 31.79% for S. aureus and C. albicans, respectively, compared to the control biofilm on PU alone. Scanning electron microscopy images showed that the nanocomposite effectively reduced the colonization and growth of the mixed biofilm. While PDI reduced the regulation of the ALS3 gene, the HWP1 gene was upregulated. Nevertheless, the cell survival of the C. albicansS. aureus biofilm was significantly reduced, showing great potential for the elimination of mixed biofilms. Full article
Show Figures

Figure 1

13 pages, 2630 KiB  
Article
Photodynamic Therapy in the Management of MDR Candida spp. Infection Associated with Palatal Expander: In Vitro Evaluation
by Cinzia Casu, Andrea Butera, Alessandra Scano, Andrea Scribante, Sara Fais, Luisa Ladu, Alessandra Siotto-Pintor and Germano Orrù
Photonics 2025, 12(8), 786; https://doi.org/10.3390/photonics12080786 - 4 Aug 2025
Abstract
The aim of this work is to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) against oral MDR (multi-drug-resistant) Candida spp. infections related to orthodontic treatment with palatal expanders through in vitro study. Methods: PDT protocol: Curcumin + H2O2 was [...] Read more.
The aim of this work is to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) against oral MDR (multi-drug-resistant) Candida spp. infections related to orthodontic treatment with palatal expanders through in vitro study. Methods: PDT protocol: Curcumin + H2O2 was used as a photosensitizer activated by a 460 nm diode LED lamp, with an 8 mm blunt tip for 2 min in each spot of interest. In vitro simulation: A palatal expander sterile device was inserted into a custom-designed orthodontic bioreactor, realized with 10 mL of Sabouraud dextrose broth plus 10% human saliva and infected with an MDR C. albicans clinical isolate CA95 strain to reproduce an oral palatal expander infection. After 48 h of incubation at 37 °C, the device was treated with the PDT protocol. Two samples before and 5 min after the PDT process were taken and used to contaminate a Petri dish with a Sabouraud field to evaluate Candida spp. CFUs (colony-forming units). Results: A nearly 99% reduction in C. albicans colonies in the palatal expander biofilm was found after PDT. Conclusion: The data showed the effectiveness of using aPDT to treat palatal infection; however, specific patient oral micro-environment reproduction (Ph values, salivary flow, mucosal adhesion of photosensitizer) must be further analyzed. Full article
(This article belongs to the Section Biophotonics and Biomedical Optics)
Show Figures

Figure 1

17 pages, 972 KiB  
Article
SARS-CoV-2 Main Protease Dysregulates Hepatic Insulin Signaling and Glucose Uptake: Implications for Post-COVID-19 Diabetogenesis
by Praise Tatenda Nhau, Mlindeli Gamede, Andile Khathi and Ntethelelo Sibiya
Pathophysiology 2025, 32(3), 39; https://doi.org/10.3390/pathophysiology32030039 - 4 Aug 2025
Viewed by 29
Abstract
Background: There is growing evidence suggesting that SARS-CoV-2 may contribute to metabolic dysfunction. SARS-CoV-2 infection is associated with systemic inflammation, oxidative stress, and metabolic dysregulation, all of which may impair liver function and promote glucose intolerance. This study investigated the role of SARS-CoV-2, [...] Read more.
Background: There is growing evidence suggesting that SARS-CoV-2 may contribute to metabolic dysfunction. SARS-CoV-2 infection is associated with systemic inflammation, oxidative stress, and metabolic dysregulation, all of which may impair liver function and promote glucose intolerance. This study investigated the role of SARS-CoV-2, specifically its Main Protease (Mpro), in accelerating insulin resistance and metabolic dysfunction in HepG2 cells in vitro. Methods: HepG2 cells were treated with varying concentrations of Mpro (2.5, 5, 10, 20, 40, 80, and 160 nmol/mL) for 24 h to assess cytotoxicity and glucose uptake. Based on initial findings, subsequent assays focused on higher concentrations (40, 80, and 160 nmol/mL). The effects of Mpro on cell viability, protein kinase B (AKT) expression, matrix metallopeptidase-1 (MMP1), dipeptidyl peptidase 4 (DPP4), interleukin-6 (IL-6) expression, and lipid peroxidation were investigated. Results: Our findings reveal that the SARS-CoV-2 Mpro treatment led to a concentration-dependent reduction in glucose uptake in HepG2 cells. Additionally, the Mpro treatment was associated with reduced insulin-stimulated AKT activation, particularly at higher concentrations. Inflammatory markers such as IL-6 were elevated in the extracellular medium, while DPP4 expression was decreased. However, extracellular soluble DPP4 (sDPP4) levels did not show a significant change. Despite these changes, cell viability remained relatively unaffected, suggesting that the HepG2 cells were able to maintain overall metabolic functions under Mpro exposure. Conclusions: This study demonstrated the concentration-dependent impairment of hepatic glucose metabolism, insulin signaling, and inflammatory pathways in HepG2 cells acutely exposed to the SARS-CoV-2 Mpro. These findings warrant further investigation to explore the long-term metabolic effects of SARS-CoV-2 and its proteases in the liver and to develop potential therapeutic approaches for post-viral metabolic complications. Full article
Show Figures

Graphical abstract

16 pages, 5537 KiB  
Article
Different Light Wavelengths Differentially Influence the Progression of the Hypersensitive Response Induced by Pathogen Infection in Tobacco
by Bao Quoc Tran, Anh Trung Nguyen and Sunyo Jung
Antioxidants 2025, 14(8), 954; https://doi.org/10.3390/antiox14080954 (registering DOI) - 3 Aug 2025
Viewed by 115
Abstract
Using light-emitting diodes (LEDs), we examined how different light wavelengths influence the hypersensitive response (HR) in tobacco plants infected with Pseudomonas syringae pv. tomato (Pst). Pst-infiltrated plants exhibited greater resistance to Pst infection under green and blue light compared to white and red [...] Read more.
Using light-emitting diodes (LEDs), we examined how different light wavelengths influence the hypersensitive response (HR) in tobacco plants infected with Pseudomonas syringae pv. tomato (Pst). Pst-infiltrated plants exhibited greater resistance to Pst infection under green and blue light compared to white and red light, as indicated by reduced HR-associated programmed cell death, lower H2O2 production, and up to 64% reduction in membrane damage. During the late stage of HR, catalase and ascorbate peroxidase activities peaked under green and blue LEDs, with 5- and 10-fold increases, respectively, while superoxide dismutase activity was higher under white and red LEDs. Defense-related genes CHS1, PALa, PR1, and PR2 were more strongly induced by white and red light. The plants treated with green or blue LEDs during Pst infection prompted faster degradation of phototoxic Mg-porphyrins and exhibited smaller declines in Fv/Fm, electron transport rate, chlorophyll content, and LHCB expression compared to those treated with white or red LEDs. By contrast, the induction of the chlorophyll catabolic gene SGR was 54% and 77% lower in green and blue LEDs, respectively, compared to white LEDs. This study demonstrates that light quality differentially affects Pst-mediated HR, with green and blue light more effectively suppressing HR progression, mainly by reducing oxidative stress through enhanced antioxidative capacity and mitigation of photosynthetic impairments. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidant Defense in Crop Plants, 2nd Edition)
Show Figures

Figure 1

22 pages, 13770 KiB  
Article
Prediction Model of Powdery Mildew Disease Index in Rubber Trees Based on Machine Learning
by Jiazheng Zhu, Xize Huang, Xiaoyu Liang, Meng Wang and Yu Zhang
Plants 2025, 14(15), 2402; https://doi.org/10.3390/plants14152402 - 3 Aug 2025
Viewed by 184
Abstract
Powdery mildew, caused by Erysiphe quercicola, is one of the primary diseases responsible for the reduction in natural rubber production in China. This disease is a typical airborne pathogen, characterized by its ability to spread via air currents and rapidly escalate into [...] Read more.
Powdery mildew, caused by Erysiphe quercicola, is one of the primary diseases responsible for the reduction in natural rubber production in China. This disease is a typical airborne pathogen, characterized by its ability to spread via air currents and rapidly escalate into an epidemic under favorable environmental conditions. Accurate prediction and determination of the prevention and control period represent both a critical challenge and key focus area in managing rubber-tree powdery mildew. This study investigates the effects of spore concentration, environmental factors, and infection time on the progression of powdery mildew in rubber trees. By employing six distinct machine learning model construction methods, with the disease index of powdery mildew in rubber trees as the response variable and spore concentration, temperature, humidity, and infection time as predictive variables, a preliminary predictive model for the disease index of rubber-tree powdery mildew was developed. Results from indoor inoculation experiments indicate that spore concentration directly influences disease progression and severity. Higher spore concentrations lead to faster disease development and increased severity. The optimal relative humidity for powdery mildew development in rubber trees is 80% RH. At varying temperatures, the influence of humidity on the disease index differs across spore concentration, exhibiting distinct trends. Each model effectively simulates the progression of powdery mildew in rubber trees, with predicted values closely aligning with observed data. Among the models, the Kernel Ridge Regression (KRR) model demonstrates the highest accuracy, the R2 values for the training set and test set were 0.978 and 0.964, respectively, while the RMSE values were 4.037 and 4.926, respectively. This research provides a robust technical foundation for reducing the labor intensity of traditional prediction methods and offers valuable insights for forecasting airborne forest diseases. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

14 pages, 731 KiB  
Article
Effectiveness of the Human Papillomavirus Vaccine in Extended Age Groups: A Real-World Analysis Based on the Korean HPV Cohort Study
by Heekyoung Song, Sanha Lee, Suein Choi and Soo Young Hur
Cancers 2025, 17(15), 2561; https://doi.org/10.3390/cancers17152561 - 3 Aug 2025
Viewed by 272
Abstract
Background/Objectives: This study evaluated the real-world effectiveness of prophylactic Human Papillomavirus (HPV) vaccination in Korean women aged over 26 years, focusing on its impact on persistent HPV infection and disease progression. Methods: This multicenter prospective study analyzed data from the Korea HPV Cohort [...] Read more.
Background/Objectives: This study evaluated the real-world effectiveness of prophylactic Human Papillomavirus (HPV) vaccination in Korean women aged over 26 years, focusing on its impact on persistent HPV infection and disease progression. Methods: This multicenter prospective study analyzed data from the Korea HPV Cohort (2010–2021). After applying exclusion criteria, the final analytical cohort included 1,231 women aged ≥ 27 years with cytologic findings of atypical squamous cells of undetermined significance/low-grade squamous intraepithelial lesions and HPV infection. Propensity score matching was used to compare vaccinated (n = 340) and unvaccinated (n = 891) participants. After matching, 273 vaccinated and 273 unvaccinated individuals were included in the final analysis. The primary outcomes were persistent HPV infection and progression to biopsy-confirmed cervical intraepithelial neoplasia grade 2 or worse (CIN2+). Logistic and Cox regression models were employed, with additional age-stratified analyses. Results: Among women aged 27–39 years, vaccination was significantly associated with a 54% reduction in the odds of persistent HPV infection (odds ratio = 0.46; 95% CI: 0.22–0.96; p = 0.040). In the full cohort, vaccinated participants had a 62% lower risk of progression to CIN2+ compared with unvaccinated participants (hazard ratio = 0.38; 95% CI: 0.18–0.81; p = 0.011). Body mass index had a notable impact on HPV persistence in HPV 16/18 genotype groups. Conclusions: HPV vaccination effectively reduced persistent infection and progression to CIN2+ in Korean women, particularly those vaccinated before age 40. These findings support the age-extended HPV vaccination policies in South Korea. Full article
(This article belongs to the Section Cancer Epidemiology and Prevention)
Show Figures

Figure 1

19 pages, 1070 KiB  
Review
Nasal Irrigations: A 360-Degree View in Clinical Practice
by Luca Pecoraro, Elisabetta Di Muri, Gianluca Lezzi, Silvia Picciolo, Marta De Musso, Michele Piazza, Mariangela Bosoni and Flavia Indrio
Medicina 2025, 61(8), 1402; https://doi.org/10.3390/medicina61081402 - 1 Aug 2025
Viewed by 394
Abstract
Nasal irrigation (NI) is an effective, safe, low-cost strategy for treating and preventing upper respiratory tract diseases. High-volume, low-pressure saline irrigations are the most efficient method for removing infectious agents, allergens, and inflammatory mediators. This article reviews clinical evidence supporting NI use in [...] Read more.
Nasal irrigation (NI) is an effective, safe, low-cost strategy for treating and preventing upper respiratory tract diseases. High-volume, low-pressure saline irrigations are the most efficient method for removing infectious agents, allergens, and inflammatory mediators. This article reviews clinical evidence supporting NI use in various conditions: nasal congestion in infants, recurrent respiratory infections, acute and chronic rhinosinusitis, allergic and gestational rhinitis, empty nose syndrome, and post-endoscopic sinus surgery care. NI improves symptoms, reduces recurrence, enhances the efficacy of topical drugs, and decreases the need for antibiotics and decongestants. During the COVID-19 pandemic, NI has also been explored as a complementary measure to reduce viral load. Due to the safe profile and mechanical cleansing action on inflammatory mucus, nasal irrigations represent a valuable adjunctive treatment across a wide range of sinonasal conditions. Full article
Show Figures

Figure 1

18 pages, 1404 KiB  
Article
Comparative Analysis of the Long-Term Real-World Efficacy of Interleukin-17 Inhibitors in a Cohort of Patients with Moderate-to-Severe Psoriasis Treated in Poland
by Wiktor Kruczek, Aleksandra Frątczak, Iga Litwińska-Inglot, Karina Polak, Zuzanna Pawlus, Paulina Rutecka, Beata Bergler-Czop and Bartosz Miziołek
J. Clin. Med. 2025, 14(15), 5421; https://doi.org/10.3390/jcm14155421 - 1 Aug 2025
Viewed by 142
Abstract
Background: Bimekizumab, secukinumab, and ixekizumab are IL-17-targeting biologics approved for the treatment of moderate-to-severe plaque psoriasis. While secukinumab and ixekizumab selectively inhibit IL-17A, bimekizumab targets both IL-17A and IL-17F, potentially providing greater anti-inflammatory efficacy. This study aimed to compare the real-world effectiveness, [...] Read more.
Background: Bimekizumab, secukinumab, and ixekizumab are IL-17-targeting biologics approved for the treatment of moderate-to-severe plaque psoriasis. While secukinumab and ixekizumab selectively inhibit IL-17A, bimekizumab targets both IL-17A and IL-17F, potentially providing greater anti-inflammatory efficacy. This study aimed to compare the real-world effectiveness, safety, and tolerability of these agents in a Polish dermatology center between 2019 and 2024. Methods: We conducted a retrospective analysis of 98 patients meeting at least one of the following criteria: PASI ≥ 10, BSA ≥ 10, DLQI ≥ 10, or involvement of special areas with inadequate response or contraindications to ≥2 systemic therapies. Patients with prior exposure only to IL-17 inhibitors were excluded. PASI, BSA, and DLQI scores were recorded at baseline, week 4, and week 12. Due to differences in dosing schedules, outcomes were aligned using standardized timepoints and exponential modeling of continuous response trajectories. Mixed-effects ANOVA was used to assess the influence of baseline factors (age, BMI, PsA status) on treatment outcomes. Adverse events were documented at each monthly follow-up visit. Results: Bimekizumab showed the greatest effect size for PASI reduction (Hedges’ g = 3.662), followed by secukinumab (2.813) and ixekizumab (1.986). Exponential modeling revealed a steeper response trajectory with bimekizumab (intercept = 0.289), suggesting a more rapid PASI improvement. The efficacy of bimekizumab was particularly notable in patients who were previously treated with IL-23 inhibitors. All three agents demonstrated favorable safety profiles, with no serious adverse events or discontinuations. The most frequent adverse events were mild and included upper respiratory tract infections and oral candidiasis. Conclusions: This real-world analysis confirmed that IL-17 inhibitors effectively improved PASI, BSA, and DLQI scores in moderate-to-severe psoriasis. Bimekizumab demonstrated the most rapid early improvements and a higher modeled likelihood of complete clearance, without significant differences at week 12. All agents were well tolerated, underscoring the need for further individualized, large-scale studies. Full article
Show Figures

Figure 1

13 pages, 453 KiB  
Article
The Path of Bronchiolitis Towards Intensive Care: Risk Factor Analysis in a Large Italian Cohort
by Marco Maglione, Luca Pierri, Fabio Savoia, Camilla Calì, Roberta Ragucci, Marco Sarno, Giulia Ranucci, Emma Coppola, Francesco Nunziata, Antonino Di Toro, Vincenzo Tipo, Antonietta Giannattasio and the BRAND Study
J. Clin. Med. 2025, 14(15), 5420; https://doi.org/10.3390/jcm14155420 - 1 Aug 2025
Viewed by 176
Abstract
Background/Objectives: Bronchiolitis is the leading cause of hospitalization in infants under 12 months. While often self-limiting, a subset of cases evolves into severe disease requiring intensive care. This study aimed to identify risk factors for severe bronchiolitis in two consecutive respiratory syncytial virus [...] Read more.
Background/Objectives: Bronchiolitis is the leading cause of hospitalization in infants under 12 months. While often self-limiting, a subset of cases evolves into severe disease requiring intensive care. This study aimed to identify risk factors for severe bronchiolitis in two consecutive respiratory syncytial virus (RSV) seasons (before and after the introduction of nirsevimab) in Southern Italy. Methods: A retrospective, multicenter cohort study was conducted on all infants ≤12 months hospitalized with bronchiolitis from October 2023 to March 2025. Patients were categorized by disease severity: those requiring Sub-Intensive or Intensive Care (IC group) and others (n-IC group). Demographic and clinical data, virological testing, and therapeutic interventions were analyzed. Multivariable logistic regression was used to identify independent risk factors for severe disease. Results: Among 1056 hospitalized infants, 10.5% required intensive care. RSV was detected in 73.5% of tested patients and was significantly associated with severe outcomes. Independent risk factors for IC admission included younger age (<3 months), comorbidities, and RSV infection. A 33% reduction in bronchiolitis admissions was observed in the second season (post-nirsevimab), although the rate of severe cases remained stable (about 10% in both seasons). Conclusions: Younger age, comorbidities, and RSV infection are significant predictors of severe bronchiolitis. Although overall admissions decreased post-nirsevimab, severe cases persisted. These findings underscore the need for targeted preventive strategies and highlight the potential role of intermediate care approaches in managing bronchiolitis severity. Full article
(This article belongs to the Section Intensive Care)
Show Figures

Figure 1

24 pages, 6020 KiB  
Article
Seasonal Patterns of Preterm Birth During the COVID-19 Pandemic: A Retrospective Cohort Study in Romania
by Paula Trif, Cristian Sava, Diana Mudura, Boris W. Kramer, Radu Galiș, Maria Livia Ognean, Alin Iuhas and Claudia Maria Jurca
Medicina 2025, 61(8), 1398; https://doi.org/10.3390/medicina61081398 - 1 Aug 2025
Viewed by 199
Abstract
Background and Objectives: Preterm birth and stillbirth are primary adverse pregnancy outcomes. Research during the COVID-19 pandemic revealed reductions in preterm birth in some countries, while stillbirth rates increased or remained unchanged. These findings suggest the presence of preventable risk factors associated with [...] Read more.
Background and Objectives: Preterm birth and stillbirth are primary adverse pregnancy outcomes. Research during the COVID-19 pandemic revealed reductions in preterm birth in some countries, while stillbirth rates increased or remained unchanged. These findings suggest the presence of preventable risk factors associated with changes in physical activity and lower exposure to community-acquired infections due to lockdown measures, altered social interaction patterns or reduced access to antenatal care. Assessing seasonal variation may offer insights into whether lifestyle changes during the COVID-19 lockdown period influenced preterm birth rates. Materials and Methods: This retrospective cohort study used data from the electronic medical records of Bihor and Sibiu counties. Preterm deliveries (<37 weeks) and stillbirths during the COVID-19 pandemic (2020 and 2021) were compared with the corresponding pre-pandemic (2018 and 2019) and post-pandemic (2022 and 2023) period. Preterm birth rates during summer and winter in the pre-pandemic, pandemic, and post-pandemic years were analyzed. A comparison with rates during strict lockdown was made. Results: Out of 52,021 newborn infants, 4473 were born preterm. Preterm birth rates remained stable across all three periods (p = 0.13), and no significant seasonal pattern was identified (p = 0.65). In contrast, stillbirth rates increased notably during the strict lockdown period, with the median incidence almost doubling compared to other periods (0.87%, p = 0.05), while remaining unchanged during the rest of the pandemic (p = 0.52). Conclusions: Our study found that preterm birth rates remained unaffected by the pandemic and lockdown periods, while stillbirths increased significantly during the strict lockdown. These findings highlight the importance of maintaining access to timely antenatal care during public health emergencies to prevent adverse perinatal outcomes. Full article
(This article belongs to the Special Issue Advances in Obstetrics and Maternal-Fetal Medicine)
Show Figures

Figure 1

15 pages, 3443 KiB  
Article
Evaluating the Potential of Cuscuta japonica as Biological Control Agent for Derris trifoliata Management in Mangrove Forests
by Huiying Wu, Yunhong Xue and Wenai Liu
Forests 2025, 16(8), 1250; https://doi.org/10.3390/f16081250 - 1 Aug 2025
Viewed by 187
Abstract
Climbing vines have recently induced increasing threats to forest growth under favourable environmental changes. In mangrove forests, the native vine Derris trifoliata became invasive and is now one of the main threats. Yet current management relies on manual removal with low efficiency. Exploring [...] Read more.
Climbing vines have recently induced increasing threats to forest growth under favourable environmental changes. In mangrove forests, the native vine Derris trifoliata became invasive and is now one of the main threats. Yet current management relies on manual removal with low efficiency. Exploring an alternative, cost-effective method is required. To assess the potential of a proposed biological control method, this study performed a pot-plant experiment using Cuscuta japonica to infect D. trifoliata and three common mangrove species in Beihai, China. Results showed that D. trifoliata had a higher infection rate and high host mortality (90%) than mangrove (0%). It also had significantly decreased moisture by 4%, nitrogen by 14%, phosphorus by 27%, potassium by 49% and increased soluble sugar by 49% and protein by 20%, whereas only moisture (2% reduction) and one or two minerals of Excoecaria agallocha and Aegiceras corniculatum were influenced. Only Kandelia obovata had neither effective haustoria nor any nutrients impact from the infection. This study indicated that C. japonica can cause more damage to D. trifoliata than to mangrove species and has the potential to be used as a biological control agent for the threatened mangrove forests of A. corniculatum and K. obovata with monitoring and control. Further field tests are required to bring this method into practice. Full article
(This article belongs to the Special Issue Forest Invasive Species: Distribution, Control and Management)
Show Figures

Figure 1

Back to TopTop