Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,138)

Search Parameters:
Keywords = industry trait

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2943 KB  
Review
Data-Driven Strategic Sustainability Initiatives of Beef and Dairy Genetics Consortia: A Comprehensive Landscape Analysis of the US, Brazilian and European Cattle Industries
by Karun Kaniyamattam, Megha Poyyara Saiju and Miguel Gonzalez
Sustainability 2026, 18(3), 1186; https://doi.org/10.3390/su18031186 (registering DOI) - 24 Jan 2026
Abstract
The sustainability of the beef and dairy industry requires a systems approach that integrates environmental stewardship, social responsibility, and economic viability. Over the past two decades, global genetics consortia have advanced data-driven germplasm programs (breeding and conservation programs focusing on genetic resources) to [...] Read more.
The sustainability of the beef and dairy industry requires a systems approach that integrates environmental stewardship, social responsibility, and economic viability. Over the past two decades, global genetics consortia have advanced data-driven germplasm programs (breeding and conservation programs focusing on genetic resources) to enhance sustainability across cattle systems. These initiatives employ multi-trait selection indices aligned with consumer demands and supply chain trends, targeting production, longevity, health, and reproduction, with outcomes including greenhouse gas mitigation, improved resource efficiency and operational safety, and optimized animal welfare. This study analyzes strategic initiatives, germplasm portfolios, and data platforms from leading genetics companies in the USA, Europe, and Brazil. US programs combine genomic selection with reproductive technologies such as sexed semen and in vitro fertilization to accelerate genetic progress. European efforts emphasize resource efficiency, welfare, and environmental impacts, while Brazilian strategies focus on adaptability to tropical conditions, heat tolerance, and disease resistance. Furthermore, mathematical models and decision support tools are increasingly used to balance profitability with environmental goals, reducing sustainability trade-offs through data-driven resource allocation. Industry-wide collaboration among stakeholders and regulatory bodies underscores a rapid shift toward sustainability-oriented cattle management strategies, positioning genetics and technology as key drivers of genetically resilient and sustainable breeding systems. Full article
(This article belongs to the Collection Sustainable Livestock Production and Management)
Show Figures

