Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,706)

Search Parameters:
Keywords = industrial operation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3336 KiB  
Article
A Computerized Analysis of Flow Parameters for a Twin-Screw Compressor Using SolidWorks Flow Simulation
by Ildiko Brinas, Florin Dumitru Popescu, Andrei Andras, Sorin Mihai Radu and Laura Cojanu
Computation 2025, 13(8), 189; https://doi.org/10.3390/computation13080189 (registering DOI) - 6 Aug 2025
Abstract
Twin-screw compressors (TSCs) are widely used in various industries. Their performance is influenced by several parameters, such as rotor profiles, clearance gaps, operating speed, and thermal effects. Traditionally, optimizing these parameters relied on experimental methods, which are costly and time-consuming. However, advancements in [...] Read more.
Twin-screw compressors (TSCs) are widely used in various industries. Their performance is influenced by several parameters, such as rotor profiles, clearance gaps, operating speed, and thermal effects. Traditionally, optimizing these parameters relied on experimental methods, which are costly and time-consuming. However, advancements in computational tools, such as Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA), have revolutionized compressor analysis. This study presents a CFD analysis of a specific model of a TSC in a 5 male/6 female lobe configuration using the SolidWorks Flow Simulation environment—an approach not traditionally applied to such positive displacement machines. The results visually present internal flow trajectories, fluid velocities, pressure distributions, temperature gradients, and leakage behaviors with high spatial and temporal resolution. Additionally, torque fluctuations and isosurface visualizations revealed insights into mechanical loads and flow behavior. The proposed method allows for relatively easy adaptation to different TSC configurations and can also be a useful tool for engineering and educational purposes. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Fluid Flow)
23 pages, 3036 KiB  
Article
Research on the Synergistic Mechanism Design of Electricity-CET-TGC Markets and Transaction Strategies for Multiple Entities
by Zhenjiang Shi, Mengmeng Zhang, Lei An, Yan Lu, Daoshun Zha, Lili Liu and Tiantian Feng
Sustainability 2025, 17(15), 7130; https://doi.org/10.3390/su17157130 (registering DOI) - 6 Aug 2025
Abstract
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the [...] Read more.
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the green power market, tradable green certificate (TGC) market, and carbon emission trading (CET) mechanism, and the ambiguous policy boundaries affect the trading decisions made by its market participants. Therefore, this paper systematically analyses the composition of the main players in the electricity-CET-TGC markets and their relationship with each other, and designs the synergistic mechanism of the electricity-CET-TGC markets, based on which, it constructs the optimal profit model of the thermal power plant operators, renewable energy manufacturers, power grid enterprises, power users and load aggregators under the electricity-CET-TGC markets synergy, and analyses the behavioural decision-making of the main players in the electricity-CET-TGC markets as well as the electric power system to optimise the trading strategy of each player. The results of the study show that: (1) The synergistic mechanism of electricity-CET-TGC markets can increase the proportion of green power grid-connected in the new type of power system. (2) In the selection of different environmental rights and benefits products, the direct participation of green power in the market-oriented trading is the main way, followed by applying for conversion of green power into China certified emission reduction (CCER). (3) The development of independent energy storage technology can produce greater economic and environmental benefits. This study provides policy support to promote the synergistic development of the electricity-CET-TGC markets and assist the low-carbon transformation of the power industry. Full article
Show Figures

Figure 1

19 pages, 1584 KiB  
Article
The Development of a Predictive Maintenance System for Gearboxes Through a Statistical Diagnostic Analysis of Lubricating Oil and Artificial Intelligence
by Diego Rigolli, Lorenzo Pompei, Massimo Manfredini, Massimiliano Vignoli, Vincenzo La Battaglia and Alessandro Giorgetti
Machines 2025, 13(8), 693; https://doi.org/10.3390/machines13080693 (registering DOI) - 6 Aug 2025
Abstract
This paper addressed the problem of oil diagnostics lubricants applied to the predictive maintenance of industrial gearboxes, proposing the integration of an artificial intelligence (AI) system into the process analysis. The main objective was to overcome the critical issues of the traditional method, [...] Read more.
This paper addressed the problem of oil diagnostics lubricants applied to the predictive maintenance of industrial gearboxes, proposing the integration of an artificial intelligence (AI) system into the process analysis. The main objective was to overcome the critical issues of the traditional method, characterized by long analysis times and a marked dependence on the subjective interpretation of operators. The method includes a detailed statistical analysis of the common ways to assess the condition of lubricants, such as optical emission spectroscopy, particle counting, measuring viscosity and density, and Fourier-transform infrared spectroscopy (FT-IR). These methods are then combined with an artificial intelligence model. Tested on commercial gearbox data, the proposed approach demonstrates agreement between IA and expert evaluation. The application has shown that it can effectively support diagnoses, reduce processing time by 60%, and minimize human errors. It also improves knowledge sharing through an increase in the stability and repetitiveness of diagnoses and promotes consistency and clarity in reporting. Full article
Show Figures

