Development of Yellow Rust-Resistant and High-Yielding Bread Wheat (Triticum aestivum L.) Lines Using Marker-Assisted Backcrossing Strategies
Abstract
1. Introduction
2. Results
2.1. Development of Backcross Combinations Carrying Yellow Rust Resistance Genes
2.2. Phenotyping of ABLs for Yellow Rust Resistance
2.3. Selection of ABLs for High-Yielding Traits
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Breeding Scheme
4.2. Assessment of Yellow Rust Resistance
4.3. Genomic DNA Isolation and PCR Assay
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Wellings, C.; Chen, X.; Kang, Z.; Liu, T.-G. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol. Plant Pathol. 2013, 15, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Hovmøller, M.; Walter, S.; Bayles, R.; Hubbard, A.; Flath, K.; Sommerfeldt, N.; Leconte, M.; Czembor, P.; Rodriguez-Algaba, J.; Thach, T.; et al. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol. 2015, 65, 402–411. [Google Scholar] [CrossRef]
- Bhavani, S.; Singh, R.; Hodson, D.; Huerta-Espino, J.; Randhawa, M. Wheat Rusts: Current Status, Prospects of Genetic Control and Integrated Approaches to Enhance Resistance Durability; Springer: Berlin/Heidelberg, Germany, 2022; pp. 125–141. [Google Scholar]
- Wellings, C. Global status of stripe rust: A review of historical and current threats. Euphytica 2011, 179, 129–141. [Google Scholar] [CrossRef]
- Cuddy, W.; Beddow, J.; Pardey, P.; Chai, Y.; Hurley, T.; Kriticos, D.; Braun, H.-J.; Park, R.; Yonow, T. Research investment implications of shifts in the global geography of wheat stripe rust. Nat. Plants 2015, 1, 15132. [Google Scholar] [CrossRef]
- Porras, R.; Miguel-Rojas, C.; Pérez-de-Luque, A.; Sillero, J. Macro- and Microscopic Characterization of Components of Resistance against Puccinia striiformis f. sp. tritici in a Collection of Spanish Bread Wheat Cultivars. Agronomy 2022, 12, 1239. [Google Scholar] [CrossRef]
- Ram, S.; Nazari, K.; Amanov, A.; Ziyaev, Z.; Jalilov, A. Reduction of Winter Wheat Yield Losses Caused by Stripe Rust through Fungicide Management. J. Phytopathol. 2016, 164, 671–677. [Google Scholar] [CrossRef]
- Meliev, S.; Ochilov, B.; Chinikulov, B.; Nurmetov, K.; Bakhodirov, U.; Buzurukov, S.; Matkarimov, F.; Sobirov, F.; Turakulov, K.; Bozorov, T. Wheat resistance to yellow rust based on morphophysiological and yield characteristics. SABRAO J. Breed. Genet. 2025, 57, 403–413. [Google Scholar] [CrossRef]
- Adilova, A.; Norbekov, G.; Khurshut, E.; Nikitina, E.; Kushanov, F. SSR analysis of the genomic DNA of perspective Uzbek hexaploid winter wheat varieties. Vavilov J. Genet. Breed. 2018, 22, 634–639. [Google Scholar] [CrossRef]
- Meliev, S.; Baboev, S.; Matkarimov, F.; Bakhodirov, U.; Nurgaliev, K. Correlation of physiological and quantitative traits of bread wheat (T. aestivum). Plant Cell Biotechnol. Mol. Biol. 2021, 22, 133–139. [Google Scholar]
- Meliev, S.; Ochilov, B.O.; Aytenov, I.S.; Chinniqulov, B.; Murodova, S.; Shokirova, D. Characterization of cimmyt bread wheat germplasm for resistance to yellow rust and environmental factors. SABRAO J. Breed. Genet. 2023, 55, 1865–1877. [Google Scholar] [CrossRef]
- Turaev, O.; Baboev, S.; Ziyaev, Z.M.; Norbekov, J.K.; Erjigitov, D.; Bakhadirov, U.S.; Tursunmurodova, B.T.; Dolimov, A.A.; Turakulov, K.; Dilrabo, E.; et al. Present status and future perspectives of wheat (Triticum aestivum L.) research in uzbekistan. SABRAO J. Breed. Genet. 2023, 55, 1463–1475. [Google Scholar] [CrossRef]