Figure 1

15 pages, 913 KB  
Article
Citrus Waste as a Sustainable Amendment for Tomato Soilless Substrates Under Deficit Irrigation
by Aurora Maio, Tommaso La Malfa, Concetta Condurso, Anthea Miller, Stefania Toscano and Fabio Gresta
Agronomy 2026, 16(3), 288; https://doi.org/10.3390/agronomy16030288 - 23 Jan 2026
Abstract
The citrus processing industry generates large amounts of organic residues whose sustainable management is a major environmental challenge. The aim of this study was to evaluate the effects of incorporating citrus-derived waste (CW) into coconut-coir-based substrates on tomato (Solanum lycopersicum L., cv. [...] Read more.
The citrus processing industry generates large amounts of organic residues whose sustainable management is a major environmental challenge. The aim of this study was to evaluate the effects of incorporating citrus-derived waste (CW) into coconut-coir-based substrates on tomato (Solanum lycopersicum L., cv. Proxy) under different irrigation regimes (I) in a factorial design (CW × I) with three replications. Each replicate consisted of six plants (pots), and the replicate was considered the experimental unit. Plants were grown in substrates amended with 0%, 6.25%, 12.5%, 25.0%, and 37.5% (v/v) citrus waste and subjected to three water regimes (100%, 75%, and 50% of the standard water supply). Plant growth, biomass allocation, yield components, and fruit quality traits were assessed. Results indicate that CW can be incorporated into coconut-coir substrates without detectable penalties in total production at low-to-moderate rates (6.25–12.5%) across all irrigation regimes. Yield reductions of 18% (from 3398 to 2789 g plant−1) attributable to CW were observed mostly at the highest inclusion rates under moderate deficit irrigation (75% water supply), whereas under severe deficit (50% water supply), production declined across all CW rates, including 0%, indicating that water deficit has a dominant limiting effect. Fruit quality parameters were generally maintained or improved in amended substrates, particularly under reduced irrigation with deficit irrigation, generally increasing total soluble solids at 100%, 75%, and 50% WC (+13%, +19%, and +9%, respectively). Overall, these findings support the use of citrus waste at low-to-moderate proportions as a sustainable amendment for soilless tomato cultivation without marked negative effects on yield and fruit quality, enabling its use as a locally sourced substrate component within circular-economy strategies. Full article
(This article belongs to the Section Water Use and Irrigation)
11 pages, 2533 KB  
Article
Characterization of Pimpinella anisum Germplasm: Diversity Available for Agronomic Performance and Essential Oil Content and Composition
by Pierluigi Reveglia, Eleonora Barilli, María José Cobos, Maria Claudia López-Orozco and Diego Rubiales
Agronomy 2026, 16(3), 285; https://doi.org/10.3390/agronomy16030285 - 23 Jan 2026
Abstract
Anise (Pimpinella anisum L.) is one of the most important annual herbs of the Apiaceae family, widely cultivated in southern Spain. Their seeds are highly valued for culinary uses and for producing quality essential oils widely used in food and beverage products, [...] Read more.
Anise (Pimpinella anisum L.) is one of the most important annual herbs of the Apiaceae family, widely cultivated in southern Spain. Their seeds are highly valued for culinary uses and for producing quality essential oils widely used in food and beverage products, as well as for industry, medicinal, and cosmetics applications. This study investigates the seed yield and essential oil content within a set of 50 anise accessions from worldwide origin, as well as their composition by GC–MS and GC–FID analysis. Accessions showed significant differences in the agronomic parameters measured, including plant height (cm), seed yield (kg ha−1), and the Harvest Index (%), with accessions PA_87 (Spain), PA_47 (Greece), and PA_21 (unknown origin) being the most performant. Essential oil (EO) content varied between 0.8% and 5.7% across different genotypes, resulting in EO production values ranging from 0.1 to 300 kg ha−1. Trans-anethole was identified as the dominant terpene, comprising 84.4% to 94.4% of the content, followed by eugenol (1.4% to 5.5%) and α-muurolene (1.4% to 7.2%). PCA analysis identified five distinct groups and one outlier, influenced by minor terpenes. Indeed, there was a strong negative correlation between estragole and pseudoisoeugenyl 2-methylbutyrate. This study underscores the significance of minor terpenes, which play crucial roles in defining unique aniseed chemotypes, allowing for the selection of cultivars optimized for specific uses in food, cosmetics, and pharmaceuticals. Additionally, these findings emphasize the impact of cultivar genetics on agronomic traits and EO profiles, suggesting the need for further research to optimize plant growth and yield and EO quality. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

20 pages, 1011 KB  
Article
From Perception to Practice: Identifying and Ranking Human Factors Driving Unsafe Industrial Behaviors
by Azim Karimi, Esmaeil Zarei and Ehsanollah Habibi
Safety 2026, 12(1), 14; https://doi.org/10.3390/safety12010014 - 23 Jan 2026
Abstract
Unsafe behaviors remain a major contributor to workplace accidents within broader safety-management systems. Acknowledging the essential influence of organizational and leadership factors, this study focuses on systematically identifying and prioritizing individual-level determinants of unsafe behavior through an integrated qualitative–quantitative methodology to clarify their [...] Read more.
Unsafe behaviors remain a major contributor to workplace accidents within broader safety-management systems. Acknowledging the essential influence of organizational and leadership factors, this study focuses on systematically identifying and prioritizing individual-level determinants of unsafe behavior through an integrated qualitative–quantitative methodology to clarify their specific role within the wider safety framework. Grounded Theory analysis of semi-structured interviews with 40 industry professionals yielded a conceptual model encompassing demographic characteristics, general health, individual competencies, personality traits, and psychological factors. Subsequently, the Fuzzy Delphi Method, applied with 20 domain experts, validated and ranked these determinants. The analysis highlighted risk perception as the most influential factor, followed by work experience, skill level, knowledge, and risk-taking propensity, whereas variables such as family welfare, substance use, and self-display exhibited relatively minor effects. These findings reveal the multidimensional nature of unsafe behavior and underscore the importance of focusing on high-impact personal attributes to enhance workplace safety. By recognizing that many individual factors are shaped by organizational and psychosocial conditions, the study provides evidence-based insights for developing integrated safety management and targeted intervention strategies in industrial settings. Full article
Show Figures