Figure 1

21 pages, 5215 KiB  
Article
A Cyber-Physical Integrated Framework for Developing Smart Operations in Robotic Applications
by Tien-Lun Liu, Po-Chun Chen, Yi-Hsiang Chao and Kuan-Chun Huang
Electronics 2025, 14(15), 3130; https://doi.org/10.3390/electronics14153130 (registering DOI) - 6 Aug 2025
Abstract
The traditional manufacturing industry is facing the challenge of digital transformation, which involves the enhancement of intelligence and production efficiency. Many robotic applications have been discussed to enable collaborative robots to perform operations smartly rather than just automatically. This article tackles the issues [...] Read more.
The traditional manufacturing industry is facing the challenge of digital transformation, which involves the enhancement of intelligence and production efficiency. Many robotic applications have been discussed to enable collaborative robots to perform operations smartly rather than just automatically. This article tackles the issues of intelligent robots with cognitive and coordination capability by introducing cyber-physical integration technology. The authors propose a system architecture with open-source software and low-cost hardware based on the 5C hierarchy and then conduct experiments to verify the proposed framework. These experiments involve the collection of real-time data using a depth camera, object detection to recognize obstacles, simulation of collision avoidance for a robotic arm, and cyber-physical integration to perform a robotic task. The proposed framework realizes the scheme of the 5C architecture of Industry 4.0 and establishes a digital twin in cyberspace. By utilizing connection, conversion, calculation, simulation, verification, and operation, the robotic arm is capable of making independent judgments and appropriate decisions to successfully complete the assigned task, thereby verifying the proposed framework. Such a cyber-physical integration system is characterized by low cost but good effectiveness. Full article
(This article belongs to the Topic Innovation, Communication and Engineering)
Show Figures

Figure 1

24 pages, 1671 KiB  
Article
Sustainability in Purpose-Driven Businesses Operating in Cultural and Creative Industries: Insights from Consumers’ Perspectives on Società Benefit
by Gesualda Iodice and Francesco Bifulco
Sustainability 2025, 17(15), 7117; https://doi.org/10.3390/su17157117 - 6 Aug 2025
Abstract
This study intends to provide insights and challenges for the shape of the B movement, an emerging paradigm that fosters cross-sectoral partnerships and encourages ethical business practices through so-called purpose-driven businesses. Focusing on Italy, the first European country to adopt this managerial model, [...] Read more.
This study intends to provide insights and challenges for the shape of the B movement, an emerging paradigm that fosters cross-sectoral partnerships and encourages ethical business practices through so-called purpose-driven businesses. Focusing on Italy, the first European country to adopt this managerial model, the research investigates Italian Benefit Corporations, known as Società Benefit (SB), and their most appealing sustainability claims from a consumer perspective. The analysis intends to inform theory development by assuming the cultural and creative industry (CCI) as a field of interest, utilizing a within-subjects experimental design to analyze data from a diverse consumer sample across various contexts. The results indicate that messaging centered on economic sustainability emerged as the most effective in generating positive consumer responses, highlighting a prevailing inclination toward pragmatic factors such as affordability, economic accessibility, and tangible benefits rather than social issues. While sustainable behaviors are not yet widespread, latent ethical sensitivity for authentic, value-driven businesses suggests that economic and ethical dimensions can be strategically synthesized to enhance consumer engagement. This insight highlights the role of BCs in catalyzing a shift in consumption patterns within ethical-based and creative-driven sectors. Full article
Show Figures