- Baboeva, S.S. Climate change impact on chlorophyll content and grain yield of bread wheat (Triticum aestivum L.). SABRAO J. Breed. Genet. 2023, 55, 1930–1940. [Google Scholar] [CrossRef]
- Moose, S.; Mumm, R. Molecular Plant Breeding as the Foundation for 21st Century Crop Improvement. Plant Physiol. 2008, 147, 969–977. [Google Scholar] [CrossRef]
- Guo, W.-Z.; Zhang, T.-Z.; Zhu, X.-F.; Pan, J.-J. Modified Backcross Pyramiding Breeding with Molecular Marker-Assisted Selection and Its Applications in Cotton. Acta Agron. Sin. 2005, 31, 963–970. [Google Scholar]
- Simko, I.; Pechenick, D.A.; McHale, L.K.; Truco, M.J.; Ochoa, O.E.; Michelmore, R.W.; Scheffler, B.E. Association mapping and marker-assisted selection of the lettuce dieback resistance gene Tvr1. BMC Plant Biol. 2009, 9, 135. [Google Scholar] [CrossRef]
- Olson, E.L.; Brown-Guedira, G.; Marshall, D.S.; Jin, Y.; Mergoum, M.; Lowe, L.; Dubcovsky, J. Genotyping of US wheat germplasm for presence of stem rust resistance genes Sr24, Sr36 and Sr1RSAmigo. Crop Sci. 2010, 50, 668–675. [Google Scholar] [CrossRef]
- Mamatkulova, G.; Erjigitov, D.; Mukhammadiev, O.; Sokiboyeva, D.; Kholova, M.; Oripova, B.; Ernazarova, D.; Baboev, S.; Turaev, O.; Kushanov, F. Assessment of heat tolerance in wheat (Triticum aestivum L.) at the seedling stage. SABRAO J. Breed. Genet. 2025, 57, 1041–1049. [Google Scholar] [CrossRef]
- Metzger, R.J.; Silbaugh, B.A. Inheritance of resistance to stripe rust and its association with glume colour in Triticum aestivum L. Crop Sci. 1970, 10, 567–568. [Google Scholar] [CrossRef]
- Wang, L.; Ma, J.; Zhou, R.; Xiaoming, W.; Jia, J. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.I.178383 (Triticum aestivum L.). Euphytica 2002, 124, 71–73. [Google Scholar] [CrossRef]
- Mukhtar, S.; Khan, M.; Padder, B.A.; Anjum, A.; Zaffar, G.; Mir, S.; Naseer, S.; Bhat, M.; Kamaluddin, M. Molecular characterization of wheat germplasm for stripe rust resistance genes (Yr5, Yr10, Yr15 & Yr18) and identification of candidate lines for stripe rust breeding in Kashmir. Indian J. Biotechnol. 2015, 14, 241–248. [Google Scholar]
- Ullah, N.; Ali, N.; Iqbal, M.; Khan, A.-u.-D.; Shah, A.; Rahman, I.U.; Ahmad, H.; Ullah, I.; Ali, G. Markers assisted selection for multiple Stripe rust resistance genes in spring bread wheat lines. Int. J. Biosci. 2016, 8, 63–74. [Google Scholar] [CrossRef]
- Safavi, S.; Afshari, F.; Yazdansepas, A. Effective and ineffective resistance genes to wheat yellow rust during six years monitoring in Ardabil. Arch. Phytopathol. Plant Prot. 2013, 46, 774–780. [Google Scholar] [CrossRef]
- Chatrath, R.; Mishra, B.; Ortiz-Ferrara, G.; Singh, S.K.; Joshi, A. Challenges to wheat production in South Asia. Euphytica 2007, 157, 447–456. [Google Scholar] [CrossRef]
- Kokhmetova, A.A.; Chen, X.M.; Rsaliyev, S. Identification of Puccinia striiformis f.sp. tritici, characterization of wheat cultivars for resistance, and inheritance of resistance to stripe rust in Kazakhstan wheat cultivars. Asian Australas. J. Plant Sci. Biotechnol. 2010, 4, 64–70. [Google Scholar]
- Gerechter-Amitai, Z.K.; van Silfhout, C.H.; Grama, A.; Kleitman, F. Yr15—A new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica 1989, 43, 187–190. [Google Scholar] [CrossRef]
- Murphy, L.; Santra, D.; Kidwell, K.; Yan, G.; Chen, X.; Garland-Campbell, K. Linkage Maps of Wheat Stripe Rust Resistance Genes Yr5 and Yr15 for Use in Marker-Assisted Selection. Crop Sci. 2009, 49, 1786–1790. [Google Scholar] [CrossRef]
- Sivaraj, P. Molecular marker technology in cotton. Biotechnol. Mol. Biol. Rev. 2008, 3, 32–45. [Google Scholar]
- Khanam, S.; Sham, A.; Bennetzen, J.; Aly, M. Analysis of molecular marker-based characterization and genetic variation in date palm (Phoenix dactylifera L.). Aust. J. Crop Sci. 2012, 6, 1236–1244. [Google Scholar]
- Khidirov, M.T.; Ernazarova, D.K.; Rafieva, F.U.; Ernazarova, Z.A.; Toshpulatov, A.K.; Umarov, R.F.; Kholova, M.D.; Oripova, B.B.; Kudratova, M.K.; Gapparov, B.M.; et al. Genomic and Cytogenetic Analysis of Synthetic Polyploids between Diploid and Tetraploid Cotton (Gossypium) Species. Plants 2023, 12, 4184. [Google Scholar] [CrossRef]
- Peterson, R.F.; Campbell, A.B.; Hannah, A.E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can. J. Res. 1948, 26, 496–500. [Google Scholar] [CrossRef]
- Padhy, A.K.; Sharma, A.; Sharma, H.; Srivastava, P.; Singh, S.; Kaur, P.; Kaur, J.; Kaur, S.; Chhuneja, P.; Bains, N.S. Combining high carotenoid, grain protein content and rust resistance in wheat for food and nutritional security. Front. Genet. 2023, 14, 1075767. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Line, R.; Leung, H. Genome scanning for resistance-gene analogs in rice, barley, and wheat by high-resolution electrophoresis. TAG Theor. Appl. Genet. 1998, 97, 345–355. [Google Scholar] [CrossRef]
- Yessenbekova, G.T.; Kokhmetova, A.M.; Kampitova, G.A.; Jevtic, R. Sources and Donors for Soft Wheat Selection by Resistance to Yellow Rust. Biosci. Biotechnol. Res. Asia 2016, 13, 693–700. [Google Scholar] [CrossRef]
- Pal, D.; Bhardwaj, S.C.; Sharma, P.; Khan, H.; Krishna, H.; Babu, P.; Jha, S.; Patial, M.; Sharma, D.; Chauhan, D.; et al. Molecular marker aided selection for developing rust resistant genotypes by pyramiding Lr19/Sr25 and Yr15 in wheat (Triticum aestivum L.). Australas. Plant Pathol. 2020, 49, 631–640. [Google Scholar] [CrossRef]
- Ul Islam, B.; Mir, S.; Dar, M.S.; Khan, G.H.; Shikari, A.B.; Sofi, N.U.R.; Mohiddin, F.; Ahangar, M.A.; Jehangir, I.A.; Kumar, S.; et al. Characterization of Pre-Breeding Wheat (Triticum aestivum L.) Germplasm for Stripe Rust Resistance Using Field Phenotyping and Genotyping. Plants 2023, 12, 3239. [Google Scholar] [CrossRef] [PubMed]
- Sayre, K.; Rajaram, S.; Fischer, R.A. Yield Potential Progress in Short Bread Wheats in Northwest Mexico. Crop Sci. 1997, 37, 36–42. [Google Scholar] [CrossRef]
Donor Parent | Target Gene | Specific Marker | Recipient/Recurrent Parent | Generation | No. of Plants Screened with DNA Marker | No. of Plants Carrying Yr Genes | |
---|---|---|---|---|---|---|---|
Heterozygous | Homozygous | ||||||
Yr10/6*Avocet S | Yr10 | Xpsp3000 | Grom | BC1F1 | 17 | 8 | - |
BC2F1 | 124 | 57 | - | ||||
BC2F2 | 99 | 49 | 23 | ||||
Yr15/6*Avocet S | Yr15 | Barc008 | BC1F1 | 32 | 15 | - | |
BC2F1 | 110 | 51 | - | ||||
BC2F2 | 127 | 67 | 29 |
Plant Samples | Limit (Min–Max) | Mean | SD | SE | CV% |
---|---|---|---|---|---|
Spike length, cm | |||||
Yr10/6*Avocet S | 7.5–11.0 | 9.08 | 0.87 | 0.17 | 9.62 |
Yr15/6*Avocet S | 8.0–11.0 | 9.31 | 0.65 | 0.10 | 7.0 |
Grom | 9.0–13.0 | 10.97 | 1.02 | 0.21 | 9.36 |
BC2F2 (Grom-Yr10) | 7.0–13.0 | 10.58 | 1.13 | 0.23 | 10.75 |
BC2F2 (Grom-Yr15) | 9.2–11.9 | 10.16 | 0.69 | 0.12 | 6.84 |
Spike weight, g | |||||
Yr10/6*Avocet S | 1.59–2.62 | 2.06 | 0.21 | 0.04 | 10.56 |
Yr15/6*Avocet S | 1.56–2.89 | 2.21 | 0.31 | 0.04 | 14.17 |
Grom | 2.0–3.18 | 2.57 | 0.35 | 0.07 | 13.17 |
BC2F2 (Grom-Yr10) | 2.01–3.23 | 2.52 | 0.33 | 0.07 | 13.34 |
BC2F2 (Grom-Yr15) | 1.94–2.92 | 2.50 | 0.31 | 0.05 | 12.65 |
Grain weight per spike, g | |||||
Yr10/6*Avocet S | 1.38–2.30 | 1.68 | 0.24 | 0.04 | 14.28 |
Yr15/6*Avocet S | 1.16–2.36 | 1.70 | 0.29 | 0.04 | 17.08 |
Grom | 1.66–2.97 | 2.06 | 0.38 | 0.08 | 18.87 |
BC2F2 (Grom-Yr10) | 1.65–2.82 | 2.05 | 0.32 | 0.06 | 15.88 |
BC2F2 (Grom-Yr15) | 1.59–2.41 | 2.04 | 0.28 | 0.05 | 13.93 |
No. of spikelets per spike | |||||
Yr10/6*Avocet S | 14.0–19.0 | 16.14 | 1.32 | 0.25 | 8.18 |
Yr15/6*Avocet S | 14.0–18.0 | 16.28 | 1.17 | 0.18 | 7.21 |
Grom | 19.0–22.5 | 20.17 | 0.99 | 0.20 | 4.93 |
BC2F2 (Grom-Yr10) | 17.0–23.0 | 19.88 | 1.51 | 0.31 | 7.59 |
BC2F2 (Grom-Yr15) | 16.0–22.8 | 19.30 | 1.56 | 0.29 | 8.12 |
No. of grains per spike | |||||
Yr10/6*Avocet S | 37.0–62.0 | 45.81 | 6.69 | 1.28 | 14.61 |
Yr15/6*Avocet S | 37.0–64.0 | 46.16 | 6.40 | 0.98 | 13.86 |
Grom | 47.0–66.0 | 53.04 | 5.88 | 1.22 | 11.08 |
BC2F2 (Grom-Yr10) | 48.0–67.0 | 55.36 | 5.33 | 0.94 | 9.64 |
BC2F2 (Grom-Yr15) | 46.6–62.8 | 52.78 | 4.38 | 0.81 | 8.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochilov, B.O.; Turakulov, K.S.; Meliev, S.K.; Melikuziev, F.A.; Aytenov, I.S.; Murodova, S.M.; Khalillaeva, G.O.; Chinikulov, B.K.; Azimova, L.A.; Urinov, A.M.; et al. Development of Yellow Rust-Resistant and High-Yielding Bread Wheat (Triticum aestivum L.) Lines Using Marker-Assisted Backcrossing Strategies. Int. J. Mol. Sci. 2025, 26, 7603. https://doi.org/10.3390/ijms26157603
Ochilov BO, Turakulov KS, Meliev SK, Melikuziev FA, Aytenov IS, Murodova SM, Khalillaeva GO, Chinikulov BK, Azimova LA, Urinov AM, et al. Development of Yellow Rust-Resistant and High-Yielding Bread Wheat (Triticum aestivum L.) Lines Using Marker-Assisted Backcrossing Strategies. International Journal of Molecular Sciences. 2025; 26(15):7603. https://doi.org/10.3390/ijms26157603
Chicago/Turabian StyleOchilov, Bekhruz O., Khurshid S. Turakulov, Sodir K. Meliev, Fazliddin A. Melikuziev, Ilkham S. Aytenov, Sojida M. Murodova, Gavkhar O. Khalillaeva, Bakhodir Kh. Chinikulov, Laylo A. Azimova, Alisher M. Urinov, and et al. 2025. "Development of Yellow Rust-Resistant and High-Yielding Bread Wheat (Triticum aestivum L.) Lines Using Marker-Assisted Backcrossing Strategies" International Journal of Molecular Sciences 26, no. 15: 7603. https://doi.org/10.3390/ijms26157603
APA StyleOchilov, B. O., Turakulov, K. S., Meliev, S. K., Melikuziev, F. A., Aytenov, I. S., Murodova, S. M., Khalillaeva, G. O., Chinikulov, B. K., Azimova, L. A., Urinov, A. M., Turaev, O. S., Kushanov, F. N., Salakhutdinov, I. B., Ma, J., Awais, M., & Bozorov, T. A. (2025). Development of Yellow Rust-Resistant and High-Yielding Bread Wheat (Triticum aestivum L.) Lines Using Marker-Assisted Backcrossing Strategies. International Journal of Molecular Sciences, 26(15), 7603. https://doi.org/10.3390/ijms26157603