Figure 1

18 pages, 1307 KB  
Article
Industrial Hemp Finola Variety Microgreens: A Sustainable Source of Selenium Biofortified Functional Foods
by Boris Ravnjak, Ivana Varga, Manda Antunović, Josipa Jović, Monika Tkalec Kojić, Mariana Casari Parreira and Antonela Markulj Kulundžić
Agriculture 2026, 16(3), 292; https://doi.org/10.3390/agriculture16030292 - 23 Jan 2026
Abstract
The aim of this study was to evaluate the effects of selenium (Se) biofortification on growth, biomass accumulation, and micronutrient composition of industrial hemp (Cannabis sativa L., cv. Finola) microgreens, with emphasis on Se uptake and its distribution among leaves, stems, and [...] Read more.
The aim of this study was to evaluate the effects of selenium (Se) biofortification on growth, biomass accumulation, and micronutrient composition of industrial hemp (Cannabis sativa L., cv. Finola) microgreens, with emphasis on Se uptake and its distribution among leaves, stems, and roots. Microgreens were subjected to four Se treatments (Se_0, Se_2, Se_4, and Se_6 µmol Se/L), and changes in morphological traits, micronutrient status (Mn, Fe, Cu, Zn), and Se accumulation were assessed. Selenium biofortification had a marked impact on plant morphology and biomass. Stem length decreased by 12–18% under Se treatments compared with the control, whereas root length increased slightly, particularly at Se_2 and Se_4 (up to +6%). Fresh industrial hemp microgreens biomass responded strongly to Se supply, with the highest stem, root, and total fresh mass recorded at Se_4—representing an increase of 15–22% relative to control plants. At the highest Se level (Se_6), biomass declined by approximately 10–14%, indicating potential growth inhibition at excessive Se concentrations. Micronutrient concentrations were significantly affected by Se. Leaf Mn increased from 152 mg kg−1 at Se_0 to 175 mg kg−1 at Se_6 (+15%), while leaf Zn decreased by 20–25% at higher Se exposure. Stems and roots showed similar antagonistic interactions, with Fe and Zn decreasing by up to 30% at elevated Se levels. Conversely, Mn in stems and roots increased with Se up to Se_4, reaching 400 mg kg−1 in roots. Selenium accumulation exhibited a strong linear response to biofortification, with high coefficients of determination (R2 = 0.9685–0.9943), confirming predictable and efficient Se uptake. Correlation analysis revealed strong positive associations among biomass-related traits and distinct interactions among micronutrients, especially the near-perfect correlation between Se and Cu in roots (r ≈ 0.99). Overall, industrial hemp microgreens demonstrate potential for selenium biofortification, provided that selenium application levels remain within safe dietary limits. Full article
(This article belongs to the Special Issue Greens—Biofortification for Improved Nutritional Quality)
18 pages, 2331 KB  
Article
Chromosomal Architecture, Karyotype Profiling and Evolutionary Dynamics in Aleppo Oak (Quercus infectoria Oliv.)
by Solmaz Najafi, Nasrin Seyedi, Burak Özdemir, Hossein Zeinalzadeh-Tabrizi, Beatrice Farda and Loretta Pace
Diversity 2026, 18(1), 59; https://doi.org/10.3390/d18010059 (registering DOI) - 22 Jan 2026
Viewed by 12
Abstract
Aleppo oak (Quercus infectoria) is among the most industrially and ecologically significant oak species, valued for its medicinal properties and considerable genetic importance. Cytogenetic analysis provides critical insight into evolutionary history, interspecific relationships, and karyotypic differentiation. This study investigated the chromosomal [...] Read more.
Aleppo oak (Quercus infectoria) is among the most industrially and ecologically significant oak species, valued for its medicinal properties and considerable genetic importance. Cytogenetic analysis provides critical insight into evolutionary history, interspecific relationships, and karyotypic differentiation. This study investigated the chromosomal architecture and karyotypic diversity of five natural populations of this species in western Iran (Sardasht, Oramanat, Baneh, Paveh, and Marivan) using actively dividing root meristems and a high-resolution image-based cytogenetic system. All examined cells displayed a basic chromosome number of x = 12 and a diploid condition, and chromosome lengths ranged from 0.90 to 2.12 µm. ANOVA and mean comparisons of five chromosomal parameters (Long Arm, Short Arm and Total Length, Arm Ratio, and Centromeric Index) revealed significant interpopulation differences in chromosome length and arm dimensions. All populations shared the karyotype formula 12 m and were classified into Stebbins’ Category B, indicating a moderately symmetrical, relatively primitive cytogenetic structure. Principal component analysis reduced the dataset to two major axes explaining 99.93% of the total variance, predominantly influenced by SA and TL on PC1 and by LA, AR, and CI on PC2. Hierarchical clustering grouped the populations into three distinct lineages, with Sardasht–Oramanat–Baneh showing the greatest divergence. Biplot vector patterns further clarified trait correlations, highlighting genomic structuring and potential breeding utility. Full article
(This article belongs to the Special Issue Ethnobotany and Plant Diversity: Conservation and Sustainable Use)
Show Figures