Figure 1

24 pages, 2539 KiB  
Article
Classification Framework for Hydrological Resources for Sustainable Hydrogen Production with a Predictive Algorithm for Optimization
by Mónica Álvarez-Manso, Gabriel Búrdalo-Salcedo and María Fernández-Raga
Hydrogen 2025, 6(3), 54; https://doi.org/10.3390/hydrogen6030054 - 6 Aug 2025
Abstract
Given the urgent need to decarbonize the global energy system, green hydrogen has emerged as a key alternative in the transition to renewables. However, its production via electrolysis demands high water quality and raises environmental concerns, particularly regarding reject water discharge. This study [...] Read more.
Given the urgent need to decarbonize the global energy system, green hydrogen has emerged as a key alternative in the transition to renewables. However, its production via electrolysis demands high water quality and raises environmental concerns, particularly regarding reject water discharge. This study employs an experimental and analytical approach to define optimal water characteristics for electrolysis, focusing on conductivity as a key parameter. A pilot water treatment plant with reverse osmosis and electrodeionization (EDI) was designed to simulate industrial-scale pretreatment. Twenty water samples from diverse natural sources (surface and groundwater) were tested, selected for geographical and geological variability. A predictive algorithm was developed and validated to estimate useful versus reject water based on input quality. Three conductivity-based categories were defined: optimal (0–410 µS/cm), moderate (411–900 µS/cm), and restricted (>900 µS/cm). Results show that water quality significantly affects process efficiency, energy use, waste generation, and operating costs. This work offers a technical and regulatory framework for assessing potential sites for green hydrogen plants, recommending avoidance of high-conductivity sources. It also underscores the current regulatory gap regarding reject water treatment, stressing the need for clear environmental guidelines to ensure project sustainability. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

31 pages, 34013 KiB  
Article
Vision-Based 6D Pose Analytics Solution for High-Precision Industrial Robot Pick-and-Place Applications
by Balamurugan Balasubramanian and Kamil Cetin
Sensors 2025, 25(15), 4824; https://doi.org/10.3390/s25154824 - 6 Aug 2025
Abstract
High-precision 6D pose estimation for pick-and-place operations remains a critical problem for industrial robot arms in manufacturing. This study introduces an analytics-based solution for 6D pose estimation designed for a real-world industrial application: it enables the Staubli TX2-60L (manufactured by Stäubli International AG, [...] Read more.
High-precision 6D pose estimation for pick-and-place operations remains a critical problem for industrial robot arms in manufacturing. This study introduces an analytics-based solution for 6D pose estimation designed for a real-world industrial application: it enables the Staubli TX2-60L (manufactured by Stäubli International AG, Horgen, Switzerland) robot arm to pick up metal plates from various locations and place them into a precisely defined slot on a brake pad production line. The system uses a fixed eye-to-hand Intel RealSense D435 RGB-D camera (manufactured by Intel Corporation, Santa Clara, California, USA) to capture color and depth data. A robust software infrastructure developed in LabVIEW (ver.2019) integrated with the NI Vision (ver.2019) library processes the images through a series of steps, including particle filtering, equalization, and pattern matching, to determine the X-Y positions and Z-axis rotation of the object. The Z-position of the object is calculated from the camera’s intensity data, while the remaining X-Y rotation angles are determined using the angle-of-inclination analytics method. It is experimentally verified that the proposed analytical solution outperforms the hybrid-based method (YOLO-v8 combined with PnP/RANSAC algorithms). Experimental results across four distinct picking scenarios demonstrate the proposed solution’s superior accuracy, with position errors under 2 mm, orientation errors below 1°, and a perfect success rate in pick-and-place tasks. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

