Mixed Candida albicans–Staphylococcus aureus Biofilm Is Reduced by Light-Activated Nanocomposite with Phloxine B
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterization of Microorganisms
2.2. Preparation of Functionalized Organoclay Films and Composites with Polymer
2.3. Phloxine B Release from Composite
2.4. Spectral Characterization of the Film and the Composites
2.5. Formation of 24 h Dual Biofilm
2.6. PDI of Dual Biofilm C. albicans–S. aureus
2.7. PDI of Biofilms Formed on Nanocomposite
2.8. Scanning Electron Microscopy
2.9. Isolation of RNA from Nanocomposites and Reverse Transcription to cDNA
2.10. Expression of the ALS3 and HWP1 Genes in C. albicans
2.11. Statistical Analysis
3. Results
3.1. Kinetics of PhB Release from Composite
3.2. Spectral Characterization of the Film on Membrane and Nanocomposites
3.3. Effectiveness of PhB After PDI
3.4. Relative Change in Expression of the ALS3 and HWP1 Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soll, D.R. White-Opaque Switching in Candida albicans: Cell Biology, Regulation, and Function. Microbiol. Mol. Biol. Rev. 2024, 88, e00043-22. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, W.; Zhong, J.; Liu, X. Inhibitory Effects and Mode of Antifungal Action of Isobavachalcone on Candida albicans Growth and Virulence Factors. Biomed. Pharmacother. 2024, 179, 117352. [Google Scholar] [CrossRef] [PubMed]
- Schille, T.B.; Sprague, J.L.; Naglik, J.R.; Brunke, S.; Hube, B. Commensalism and Pathogenesis of Candida albicans at the Mucosal Interface. Nat. Rev. Microbiol. 2025, 23, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef]
- Rodrigues, M.E.; Gomes, F.; Rodrigues, C.F. Candida spp./Bacteria Mixed Biofilms. J. Fungi 2019, 6, 5. [Google Scholar] [CrossRef]
- Baharvand, R.; Fallah, F.; Jafari, P.; Azimi, L. Co-Colonization of Methicillin-Resistant Staphylococcus aureus and Candida spp. in Children with Malignancies. AMB Expr. 2024, 14, 22. [Google Scholar] [CrossRef]
- Juszczak, M.; Zawrotniak, M.; Rapala-Kozik, M. Complexation of Fungal Extracellular Nucleic Acids by Host LL-37 Peptide Shapes Neutrophil Response to Candida albicans Biofilm. Front. Immunol. 2024, 15, 1295168. [Google Scholar] [CrossRef]
- Peters, B.M.; Ovchinnikova, E.S.; Krom, B.P.; Schlecht, L.M.; Zhou, H.; Hoyer, L.L.; Busscher, H.J.; van der Mei, H.C.; Jabra-Rizk, M.A.; Shirtliff, M.E. Staphylococcus aureus Adherence to Candida albicans Hyphae Is Mediated by the Hyphal Adhesin Als3p. Microbiology 2012, 158, 2975–2986. [Google Scholar] [CrossRef]
- Lee, C.-H.; Wu, C.-J.; Yen, F.-Y.; Chiang, J.-Y.; Shen, T.-J.; Leu, S.-J.; Chang, C.-R.; Lo, H.-J.; Tsai, B.-Y.; Mao, Y.-C.; et al. Identification of Chicken-Derived Antibodies Targeting the Candida albicans Als3 Protein. Appl. Microbiol. Biotechnol. 2025, 109, 85. [Google Scholar] [CrossRef]
- Hoyer, L.L.; Payne, T.L.; Bell, M.; Myers, A.M.; Scherer, S. Candida albicans ALS3 and Insights into the Nature of the ALS Gene Family. Curr. Genet. 1998, 33, 451–459. [Google Scholar] [CrossRef]
- Liu, Y.; Filler, S.G. Candida albicans Als3, a Multifunctional Adhesin and Invasin. Eukaryot. Cell 2011, 10, 168–173. [Google Scholar] [CrossRef]
- Ramage, G.; Kean, R.; Rautemaa-Richardson, R.; Williams, C.; Lopez-Ribot, J.L. Fungal Biofilms in Human Health and Disease. Nat. Rev. Microbiol. 2025, 23, 355–370. [Google Scholar] [CrossRef]