Figure 1

45 pages, 1829 KB  
Article
Horticultural Systems and Species Diversity of Roses in Classical Antiquity: Integrating Archaeological, Iconographic, and Literary Evidence from Ancient Greece and Rome
by Diego Rivera, Julio Navarro, Inmaculada Camarero, Javier Valera, Diego-José Rivera-Obón and Concepción Obón
Horticulturae 2026, 12(1), 118; https://doi.org/10.3390/horticulturae12010118 - 21 Jan 2026
Viewed by 43
Abstract
Roses held profound cultural and economic significance in ancient Greece and Rome, yet comprehensive documentation of their species diversity, cultivation practices, and horticultural innovations remains fragmented across archaeological, iconographic, and textual sources. This multidisciplinary study synthesizes evidence from classical texts, archaeological remains including [...] Read more.
Roses held profound cultural and economic significance in ancient Greece and Rome, yet comprehensive documentation of their species diversity, cultivation practices, and horticultural innovations remains fragmented across archaeological, iconographic, and textual sources. This multidisciplinary study synthesizes evidence from classical texts, archaeological remains including recently identified rose stem fragments from Oplontis, and iconographic materials—including frescoes, coins, and mosaics—to reconstruct the horticultural systems and cultural landscape of roses in classical antiquity. Analysis of literary sources, particularly Theophrastus’s fourth-century BCE taxonomic descriptions, reveals systematic cultivation of diverse rose varieties with flowers ranging from white to deep crimson, including yellow variants, characterized by morphologies from simple to double forms and valued for fragrance intensity and re-blooming capacity. Archaeological evidence from sites such as Paestum, Pompeii, and Oplontis, including pollen samples, preserved wood fragments with diagnostic prickle patterns, and fresco representations, documents commercial rose production and specialized cultivation techniques that demonstrate significantly greater morphological diversity than textual sources alone indicate. Field research and collection documentation establish the origins of Mediterranean rose cultivation, while iconographic analysis identifies roses in religious ceremonies, festivals, and daily life contexts. Textual sources provide detailed propagation methods, seasonal management practices, and evidence of Mediterranean hybridization events, alongside extensive documentation of medicinal and cosmetic applications. Economic analysis reveals specialized trade networks, commercial production centers, and diverse applications in perfumery, garland making, and pharmaceutical industries. This research establishes that Greek and Roman civilizations developed sophisticated rose cultivation systems integrating botanical selection, horticultural innovation, and cultural symbolism that directly influenced medieval and Renaissance practices and informed modern trait categorization systems. These findings demonstrate the foundational role of classical antiquity in European rose heritage, revealing how ancient horticultural knowledge, species diversification through hybridization, and cultivation techniques created an unbroken transmission that shaped contemporary rose industries and established conservation priorities for this horticultural heritage. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
22 pages, 5614 KB  
Article
Modeling China’s Urban Network Structure: Unraveling the Drivers from a Population Mobility Perspective
by Haowei Duan and Kai Liu
Systems 2026, 14(1), 109; https://doi.org/10.3390/systems14010109 - 20 Jan 2026
Viewed by 94
Abstract
Intercity population flows are playing an increasingly pivotal role in shaping the spatial evolution and structural dynamics of urban networks. Drawing upon Amap Migration Data (2018–2023), this study maps China’s urban networks using social network analysis and identifies their key drivers using a [...] Read more.
Intercity population flows are playing an increasingly pivotal role in shaping the spatial evolution and structural dynamics of urban networks. Drawing upon Amap Migration Data (2018–2023), this study maps China’s urban networks using social network analysis and identifies their key drivers using a temporal exponential random graph model. The findings reveal three primary insights: First, the overall network exhibits “high connectivity and strong clustering” traits. Enhanced efficiency in intercity resource allocation fosters cross-regional factor flows, resulting in multi-tiered connectivity corridors. Industrial linkages and policy interventions drive the development of a polycentric and clustered configuration. Second, the individual city network exhibits a core–periphery dynamic structure. A diamond-shaped framework dominated by hub cities in the national strategic regions directs factor flows. Development of strategic corridors enables peripheral cities to evolve into secondary hubs by leveraging structural hole advantages, reflecting the continuous interplay between network structure and geo-economic factors. Third, driving factors involve nonlinear interactions within a multi-layered system. Path dependence in topology, gradient potential from nodal attributes, spatial counterbalance between geographic decay laws and multidimensional proximity, and adaptive self-organization are collectively associated with the transition of the urban network toward a multi-tiered synergistic pattern. By revealing the dynamic interplay between network topology and multidimensional driving factors, this study deepens and advances the theoretical connotations of the “Space of Flows” theory, providing an empirical foundation for optimizing regional governance strategies and promoting high-quality coordinated development of Chinese cities. Full article
(This article belongs to the Special Issue Data-Driven Urban Mobility Modeling)
Show Figures

Figure 1

20 pages, 2572 KB  
Article
Single-Nucleotide Polymorphisms in Calpastatin (CAST) and Micro-Calpain (CAPN1) Genes Influencing Meat Tenderness in Crossbred Beef Cattle in Thailand
by Thanathip Thaloengsakdadech, Supawit Triwutanon, Preeda Lertwatcharasarakul, Nitipong Homwong and Theera Rukkwamsuk
Vet. Sci. 2026, 13(1), 99; https://doi.org/10.3390/vetsci13010099 - 19 Jan 2026
Viewed by 118
Abstract
This study investigated single-nucleotide polymorphisms (SNPs) within the CAPN1 316, CAPN1 4751, and CAST 2959 markers using high-resolution melting (HRM) analysis to predict meat tenderness in crossbred beef cattle. Tenderness was assessed using the Warner–Bratzler shear force (WBSF) test, with results expressed in [...] Read more.
This study investigated single-nucleotide polymorphisms (SNPs) within the CAPN1 316, CAPN1 4751, and CAST 2959 markers using high-resolution melting (HRM) analysis to predict meat tenderness in crossbred beef cattle. Tenderness was assessed using the Warner–Bratzler shear force (WBSF) test, with results expressed in grams (g), representing the force required to shear muscle fibers. Significant differences in phenotypic data were observed among the genotypic groups. The finding showed that polymorphisms at CAPN1 316, CAPN1 4751, and CAST 2959 exert interactive effects on meat quality traits. Notably, the TT genotype at CAPN1 4751 increased the adjusted WBSF (aWBSF) by approximately 792 g, indicating that TT was an unfavorable variant for tenderness. These results support the use of marker-assisted selection strategies in which the TT genotype is managed to minimize its frequency while other relevant markers are concurrently monitored, thereby enhancing genetic progress in meat tenderness across commercial cattle populations. This study demonstrated that CAPN1 4751 could serve as an effective marker for genetic selection in crossbred beef cattle and confirmed the efficiency of HRM analysis as a molecular tool for SNP genotyping. In conclusion, the findings provided an alternative approach for SNP detection in livestock breeding programs and represented an important step toward improving meat quality, meeting consumer expectations, and supporting the long-term sustainability of Thailand’s beef industry. The results highlighted the polygenic nature of meat tenderness and emphasized the importance of integrating multiple SNP markers to accurately assess the genetic potential for meat quality traits in cattle. Full article
(This article belongs to the Section Veterinary Physiology, Pharmacology, and Toxicology)
Show Figures

Figure 1

30 pages, 1553 KB  
Article
Combining User and Venue Personality Proxies with Customers’ Preferences and Opinions to Enhance Restaurant Recommendation Performance
by Andreas Gregoriades, Herodotos Herodotou, Maria Pampaka and Evripides Christodoulou
AI 2026, 7(1), 19; https://doi.org/10.3390/ai7010019 - 9 Jan 2026
Viewed by 232
Abstract
Recommendation systems are popular information systems that help consumers manage information overload. Whilst personality has been recognised as an important factor influencing consumers’ choice, it has not yet been fully exploited in recommendation systems. This study proposes a restaurant recommendation approach that integrates [...] Read more.
Recommendation systems are popular information systems that help consumers manage information overload. Whilst personality has been recognised as an important factor influencing consumers’ choice, it has not yet been fully exploited in recommendation systems. This study proposes a restaurant recommendation approach that integrates customer personality traits, opinions and preferences, extracted either directly from online review platforms or derived from electronic word of mouth (eWOM) text using information extraction techniques. The proposed method leverages the concept of venue personality grounded in personality–brand congruence theory, which posits that customers are more satisfied with brands whose personalities align with their own. A novel model is introduced that combines fine-tuned BERT embeddings with linguistic features to infer users’ personality traits from the text of their reviews. Customers’ preferences are identified using a custom named-entity recogniser, while their opinions are extracted through structural topic modelling. The overall framework integrates neural collaborative filtering (NCF) features with both directly observed and derived information from eWOM to train an extreme gradient boosting (XGBoost) regression model. The proposed approach is compared to baseline collaborative filtering methods and state-of-the-art neural network techniques commonly used in industry. Results across multiple performance metrics demonstrate that incorporating personality, preferences and opinions significantly improves recommendation performance. Full article
Show Figures

Figure 1

21 pages, 8718 KB  
Review
Lotus Seeds: Current Molecular Biology Insights and Future Perspectives as a Prominent Biological Resource
by Jia Xin, Ruirui Li, Juan Liu, Xianbao Deng, Dong Yang, Heyun Song, Minghua Zhang, Hui Yang, Runjie He, Yapei Zhang, Heng Sun and Mei Yang
Plants 2026, 15(1), 136; https://doi.org/10.3390/plants15010136 - 2 Jan 2026
Viewed by 641
Abstract
Lotus (Nelumbo nucifera Gaertn.) is an economically and medicinally significant aquatic plant, with its seeds (lotus seeds) having attracted considerable attention due to their unique developmental traits and abundance of bioactive and nutritional components. Over recent decades, advancements in lotus genome annotation [...] Read more.
Lotus (Nelumbo nucifera Gaertn.) is an economically and medicinally significant aquatic plant, with its seeds (lotus seeds) having attracted considerable attention due to their unique developmental traits and abundance of bioactive and nutritional components. Over recent decades, advancements in lotus genome annotation and assembly have facilitated comprehensive investigations into the molecular biology of lotus seeds. Key genes involved in the biosynthesis of nutrients and bioactive compounds within lotus seeds have now been identified and functionally validated. This review comprehensively summarizes the latest advancements in the molecular biology of the edible and medicinal properties of lotus seeds, focusing on the biosynthetic mechanisms of key nutrients, such as starch, flavonoids, and alkaloids, as well as the molecular mechanisms underlying lotus seed developmental processes. Additionally, we present a detailed overview of the mechanisms involved in the postharvest preservation of fresh lotus seeds and their exceptional longevity. Based on the current progress in lotus seed molecular biology, we propose future research directions and methodologies. This review not only deepens the understanding of the molecular biology of lotus seeds but also provides valuable theoretical insights and practical guidance for promoting the genetic improvement and sustainable development of the lotus seed industry. Full article
Show Figures