16 pages, 8330 KiB  
Article
The Performance of a Novel Automated Algorithm in Estimating Truckload Volume Based on LiDAR Data
by Mihai Daniel Niţă, Cătălin Cucu-Dumitrescu, Bogdan Candrea, Bogdan Grama, Iulian Iuga and Stelian Alexandru Borz
Forests 2025, 16(8), 1281; https://doi.org/10.3390/f16081281 - 5 Aug 2025
Abstract
Significant improvements in the forest-based industrial sector are expected due to increased digitalization; however, examples of practical implementations remain limited. This study explores the use of an automated algorithm to estimate truckload volumes based on 3D point cloud data acquired using two different [...] Read more.
Significant improvements in the forest-based industrial sector are expected due to increased digitalization; however, examples of practical implementations remain limited. This study explores the use of an automated algorithm to estimate truckload volumes based on 3D point cloud data acquired using two different LiDAR scanning platforms. This research compares the performance of a professional mobile laser scanning (MLS GeoSLAM) platform and a smartphone-based iPhone LiDAR system. A total of 48 truckloads were measured using a combination of manual, factory-based, and digital approaches. Accuracy was evaluated using standard error metrics, including the mean absolute error (MAE) and root mean square error (RMSE), with manual or factory references used as benchmarks. The results showed a strong correlation and no significant differences between the algorithmic and manual measurements when using the MLS platform (MAE = 2.06 m3; RMSE = 2.46 m3). For the iPhone platform, the results showed higher deviations and significant overestimation compared to the factory reference (MAE = 3.29 m3; RMSE = 3.60 m3). Despite these differences, the iPhone platform offers real-time acquisition and low-cost deployment. These findings highlight the trade-offs between precision and operational efficiency and support the adoption of automated measurement tools in timber supply chains. Full article
(This article belongs to the Section Forest Operations and Engineering)
14 pages, 1310 KiB  
Article
Enhancing Energy Efficiency of Electric Grade Isopropyl Alcohol Production Process by Using Noble Thermally Coupled Distillation Technology
by Neha Agarwal, Nguyen Nhu Nga, Le Cao Nhien, Raisa Aulia Hanifah, Minkyu Kim and Moonyong Lee
Energies 2025, 18(15), 4159; https://doi.org/10.3390/en18154159 - 5 Aug 2025
Abstract
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent [...] Read more.
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent feed that consists of IPA and water, along with other impurities. Modeling and energy optimization were performed for a conventional distillation train as a base case by using the rigorous process simulator Aspen Plus V12.1. To improve energy efficiency, various options for intensifying distillation were examined. The side-stream preconcentration column was subsequently replaced by a dividing wall column (DWC) with two side streams, i.e., a Kaibel column, reducing the total energy consumption of corresponding distillation columns by 9.1% compared to the base case. Further strengthening was achieved by combining two columns in the preconcentration process into a single Kaibel column, resulting in a 22.8% reduction in reboiler duty compared to the base case. Optimization using the response surface methodology identified key operating parameters, such as side-draw positions and stage design, which significantly influence both energy efficiency and separation quality. The intensified Kaibel setup offers significant energy efficiencies and simplified column design, suggesting enormous potential for process intensification in energy-intensive distillation processes at the industrial level, including the IPA purification process. Full article
Show Figures

Figure 1

15 pages, 1241 KiB  
Article
Triplet Spatial Reconstruction Attention-Based Lightweight Ship Component Detection for Intelligent Manufacturing
by Bocheng Feng, Zhenqiu Yao and Chuanpu Feng
Appl. Sci. 2025, 15(15), 8676; https://doi.org/10.3390/app15158676 (registering DOI) - 5 Aug 2025
Abstract
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a [...] Read more.
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a Triplet Spatial Reconstruction Attention (TSA) mechanism that combines threshold-based feature separation with triplet parallel processing is proposed, and a lightweight You Only Look Once Ship (YOLO-Ship) detection network is constructed. Unlike existing attention mechanisms that focus on either spatial reconstruction or channel attention independently, the proposed TSA integrates triplet parallel processing with spatial feature separation–reconstruction techniques to achieve enhanced target feature representation while significantly reducing parameter count and computational overhead. Experimental validation on a small-scale actual ship component dataset demonstrates that the improved network achieves 88.7% mean Average Precision (mAP), 84.2% precision, and 87.1% recall, representing improvements of 3.5%, 2.2%, and 3.8%, respectively, compared to the original YOLOv8n algorithm, requiring only 2.6 M parameters and 7.5 Giga Floating-point Operations per Second (GFLOPs) computational cost, achieving a good balance between detection accuracy and lightweight model design. Future research directions include developing adaptive threshold learning mechanisms for varying industrial conditions and integration with surface defect detection capabilities to enhance comprehensive quality control in intelligent manufacturing systems. Full article
(This article belongs to the Special Issue Artificial Intelligence on the Edge for Industry 4.0)
Show Figures