- Sundstrom, P. Adhesion in Candida spp. Cell Microbiol. 2002, 4, 461–469. [Google Scholar] [CrossRef]
- Nobile, C.J.; Nett, J.E.; Andes, D.R.; Mitchell, A.P. Function of Candida albicans Adhesin Hwp1 in Biofilm Formation. Eukaryot. Cell 2006, 5, 1604–1610. [Google Scholar] [CrossRef] [PubMed]
- Dühring, S.; Schuster, S. Studying Mixed-Species Biofilms of Candida albicans and Staphylococcus aureus Using Evolutionary Game Theory. PLoS ONE 2024, 19, e0297307. [Google Scholar] [CrossRef] [PubMed]
- Kurakado, S.; Matsumoto, Y.; Eshima, S.; Sugita, T. Antimicrobial Tolerance in Cross-Kingdom Dual-Species Biofilms Formed by Fungi and Bacteria. Med. Mycol. J. 2024, 65, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.L.; Albin, O.R.; Mobley, H.L.T.; Bachman, M.A. Bloodstream Infections: Mechanisms of Pathogenesis and Opportunities for Intervention. Nat. Rev. Microbiol. 2025, 23, 210–224. [Google Scholar] [CrossRef]
- Ozkan, E.; Allan, E.; Parkin, I.P. White-Light-Activated Antibacterial Surfaces Generated by Synergy between Zinc Oxide Nanoparticles and Crystal Violet. ACS Omega 2018, 3, 3190–3199. [Google Scholar] [CrossRef]
- Baz, A.; Bakri, A.; Butcher, M.; Short, B.; Ghimire, B.; Gaur, N.; Jenkins, T.; Short, R.D.; Riggio, M.; Williams, C.; et al. Staphylococcus aureus Strains Exhibit Heterogenous Tolerance to Direct Cold Atmospheric Plasma Therapy. Biofilm 2023, 5, 100123. [Google Scholar] [CrossRef]
- Kendra, S.; Czucz Varga, J.; Gaálová-Radochová, B.; Bujdáková, H. Practical Application of PMA–qPCR Assay for Determination of Viable Cells of Inter-Species Biofilm of Candida albicans–Staphylococcus aureus. Biol. Methods Protoc. 2024, 9, bpae081. [Google Scholar] [CrossRef]
- Dadi, N.C.T.; Bujdák, J.; Medvecká, V.; Pálková, H.; Barlog, M.; Bujdáková, H. Surface Characterization and Anti-Biofilm Effectiveness of Hybrid Films of Polyurethane Functionalized with Saponite and Phloxine B. Materials 2021, 14, 7583. [Google Scholar] [CrossRef] [PubMed]
- Afrasiabi, S.; Benedicenti, S.; Signore, A.; Arshad, M.; Chiniforush, N. Simultaneous Dual-Wavelength Laser Irradiation against Implant-Adherent Biofilms of Staphylococcus aureus, Escherichia coli, and Candida albicans for Improved Antimicrobial Photodynamic Therapy. Bioengineering 2024, 11, 48. [Google Scholar] [CrossRef]
- Bilská, K.; Bujdák, J.; Bujdáková, H. Nanocomposite System with Photoactive Phloxine B Eradicates Resistant Staphylococcus aureus. Heliyon 2024, 10, e33660. [Google Scholar] [CrossRef]
- Bugyna, L.; Bilská, K.; Boháč, P.; Pribus, M.; Bujdák, J.; Bujdáková, H. Anti-Biofilm Effect of Hybrid Nanocomposite Functionalized with Erythrosine B on Staphylococcus aureus Due to Photodynamic Inactivation. Molecules 2024, 29, 3917. [Google Scholar] [CrossRef]
- Souza, B.M.N.; Miñán, A.G.; Brambilla, I.R.; Pinto, J.G.; Garcia, M.T.; Junqueira, J.C.; Ferreira-Strixino, J. Effects of Antimicrobial Photodynamic Therapy with Photodithazine® on Methicillin-Resistant Staphylococcus aureus (MRSA): Studies in Biofilms and Experimental Model with Galleria mellonella. J. Photochem. Photobiol. B Biol. 2024, 252, 112860. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Hamblin, M.R.; Wang, H.; Fekrazad, R.; Wang, C.; Wen, X. Rose Bengal Diacetate-Mediated Antimicrobial Photodynamic Inactivation: Potentiation by Potassium Iodide and Acceleration of Wound Healing in MRSA-Infected Diabetic Mice. BMC Microbiol. 2024, 24, 246. [Google Scholar] [CrossRef]
- Adnan, R.O.; Jawad, H.A. Antimicrobial Photodynamic Therapy Using a Low-Power 650 Nm Laser to Inhibit Oral Candida albicans Activity: An in Vitro Study. J. Med. Life 2024, 17, 28–34. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, E.; Di Lodovico, S.; Pierfelice, T.V.; Tripodi, D.; Piattelli, A.; Iezzi, G.; Petrini, M.; D’Ercole, S. What Is the Impact of Antimicrobial Photodynamic Therapy on Oral Candidiasis? An In Vitro Study. Gels 2024, 10, 110. [Google Scholar] [CrossRef]
- Farah, N.; Lim, C.W.; Chin, V.K.; Chong, P.P.; Basir, R.; Yeo, W.W.Y.; Tay, S.T.; Choo, S.; Lee, T.Y. Photoactivated Riboflavin Inhibits Planktonic and Biofilm Growth of Candida albicans and Non-Albicans candida Species. Microb. Pathog. 2024, 191, 106665. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic Therapy—Mechanisms, Photosensitizers and Combinations. Biomed. Pharmacother. 2018, 106, 1098–1107. [Google Scholar] [CrossRef]
- Gomes Guimarães, G.; Alves, F.; Gonçalves, I.; Silva e Carvalho, I.; Toneth Ponce Ayala, E.; Pratavieira, S.; Salvador Bagnato, V. The Synergistic Effect of Photodynamic and Sonodynamic Inactivation against Candida albicans Biofilm. J. Biophotonics 2024, 17, e202400190. [Google Scholar] [CrossRef]
- Alcantara-Licudine, J.P.; Bui, N.L.; Kawate, M.K.; Li, Q.X. Analysis or Phloxine B and Uranine in Coffee by High-Performance Liquid Chromatography and Capillary Zone Electrophoresis after Solid Phase Extraction Cleanup. J. Agric. Food Chem. 1998, 46, 1005–1011. [Google Scholar] [CrossRef]
- Dadi, N.C.t.; Dohál, M.; Medvecká, V.; Bujdák, J.; Koči, K.; Zahoranová, A.; Bujdáková, H. Physico-Chemical Characterization and Antimicrobial Properties of Hybrid Film Based on Saponite and Phloxine B. Molecules 2021, 26, 325. [Google Scholar] [CrossRef]
- Myles, E.; D’Sa, R.A.; Aveyard, J. Antimicrobial Nitric Oxide Releasing Gelatin Nanoparticles to Combat Drug Resistant Bacterial and Fungal Infections. Nanoscale Adv. 2025, 7, 3096–3113. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, H.; Hu, H.; Li, W.; Zhang, X.; Zhang, X. Composite Film Based on Carboxymethyl Cellulose and Gellan Gum with Honokiol-β-Cyclodextrin Inclusion Complex: Characterization and Application in Strawberry Preservation. Int. J. Biol. Macromol. 2024, 282, 136740. [Google Scholar] [CrossRef]
- Gillum, A.M.; Tsay, E.Y.; Kirsch, D.R. Isolation of the Candida albicans Gene for Orotidine-5′-Phosphate Decarboxylase by Complementation of S. cerevisiae Ura3 and E. coli pyrF Mutations. Mol. Gen. Genet. 1984, 198, 179–182. [Google Scholar] [CrossRef]
- Gaálová-Radochová, B.; Kendra, S.; Jordao, L.; Kursawe, L.; Kikhney, J.; Moter, A.; Bujdáková, H. Effect of Quorum Sensing Molecule Farnesol on Mixed Biofilms of Candida albicans and Staphylococcus aureus. Antibiotics 2023, 12, 441. [Google Scholar] [CrossRef]
- Green, C.B.; Zhao, X.; Yeater, K.M.; Hoyer, L.L. Construction and Real-Time RT-PCR Validation of Candida albicans PALS-GFP Reporter Strains and Their Use in Flow Cytometry Analysis of ALS Gene Expression in Budding and Filamenting Cells. Microbiology 2005, 151, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Nailis, H.; Kucharíková, S.; Řičicová, M.; Van Dijck, P.; Deforce, D.; Nelis, H.; Coenye, T. Real-Time PCR Expression Profiling of Genes Encoding Potential Virulence Factors in Candida albicans Biofilms: Identification of Model-Dependent and -Independent Gene Expression. BMC Microbiol. 2010, 10, 114. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Carolus, H.; Van Dyck, K.; Van Dijck, P. Candida albicans and Staphylococcus Species: A Threatening Twosome. Front. Microbiol. 2019, 10, 2162. [Google Scholar] [CrossRef]
- Todd, O.A.; Peters, B.M. Candida albicans and Staphylococcus aureus Pathogenicity and Polymicrobial Interactions: Lessons beyond Koch’s Postulates. J. Fungi 2019, 5, 81. [Google Scholar] [CrossRef]
- Zago, C.E.; Silva, S.; Sanitá, P.V.; Barbugli, P.A.; Dias, C.M.I.; Lordello, V.B.; Vergani, C.E. Dynamics of Biofilm Formation and the Interaction between Candida albicans and Methicillin-Susceptible (MSSA) and -Resistant Staphylococcus aureus (MRSA). PLoS ONE 2015, 10, e0123206. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Sun, J.; Liu, Y. Understanding Bacterial Biofilms: From Definition to Treatment Strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef] [PubMed]
- Cavalheiro, M.; Teixeira, M.C. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front. Med. 2018, 5, 28. [Google Scholar] [CrossRef]
- Mi, L.; Xu, T.; Peng, Y.-Y.; Strakhovskaya, M.G.; Zhang, Y.-J.; Meerovich, G.A.; Nyokong, T.; Yan, Y.-J.; Chen, Z.-L. Tetracationic Tetraaryltetranaphtho[2,3]Porphyrins for Photodynamic Inactivation against Staphylococcus aureus Biofilm. Eur. J. Med. Chem. 2025, 290, 117558. [Google Scholar] [CrossRef]
- Öztürk, İ.; Özel, D.; Doğan, Ş.; Tunçel, A.; Yurt, F.; Tekintaş, Y.; Kübra Demircioglu, P.; Ince, M. Unveiling Combat Strategies against Candida spp. Biofilm Structures: Demonstration of Photodynamic Inactivation with Innovative Phthalocyanine Derivatives. J. Photochem. Photobiol. A Chem. 2024, 454, 115746. [Google Scholar] [CrossRef]
- Pereira, C.A.; Romeiro, R.L.; Costa, A.C.B.P.; Machado, A.K.S.; Junqueira, J.C.; Jorge, A.O.C. Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans Biofilms to Photodynamic Inactivation: An in Vitro Study. Lasers Med. Sci. 2011, 26, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Beirão, S.; Fernandes, S.; Coelho, J.; Faustino, M.A.F.; Tomé, J.P.C.; Neves, M.G.P.M.S.; Tomé, A.C.; Almeida, A.; Cunha, A. Photodynamic Inactivation of Bacterial and Yeast Biofilms with a Cationic Porphyrin. Photochem. Photobiol. 2014, 90, 1387–1396. [Google Scholar] [CrossRef]
- Harriott, M.M.; Noverr, M.C. Candida albicans and Staphylococcus aureus Form Polymicrobial Biofilms: Effects on Antimicrobial Resistance. Antimicrob. Agents Chemother. 2009, 53, 3914–3922. [Google Scholar] [CrossRef]
- Tabassum, N.; Khan, F.; Kang, M.-G.; Jo, D.-M.; Cho, K.-J.; Kim, Y.-M. Inhibition of Polymicrobial Biofilms of Candida albicans–Staphylococcus aureus/Streptococcus mutans by Fucoidan–Gold Nanoparticles. Mar. Drugs 2023, 21, 123. [Google Scholar] [CrossRef]
- Bonvicini, F.; Belluti, F.; Bisi, A.; Gobbi, S.; Manet, I.; Gentilomi, G.A. Improved Eradication Efficacy of a Combination of Newly Identified Antimicrobial Agents in C. albicans and S. aureus Mixed-Species Biofilm. Res. Microbiol. 2021, 172, 103873. [Google Scholar] [CrossRef] [PubMed]
- Prażmo, E.J.; Godlewska, R.A.; Mielczarek, A.B. Effectiveness of Repeated Photodynamic Therapy in the Elimination of Intracanal Enterococcus Faecalis Biofilm: An in Vitro Study. Lasers Med. Sci. 2017, 32, 655–661. [Google Scholar] [CrossRef]
- Quishida, C.C.C.; de Oliveira Mima, E.G.; Dovigo, L.N.; Jorge, J.H.; Bagnato, V.S.; Pavarina, A.C. Photodynamic Inactivation of a Multispecies Biofilm Using Photodithazine® and LED Light after One and Three Successive Applications. Lasers Med. Sci. 2015, 30, 2303–2312. [Google Scholar] [CrossRef]
- Dias, L.M.; Klein, M.I.; Ferrisse, T.M.; Medeiros, K.S.; Jordão, C.C.; Bellini, A.; Pavarina, A.C. The Effect of Sub-Lethal Successive Applications of Photodynamic Therapy on Candida albicans Biofilm Depends on the Photosensitizer. J. Fungi 2023, 9, 111. [Google Scholar] [CrossRef]
- Jordão, C.C.; Viana de Sousa, T.; Inêz Klein, M.; Mendonça Dias, L.; Pavarina, A.C.; Carmello, J.C. Antimicrobial Photodynamic Therapy Reduces Gene Expression of Candida albicans in Biofilms. Photodiagnosis Photodyn. Ther. 2020, 31, 101825. [Google Scholar] [CrossRef]
- Freire, F.; de Barros, P.P.; Pereira, C.A.; Junqueira, J.C.; Jorge, A.O.C. Photodynamic Inactivation in the Expression of the Candida albicans Genes ALS3, HWP1, BCR1, TEC1, CPH1, and EFG1 in Biofilms. Lasers Med. Sci. 2018, 33, 1447–1454. [Google Scholar] [CrossRef]
- Alves, R.; Barata-Antunes, C.; Casal, M.; Brown, A.J.P.; Dijck, P.V.; Paiva, S. Adapting to Survive: How Candida Overcomes Host-Imposed Constraints during Human Colonization. PLoS Pathog. 2020, 16, e1008478. [Google Scholar] [CrossRef]
- Guedouari, H.; Gergondey, R.; Bourdais, A.; Vanparis, O.; Bulteau, A.L.; Camadro, J.M.; Auchère, F. Changes in Glutathione-Dependent Redox Status and Mitochondrial Energetic Strategies Are Part of the Adaptive Response during the Filamentation Process in Candida albicans. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2014, 1842, 1855–1869. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.A.; Mohammad, K.A. Transcriptional Analysis of Oxidative and Nitrosative Stress on Oral Opportunistic Candida albicans. Cell. Mol. Biol. 2024, 70, 250–256. [Google Scholar] [CrossRef] [PubMed]
Value | t-Value | Prob > |t| | Dependency |
---|---|---|---|
0.147 ± 0.006 | 25 × 10−9 | 0.96 | |
d | 0.57 ± 0.02 | 28 × 10−10 | 0.77 |
k/min−1 | (11.9 ± 1.7) × 10−4 | 7 × 10−5 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czucz Varga, J.; Bujdák, J.; Bujdáková, H. Mixed Candida albicans–Staphylococcus aureus Biofilm Is Reduced by Light-Activated Nanocomposite with Phloxine B. J. Fungi 2025, 11, 582. https://doi.org/10.3390/jof11080582
Czucz Varga J, Bujdák J, Bujdáková H. Mixed Candida albicans–Staphylococcus aureus Biofilm Is Reduced by Light-Activated Nanocomposite with Phloxine B. Journal of Fungi. 2025; 11(8):582. https://doi.org/10.3390/jof11080582
Chicago/Turabian StyleCzucz Varga, Jarmila, Juraj Bujdák, and Helena Bujdáková. 2025. "Mixed Candida albicans–Staphylococcus aureus Biofilm Is Reduced by Light-Activated Nanocomposite with Phloxine B" Journal of Fungi 11, no. 8: 582. https://doi.org/10.3390/jof11080582
APA StyleCzucz Varga, J., Bujdák, J., & Bujdáková, H. (2025). Mixed Candida albicans–Staphylococcus aureus Biofilm Is Reduced by Light-Activated Nanocomposite with Phloxine B. Journal of Fungi, 11(8), 582. https://doi.org/10.3390/jof11080582