Figure 1

25 pages, 2104 KB  
Review
Management and Genetic Approaches for Enhancing Meat Quality in Poultry Production Systems: A Comprehensive Review
by Muhammad Naeem, Arjmand Fatima, Rabin Raut, Rishav Kumar, Zahidul Tushar, Farazi Rahman and Dianna Bourassa
Poultry 2026, 5(1), 4; https://doi.org/10.3390/poultry5010004 - 1 Jan 2026
Viewed by 392
Abstract
This review explores strategies to enhance meat quality in poultry, focusing on both management and genetic methods. Poultry meat quality is influenced by many factors, including rearing conditions, nutrition, animal welfare, and post-slaughter processing. Key management factors such as stocking density, ventilation, temperature, [...] Read more.
This review explores strategies to enhance meat quality in poultry, focusing on both management and genetic methods. Poultry meat quality is influenced by many factors, including rearing conditions, nutrition, animal welfare, and post-slaughter processing. Key management factors such as stocking density, ventilation, temperature, and humidity are emphasized for their significant impact on bird welfare and the resulting meat texture, color, and microbial stability. Welfare-enhancing practices like gentle handling, environmental enrichment, and thermal comfort are highlighted for their direct effects on stress levels and meat properties such as water-holding capacity and pH. Innovations in slaughtering and chilling techniques, including electrical and gas stunning and rapid chilling, are shown to preserve meat quality and prevent common defects like pale, soft, and exudative (PSE) or dark, firm, and dry (DFD) meat. The review also underscores the importance of hygiene protocols, hazard analysis and critical control points (HACCP) systems, and traceability technologies to ensure food safety and foster consumer trust. On the genetic front, it discusses conventional selection, marker-assisted selection (MAS), and genomic selection (GS) as tools for breeding birds with better meat quality traits, including tenderness, intramuscular fat, and resistance to conditions like woody breast. Functional genomics and gene editing are identified as the leading edge of future advances. Ultimately, the review advocates for an integrated approach that balances productivity, quality, animal welfare, and sustainability. As consumer expectations increase, the poultry industry must adopt precise, science-based strategies across the entire production process to reliably deliver high-quality meat products. Full article
Show Figures

Figure 1

34 pages, 2151 KB  
Review
Fermentation Technologies to Produce and Improve Alternative Protein Sources
by Jonathan Coronel-León, Daniela Maza, Ignacio García-Álvarez de Toledo, Anna Jofré, Belén Martín, Xavier Serra and Sara Bover-Cid
Foods 2026, 15(1), 117; https://doi.org/10.3390/foods15010117 - 31 Dec 2025
Viewed by 744
Abstract
The growing global population, along with evolving dietary trends and increasing concerns about health and the environment, underscores the urgent need to transform current food systems to minimize their environmental footprint and enhance global food security. This transformation has driven the development and [...] Read more.
The growing global population, along with evolving dietary trends and increasing concerns about health and the environment, underscores the urgent need to transform current food systems to minimize their environmental footprint and enhance global food security. This transformation has driven the development and demand for alternative food sources. In this context, alternative proteins emerge as promising options due to their production from plants, microorganisms, and insects, which potentially reduces the environmental impact of food production while supporting global food security. Nevertheless, the transition toward alternative proteins presents significant challenges related to the presence of antinutritional compounds, poor amino acid composition, lower digestibility, and undesirable organoleptic characteristics. Moreover, these new generations of alternative foods are highly processed, raising concerns about their nutritional adequacy compared to traditional products. In this context, fermentation technologies have emerged as promising tools to overcome these limitations. Traditional fermentation can degrade antinutritional factors, improve digestibility, and release bioactive compounds, allowing the production of new products with health-promoting properties. Beyond traditional fermentation, biomass fermentation to single-cell protein or microbial protein production represents a sustainable alternative, promoting a climate-friendly approach aligned with circular bioeconomy principles by upcycling various agro-industrial streams. Thus, this review discusses how microbial strategies (from traditional fermentation to cutting-edge microbial protein production) can enhance the nutritional properties of alternative protein-based foods. Emphasis is placed on the capacity of traditional fermentation to improve nutritional quality and bioactivity, mitigate undesirable sensory traits, and preserve or enhance micronutrient content. Additionally, integrating biomass fermentation and emerging precision fermentation positions microorganisms as valuable contributors to more nutritious and sustainable food systems. Full article
Show Figures

Graphical abstract

20 pages, 446 KB  
Article
Transforming Hospitality into “Hospital”ity: The Effect of Grit on the Use of Wellness-Friendly Hospitality Services
by Zafar Waziha Sarker, Hyeyoon Choi and Hyun-Ju Oh
Tour. Hosp. 2026, 7(1), 8; https://doi.org/10.3390/tourhosp7010008 - 31 Dec 2025
Viewed by 364
Abstract
As the hospitality industry adapts to meet customers’ increasing demand for wellness, incorporating innovative wellness services (WSs) has become a crucial strategy to retain customer engagement. This study explored how the psychological trait of grit may serve as a significant determinant of customer [...] Read more.
As the hospitality industry adapts to meet customers’ increasing demand for wellness, incorporating innovative wellness services (WSs) has become a crucial strategy to retain customer engagement. This study explored how the psychological trait of grit may serve as a significant determinant of customer engagement with WS in the hospitality context. Grounded in the transtheoretical model (TTM) stages of change, the study examined the relation between grit and customers’ perceptions of wellness hospitality services. By integrating TTM as a theoretical framework, this research attempted to understand the way that individuals interact with and perceive wellness-oriented amenities; also, it offers actionable insights into ways to enhance customers’ engagement. The study employed a quantitative method. By using an online survey (N = 337) and structural equation modeling (SEM), the study explored the relation between grit, WS, and customer engagement in the hospitality industry. Grit was found to be an important antecedent of using and engaging with various WSs. This study also demonstrated that WSs have a significant positive effect on customers’ engagements with WS. These study findings can help hospitality professionals to identify gritty customer segments to retain possible customer retention. Full article
Show Figures

Figure 1

14 pages, 2060 KB  
Article
Effect of Preharvest Application of Sodium Benzoate and Potassium Sorbate on Fungal Decay Incidence and Postharvest Quality of Cold-Stored Fino Lemon Fruit
by María Gutiérrez-Pozo, Vicente Serna-Escolano, Marina Giménez-Berenguer, María Á. Botella, Pedro J. Zapata and María J. Giménez
Agronomy 2026, 16(1), 105; https://doi.org/10.3390/agronomy16010105 - 31 Dec 2025
Viewed by 437
Abstract
The Citrus limon (L.) Burm. f. industry suffers significant losses due to fungal diseases. Therefore, this study aimed to evaluate the effectiveness of sodium benzoate (SB) and potassium sorbate (PS) on the incidence of fungal decay and fruit quality when used as preharvest [...] Read more.
The Citrus limon (L.) Burm. f. industry suffers significant losses due to fungal diseases. Therefore, this study aimed to evaluate the effectiveness of sodium benzoate (SB) and potassium sorbate (PS) on the incidence of fungal decay and fruit quality when used as preharvest treatments on Fino lemon trees over two consecutive seasons (2021–2023). Lower concentrations of SB and PS (0.1% and 0.5%) applied in one or two treatments successfully controlled fungal decay. On average, SB achieved a greater reduction in decay, ranging from 45% to 60%, compared to PS’s reduction of 25% to 50%. This approach minimised the negative impact on lemon fruit quality, in contrast to the highest doses (more than 1%) and the greatest number of applications (more than three times), which increased lemon susceptibility to decay. Furthermore, lemons treated with 0.5% SB twice enhanced antioxidant systems, showing a 35% increase in total phenolic content in the flavedo at harvest compared to the control. Consequently, the application of 0.5% SB twice at preharvest emerges as a promising and potential alternative to conventional fungicides for effective fungal decay control and maintenance of acceptable lemon quality traits during cold storage. Full article
Show Figures

Figure 1

Back to TopTop