Figure 1

33 pages, 3416 KiB  
Review
Harnessing an Algae–Bacteria Symbiosis System: Innovative Strategies for Enhancing Complex Wastewater Matrices Treatment
by Wantong Zhao, Kun Tian, Lan Zhang, Ye Tang, Ruihuan Chen, Xiangyong Zheng and Min Zhao
Sustainability 2025, 17(15), 7104; https://doi.org/10.3390/su17157104 - 5 Aug 2025
Abstract
Complex wastewater matrices hinder the efficacy of conventional treatment methods due to the presence of various inorganic and organic pollutants, along with their intricate interactions. Leveraging the synergy between algae and bacteria, algal–bacterial symbiosis (ABS) systems offering an evolutionary and highly effective approach. [...] Read more.
Complex wastewater matrices hinder the efficacy of conventional treatment methods due to the presence of various inorganic and organic pollutants, along with their intricate interactions. Leveraging the synergy between algae and bacteria, algal–bacterial symbiosis (ABS) systems offering an evolutionary and highly effective approach. The ABS system demonstrates 10–30% higher removal efficiency than conventional biological/physicochemical methods under identical conditions, especially at low C/N ratios. Recent advances in biology techniques and big data analytics have deepened our understanding of the synergistic mechanisms involved. Despite the system’s considerable promise, challenges persist concerning complex pollution scenarios and scaling it for industrial applications, particularly regarding system design, environmental adaptability, and stable operation. In this review, we explore the current forms and operational modes of ABS systems, discussing relevant mechanisms in various wastewater treatment contexts. Furthermore, we examine the advantages and limitations of ABS systems in treating complex wastewater matrices, highlighting challenges and proposing future directions. Full article
19 pages, 1869 KiB  
Article
Optimization of Stresses near Reinforced Holes in Relation to Sustainable Design of Composite Structural Elements
by Bartosz Miller, Marta Maksymovych, Olesia Maksymovych and Fedir Gagauz
Sustainability 2025, 17(15), 7103; https://doi.org/10.3390/su17157103 - 5 Aug 2025
Abstract
A method for selecting mechanical properties and geometry of reinforcing overlays to increase the strength of composite structural elements with holes has been developed. The method is based on the developed algorithm for calculating stress concentration near holes reinforced with inserted rings or [...] Read more.
A method for selecting mechanical properties and geometry of reinforcing overlays to increase the strength of composite structural elements with holes has been developed. The method is based on the developed algorithm for calculating stress concentration near holes reinforced with inserted rings or glued composite reinforcing overlays. The determination of stresses near holes and overlays is reduced to solving a system of singular integral equations. The kernels of these equations are constructed using Green’s solution, which allows a reduction in the number of equations to four. It is shown that the stress concentration near holes can be significantly reduced by optimizing the thickness, elastic properties, and shape of the overlays. The stress calculations performed based on the three-dimensional theory of elasticity confirmed the reliability of the results obtained within the framework of the plane problem of an anisotropic body. The results obtained, in accordance with the concept of sustainable development, enable the develop simple methods for increasing reliability, reducing material consumption, and reducing the manufacturing and operating costs of composite structures in the aerospace and mechanical engineering industries. Full article
Show Figures

Figure 1

36 pages, 1832 KiB  
Review
Enabling Intelligent Industrial Automation: A Review of Machine Learning Applications with Digital Twin and Edge AI Integration
by Mohammad Abidur Rahman, Md Farhan Shahrior, Kamran Iqbal and Ali A. Abushaiba
Automation 2025, 6(3), 37; https://doi.org/10.3390/automation6030037 - 5 Aug 2025
Abstract
The integration of machine learning (ML) into industrial automation is fundamentally reshaping how manufacturing systems are monitored, inspected, and optimized. By applying machine learning to real-time sensor data and operational histories, advanced models enable proactive fault prediction, intelligent inspection, and dynamic process control—directly [...] Read more.
The integration of machine learning (ML) into industrial automation is fundamentally reshaping how manufacturing systems are monitored, inspected, and optimized. By applying machine learning to real-time sensor data and operational histories, advanced models enable proactive fault prediction, intelligent inspection, and dynamic process control—directly enhancing system reliability, product quality, and efficiency. This review explores the transformative role of ML across three key domains: Predictive Maintenance (PdM), Quality Control (QC), and Process Optimization (PO). It also analyzes how Digital Twin (DT) and Edge AI technologies are expanding the practical impact of ML in these areas. Our analysis reveals a marked rise in deep learning, especially convolutional and recurrent architectures, with a growing shift toward real-time, edge-based deployment. The paper also catalogs the datasets used, the tools and sensors employed for data collection, and the industrial software platforms supporting ML deployment in practice. This review not only maps the current research terrain but also highlights emerging opportunities in self-learning systems, federated architectures, explainable AI, and themes such as self-adaptive control, collaborative intelligence, and autonomous defect diagnosis—indicating that ML is poised to become deeply embedded across the full spectrum of industrial operations in the coming years. Full article
(This article belongs to the Section Industrial Automation and Process Control)
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

27 pages, 5228 KiB  
Article
Detection of Surface Defects in Steel Based on Dual-Backbone Network: MBDNet-Attention-YOLO
by Xinyu Wang, Shuhui Ma, Shiting Wu, Zhaoye Li, Jinrong Cao and Peiquan Xu
Sensors 2025, 25(15), 4817; https://doi.org/10.3390/s25154817 - 5 Aug 2025
Abstract
Automated surface defect detection in steel manufacturing is pivotal for ensuring product quality, yet it remains an open challenge owing to the extreme heterogeneity of defect morphologies—ranging from hairline cracks and microscopic pores to elongated scratches and shallow dents. Existing approaches, whether classical [...] Read more.
Automated surface defect detection in steel manufacturing is pivotal for ensuring product quality, yet it remains an open challenge owing to the extreme heterogeneity of defect morphologies—ranging from hairline cracks and microscopic pores to elongated scratches and shallow dents. Existing approaches, whether classical vision pipelines or recent deep-learning paradigms, struggle to simultaneously satisfy the stringent demands of industrial scenarios: high accuracy on sub-millimeter flaws, insensitivity to texture-rich backgrounds, and real-time throughput on resource-constrained hardware. Although contemporary detectors have narrowed the gap, they still exhibit pronounced sensitivity–robustness trade-offs, particularly in the presence of scale-varying defects and cluttered surfaces. To address these limitations, we introduce MBY (MBDNet-Attention-YOLO), a lightweight yet powerful framework that synergistically couples the MBDNet backbone with the YOLO detection head. Specifically, the backbone embeds three novel components: (1) HGStem, a hierarchical stem block that enriches low-level representations while suppressing redundant activations; (2) Dynamic Align Fusion (DAF), an adaptive cross-scale fusion mechanism that dynamically re-weights feature contributions according to defect saliency; and (3) C2f-DWR, a depth-wise residual variant that progressively expands receptive fields without incurring prohibitive computational costs. Building upon this enriched feature hierarchy, the neck employs our proposed MultiSEAM module—a cascaded squeeze-and-excitation attention mechanism operating at multiple granularities—to harmonize fine-grained and semantic cues, thereby amplifying weak defect signals against complex textures. Finally, we integrate the Inner-SIoU loss, which refines the geometric alignment between predicted and ground-truth boxes by jointly optimizing center distance, aspect ratio consistency, and IoU overlap, leading to faster convergence and tighter localization. Extensive experiments on two publicly available steel-defect benchmarks—NEU-DET and PVEL-AD—demonstrate the superiority of MBY. Without bells and whistles, our model achieves 85.8% mAP@0.5 on NEU-DET and 75.9% mAP@0.5 on PVEL-AD, surpassing the best-reported results by significant margins while maintaining real-time inference on an NVIDIA Jetson Xavier. Ablation studies corroborate the complementary roles of each component, underscoring MBY’s robustness across defect scales and surface conditions. These results suggest that MBY strikes an appealing balance between accuracy, efficiency, and deployability, offering a pragmatic solution for next-generation industrial quality-control systems. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop