Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (317)

Search Parameters:
Keywords = inductive power transmission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4602 KB  
Article
Intelligent Fault Diagnosis of Ball Bearing Induction Motors for Predictive Maintenance Industrial Applications
by Vasileios I. Vlachou, Theoklitos S. Karakatsanis, Stavros D. Vologiannidis, Dimitrios E. Efstathiou, Elisavet L. Karapalidou, Efstathios N. Antoniou, Agisilaos E. Efraimidis, Vasiliki E. Balaska and Eftychios I. Vlachou
Machines 2025, 13(10), 902; https://doi.org/10.3390/machines13100902 - 2 Oct 2025
Viewed by 348
Abstract
Induction motors (IMs) are crucial in many industrial applications, offering a cost-effective and reliable source of power transmission and generation. However, their continuous operation imposes considerable stress on electrical and mechanical parts, leading to progressive wear that can cause unexpected system shutdowns. Bearings, [...] Read more.
Induction motors (IMs) are crucial in many industrial applications, offering a cost-effective and reliable source of power transmission and generation. However, their continuous operation imposes considerable stress on electrical and mechanical parts, leading to progressive wear that can cause unexpected system shutdowns. Bearings, which enable shaft motion and reduce friction under varying loads, are the most failure-prone components, with bearing ball defects representing most severe mechanical failures. Early and accurate fault diagnosis is therefore essential to prevent damage and ensure operational continuity. Recent advances in the Internet of Things (IoT) and machine learning (ML) have enabled timely and effective predictive maintenance strategies. Among various diagnostic parameters, vibration analysis has proven particularly effective for detecting bearing faults. This study proposes a hybrid diagnostic framework for induction motor bearings, combining vibration signal analysis with Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) in an IoT-enabled Industry 4.0 architecture. Statistical and frequency-domain features were extracted, reduced using Principal Component Analysis (PCA), and classified with SVMs and ANNs, achieving over 95% accuracy. The novelty of this work lies in the hybrid integration of interpretable and non-linear ML models within an IoT-based edge–cloud framework. Its main contribution is a scalable and accurate real-time predictive maintenance solution, ensuring high diagnostic reliability and seamless integration in Industry 4.0 environments. Full article
(This article belongs to the Special Issue Vibration Detection of Induction and PM Motors)
Show Figures

Figure 1

17 pages, 3109 KB  
Article
Simulation of Eddy Current Suppression and Efficiency Recovery in Mining MCR-WPT Systems Based on Explosion-Proof Slotting
by Yingying Wang, Jiahui Yu, Jindi Pang, Shuangli Chen and Yudong Wang
Electronics 2025, 14(19), 3899; https://doi.org/10.3390/electronics14193899 - 30 Sep 2025
Viewed by 186
Abstract
To meet safety regulations in underground coal mines, wireless power transfer (WPT) systems must house both the transmitter and receiver within explosion-proof enclosures. However, eddy currents induced on the surfaces of these non-ferromagnetic metal enclosures significantly hinder magnetic flux coupling, thereby reducing transmission [...] Read more.
To meet safety regulations in underground coal mines, wireless power transfer (WPT) systems must house both the transmitter and receiver within explosion-proof enclosures. However, eddy currents induced on the surfaces of these non-ferromagnetic metal enclosures significantly hinder magnetic flux coupling, thereby reducing transmission efficiency. This paper proposes a slotting technique applied to explosion-proof enclosures to suppress eddy currents, along with the integration of magnetic flux focusing materials into the coils to enhance coupling. Simulations were conducted to compare three system configurations: (i) a WPT system without enclosures, (ii) a system with solid (unslotted) enclosures, and (iii) a system with slotted enclosures. The results show that solid enclosures reduce efficiency to nearly zero, whereas slotted enclosures restore efficiency to 90% of the baseline system without enclosures. Joule heating remains low in the slotted explosion-proof enclosures, with energy losses of 2.552 J for the transmitter enclosure and 2.578 J for the receiver enclosure. A conservative first-order estimation confirms that the corresponding temperature rise in the enclosure surfaces remains below 50 °C, which is well within the 150 °C limit stipulated by the Chinese National Standard GB 3836.1-2021 (Explosive Atmospheres—Part 1: Equipment General Requirements). These findings confirm effective eddy current suppression and efficiency recovery without compromising explosion-proof safety. The core innovation of this work lies not merely in the physical slotting approach, but in the development of a precise equivalent circuit model that fully incorporates all mutual inductance components representing eddy current effects in non-ferromagnetic explosion-proof enclosures, and its integration into the overall MCR-WPT system circuit. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

18 pages, 3215 KB  
Article
A Study on the Optimization Design of Power System Winding Structure Equipment Based on NSGA-II
by Xuelei Wang, Longlong Li, Jian Wang, Qingdong Zhu, Zhaoliang Gu and Mengzhao Zhu
Energies 2025, 18(18), 5001; https://doi.org/10.3390/en18185001 - 20 Sep 2025
Viewed by 290
Abstract
As a key component for maintaining the efficient and stable operation of flexible DC transmission systems, the arm reactor often suffers from uneven loss distribution and localized overheating in its windings due to the superimposed AC and DC currents, which adversely affects its [...] Read more.
As a key component for maintaining the efficient and stable operation of flexible DC transmission systems, the arm reactor often suffers from uneven loss distribution and localized overheating in its windings due to the superimposed AC and DC currents, which adversely affects its operational lifespan. Furthermore, arm reactors are frequently deployed in offshore environments for long-distance, high-capacity power transmission, imposing additional requirements on energy utilization efficiency and seismic resistance. To address these challenges, this study proposes an optimization design method for arm reactors based on a triple-constraint mechanism of “equal resistive voltage–equal loss density–equal encapsulation temperature rise,” aiming to achieve “low loss–low temperature rise–low weight.” First, an equivalent electromagnetic model of the arm reactor under combined AC and DC operating conditions is established to analytically calculate the self- and mutual-inductance-distribution characteristics between winding layers and the loss distribution across windings. The calculated losses are then applied as heat sources in a fluid–thermal coupling method to compute the temperature field of the arm reactor. Next, leveraging a Kriging surrogate model to capture the relationship between the winding temperature rise in the bridge-arm reactor and the loss density, encapsulation width, encapsulation height, and air duct width, the revised analytical expression reduces the temperature rise error from 43.74% to 11.47% compared with the traditional empirical formula. Finally, the triple-constraint mechanism of “equal resistive voltage–equal loss density–equal encapsulation temperature rise” is proposed to balance interlayer current distribution, suppress total loss generation, and limit localized hotspot formation. A prototype constructed based on the optimized design demonstrates a 44.51% reduction in total loss, a 39.66% decrease in hotspot temperature rise, and a 24.83% reduction in mass while maintaining rated inductance, validating the effectiveness of the proposed design algorithm. Full article
Show Figures

Figure 1

35 pages, 6812 KB  
Article
Modeling Transient Waveforms of Offshore Wind Power AC/DC Transmission Faults: Unveiling Symmetry–Asymmetry Mechanisms
by Yi Zheng, Qi You, Yujie Chen, Haoming Guo, Hao Yang, Shuang Liang and Xin Pan
Symmetry 2025, 17(9), 1551; https://doi.org/10.3390/sym17091551 - 16 Sep 2025
Viewed by 332
Abstract
This paper aims to unveil the symmetry–asymmetry transition mechanisms in transient fault waveforms of offshore wind power AC/DC transmission systems, addressing the critical limitation of traditional simulation methods of the fact that they cannot characterize the dynamic evolution of system symmetry, such as [...] Read more.
This paper aims to unveil the symmetry–asymmetry transition mechanisms in transient fault waveforms of offshore wind power AC/DC transmission systems, addressing the critical limitation of traditional simulation methods of the fact that they cannot characterize the dynamic evolution of system symmetry, such as static impedance adjustment failing to capture transient asymmetry caused by parameter imbalance or converter control. It proposes a fault waveform simulation approach integrating mechanism analysis, scenario extraction, and model optimization. Key contributions include clarifying the quantitative links between key system parameters like submarine cable capacitance and inductance and symmetry–asymmetry characteristics, defining the transient decay rate oscillation frequency and voltage peak as core indicators to quantify symmetry breaking intensity; classifying typical fault scenarios into a symmetry-breaking type with synchronous three-phase imbalance and a persistent asymmetry type with zero-sequence and negative-sequence distortion based on symmetry evolution dynamics and revising grid-connection test indices such as lowering the low-voltage ride-through threshold and specifying the voltage type for different test objectives; and constructing a simplified embedded RLC second-order model with symmetry–asymmetry constraints to reproduce the whole process of symmetric steady state–fault symmetry breaking–recovery symmetry reconstruction. Simulation results verify the method’s effectiveness, with symmetry indicator reproduction errors ≤ 5% and asymmetric feature fitting goodness R2 ≥ 0.92, which confirms that the method can effectively reveal the symmetry–asymmetry mechanisms of offshore wind power fault transients and provides reliable technical support for improving offshore wind power fault simulation accuracy and grid-connection test reliability, laying a theoretical basis for the grid-connection testing of offshore wind turbines and promoting the stable operation of offshore wind power systems. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

12 pages, 2524 KB  
Article
The Design of a Dual-Band 4-Port Magnetic Resonant Wireless Power Transfer Coupler: Theoretical Analysis of Losses and Interference for Biomedical Wearable Applications
by Hong-Guk Bae and Sang-Wook Park
Electronics 2025, 14(18), 3637; https://doi.org/10.3390/electronics14183637 - 14 Sep 2025
Viewed by 292
Abstract
This study analyzes cross-band interference and losses in a compact dual-frequency 4-port inductive coupler operating at 6.78 MHz and 13.56 MHz for Magnetic Resonant Wireless Power Transfer (MR-WPT) using an equivalent circuit model fitted to 3D full wave analysis and empirical measurements. The [...] Read more.
This study analyzes cross-band interference and losses in a compact dual-frequency 4-port inductive coupler operating at 6.78 MHz and 13.56 MHz for Magnetic Resonant Wireless Power Transfer (MR-WPT) using an equivalent circuit model fitted to 3D full wave analysis and empirical measurements. The model is first matched to idealized 3D model results to establish baseline parameters and then theoretically analyzed in relation to measured S-parameters to reflect empirical losses. This approach achieves accurate theoretical interpretation, with errors remaining below 5%. The results show consistent transmission coefficients, with the model most closely matching the measurements. Power loss and efficiency comparisons indicate that the model accurately captures deviations, with its performance positioned between the 3D full wave analysis and measured results. Cross-band interference remains below −20 dB, and the maximum measured efficiency reaches 71.18%. Full article
Show Figures

Figure 1

16 pages, 15073 KB  
Article
A Bidirectional, Full-Duplex, Implantable Wireless CMOS System for Prosthetic Control
by Riccardo Collu, Cinzia Salis, Elena Ferrazzano and Massimo Barbaro
J. Sens. Actuator Netw. 2025, 14(5), 92; https://doi.org/10.3390/jsan14050092 - 10 Sep 2025
Viewed by 638
Abstract
Implantable medical devices present several technological challenges, one of the most critical being how to provide power supply and communication capabilities to a device hermetically sealed within the body. Using a battery as a power source represents a potential harm for the individual’s [...] Read more.
Implantable medical devices present several technological challenges, one of the most critical being how to provide power supply and communication capabilities to a device hermetically sealed within the body. Using a battery as a power source represents a potential harm for the individual’s health because of possible toxic chemical release or overheating, and it requires periodic surgery for replacement. This paper proposes a batteryless implantable device powered by an inductive link and equipped with bidirectional wireless communication channels. The device, designed in a 180 nm CMOS process, is based on two different pairs of mutually coupled inductors that provide, respectively, power and a low-bitrate bidirectional communication link and a separate, high-bitrate, one-directional upstream connection. The main link is based on a 13.56 MHz carrier and allows power transmission and a half-duplex two-way communication at 106 kbps (downlink) and 30 kbps (uplink). The secondary link is based on a 27 MHz carrier, which provides one-way communication at 2.25 Mbps only in uplink. The low-bitrate links are needed to send commands and monitor the implanted system, while the high-bitrate link is required to receive a continuous stream of information from the implanted sensing devices. The microchip acts as a hub for power and data wireless transmission capable of managing up to four different neural recording and stimulation front ends, making the device employable in a complex, distributed, bidirectional neural prosthetic system. Full article
Show Figures

Figure 1

19 pages, 6393 KB  
Article
Design of a Compact IPT System for Medium Distance-to-Diameter Ratio AGV Applications with Enhanced Misalignment Tolerance
by Junchen Xie, Guangyao Li, Zhiliang Yang, Seungjin Jo and Dong-Hee Kim
Appl. Sci. 2025, 15(17), 9799; https://doi.org/10.3390/app15179799 - 6 Sep 2025
Viewed by 631
Abstract
Automated guided vehicles (AGVs) operating in uneven environments are typically designed with an elevated chassis to enhance obstacle-crossing. In inductive power transfer (IPT) systems for such AGVs, a long transmission distance along with limited installation space for coils leads to a medium distance-to-diameter [...] Read more.
Automated guided vehicles (AGVs) operating in uneven environments are typically designed with an elevated chassis to enhance obstacle-crossing. In inductive power transfer (IPT) systems for such AGVs, a long transmission distance along with limited installation space for coils leads to a medium distance-to-diameter ratio (DDR) (1 < DDR ≤ 2), which reduces coupling efficiency and degrades misalignment tolerance. To address this issue, this paper proposes a compact dual-receiver IPT system for medium DDR conditions. The system adopts a flat U-shaped solenoid (FUS) coil as both the transmitter and the primary receiver, and a square solenoid (SS) coil as the secondary receiver, forming the FUSS dual-receiver structure. The FUS coil is optimized through finite element analysis to improve coupling, while the SS coil captures vertical flux to compensate for misalignment losses, thereby enhancing misalignment tolerance. A hybrid rectifier integrating a full-bridge and voltage doubler topology is used to suppress output voltage fluctuation, reduce the number of receiver coil turns, and minimize system volume. A 300 W/100 kHz prototype with a coupler size of 183 × 126 × 838 mm3 achieves 83.51% efficiency under medium DDR and a 185 mm air gap. Voltage fluctuation remains within 5% under ±51.4% X-axis and ±51.7% Y-axis misalignment, confirming the stable power delivery and improved misalignment tolerance of the system. Full article
(This article belongs to the Special Issue Control Systems for Next Generation Electric Applications)
Show Figures

Figure 1

19 pages, 52140 KB  
Article
Wearable SIMO Inductive Resonant Link for Posture Monitoring
by Giuseppina Monti, Daniele Lezzi and Luciano Tarricone
Sensors 2025, 25(17), 5478; https://doi.org/10.3390/s25175478 - 3 Sep 2025
Viewed by 661
Abstract
This paper explores the feasibility of using a wireless Inductive Resonant Link (IRL) for wearable posture monitoring. The proposed system is based on magnetically coupled textile resonators and is implemented using a Single Input Multiple Output (SIMO) configuration. In particular, the setup consists [...] Read more.
This paper explores the feasibility of using a wireless Inductive Resonant Link (IRL) for wearable posture monitoring. The proposed system is based on magnetically coupled textile resonators and is implemented using a Single Input Multiple Output (SIMO) configuration. In particular, the setup consists of four inductively coupled resonators: one transmitting coil integrated into a textile structure and positioned on the back of the neck, and three receiving coils placed on the shoulders. The magnetic coupling between these elements varies as a function of the user’s posture, making it possible to monitor postural changes by analyzing variations in the transmission coefficients of the link. Unlike traditional sensor-based systems that require multiple components and data processing, the proposed method uses the inherent response of the inductive link to detect posture in a simple and efficient way. To validate the concept, experimental measurements of the scattering parameters were carried out using a compact and low-power vector network analyzer. The results show a consistent and measurable relationship between postural changes and variations in the transmission coefficients, demonstrating the effectiveness of the proposed system in distinguishing between different postures. The findings suggest that inductive resonant wireless links, especially when implemented with textile components, represent a promising alternative to traditional wearable sensor technologies for posture tracking. The approach offers significant advantages in terms of wearability, power consumption, and simplicity, making it suitable for applications in ergonomics, rehabilitation, occupational health, and smart clothing. Full article
(This article belongs to the Section Wearables)
Show Figures

Graphical abstract

23 pages, 2218 KB  
Article
Improved Time-Domain Distance Protection for Two-Terminal Weak Feed AC Systems Considering the Influence of Control Strategies and Distributed Capacitor Currents
by Ping Xiong, Xiaoqian Zhu, Yu Sun, Lie Li, Yifan Zhao, Qiangqiang Gao and Junjie Hou
Electronics 2025, 14(17), 3431; https://doi.org/10.3390/electronics14173431 - 28 Aug 2025
Viewed by 433
Abstract
The flexible DC transmission project of renewable energy has become an inevitable development trend for large-scale renewable energy grid connection. A two-terminal weak feed (TTWF) AC system is often composed of 100% power electronic equipment. The traditional fault control strategy adopted after a [...] Read more.
The flexible DC transmission project of renewable energy has become an inevitable development trend for large-scale renewable energy grid connection. A two-terminal weak feed (TTWF) AC system is often composed of 100% power electronic equipment. The traditional fault control strategy adopted after a fault in the converter at both terminals of the line limits the fault current and controls the phase, resulting in a decrease in the time-domain distance protection performance. This paper first analyzes the adaptability challenges of time-domain distance protection in TTWF. Based on detailed fault characteristic studies, two improvement approaches are proposed: (1) accounting for phase control effects by equivalently modeling the fault impedance as a series combination of fault resistance and inductance; and (2) incorporating distributed capacitance effects through fault differential equation derivation based on π-type line equivalent models. A novel time-domain distance protection method is subsequently developed, comprehensively considering control strategy impacts and distributed capacitive currents. Simulation tests verify that the proposed method maintains reliable operation under severe conditions, including 300 Ω fault resistance and 30 dB white noise interference, demonstrating significantly improved resistance to fault impedance and noise compared to conventional solutions. Full article
Show Figures

Figure 1

18 pages, 7499 KB  
Article
Transformer Winding Fault Locating Using Frequency Domain Reflectometry (FDR) Technology
by Hao Yun, Yizhou Zhang, Yufei Sun, Liang Wang, Lulin Xu, Daning Zhang and Jialu Cheng
Electronics 2025, 14(15), 3117; https://doi.org/10.3390/electronics14153117 - 5 Aug 2025
Viewed by 410
Abstract
Detecting power transformer winding degradations at an early stage is very important for the safe operation of nuclear power plants. Most transformer failures are caused by insulation breakdown; the winding turn-to-turn short circuit fault is frequently encountered. Experience has shown that routine testing [...] Read more.
Detecting power transformer winding degradations at an early stage is very important for the safe operation of nuclear power plants. Most transformer failures are caused by insulation breakdown; the winding turn-to-turn short circuit fault is frequently encountered. Experience has shown that routine testing techniques, e.g., winding resistance, leakage inductance, and sweep frequency response analysis (SFRA), are not sensitive enough to identify minor turn-to-turn short defects. The SFRA technique is effective only if the fault is in such a condition that the flux distribution in the core is prominently distorted. This paper proposes the frequency domain reflectometry (FDR) technique for detecting and locating transformer winding defects. FDR measures the wave impedance and its change along the measured windings. The wire over a plane model is selected as the transmission line model for the transformer winding. The effectiveness is verified through lab experiments on a twist pair cable simulating the transformer winding and field testing on a real transformer. The FDR technique successfully identified and located the turn-to-turn short fault that was not detected by other testing techniques. Using FDR as a complementary tool for winding condition assessment will be beneficial. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

20 pages, 6870 KB  
Article
Stability Limit Analysis of DFIG Connected to Weak Grid in DC-Link Voltage Control Timescale
by Kezheng Jiang, Lie Li, Zhenyu He and Dan Liu
Electronics 2025, 14(15), 3022; https://doi.org/10.3390/electronics14153022 - 29 Jul 2025
Cited by 1 | Viewed by 413
Abstract
In some areas, such as Gansu in China and Texas in the USA, lots of wind power bases are located far away from load centers. Transmitting large amounts of wind power to load centers through long transmission lines will lead to wind turbines [...] Read more.
In some areas, such as Gansu in China and Texas in the USA, lots of wind power bases are located far away from load centers. Transmitting large amounts of wind power to load centers through long transmission lines will lead to wind turbines being integrated into a weak grid, which decreases the stability limits of wind turbines. To solve this problem, this study investigates the stability limits of a Doubly Fed Induction Generator (DFIG) connected to a weak grid in a DC-link voltage control timescale. To start with, a model of the DFIG in a DC-link voltage control timescale is presented for stability limit analysis, which facilitates profound physical understanding. Through steady-state stability analysis based on sensitivity evaluation, it is found that the critical factor restricting the stability limit of the DFIG connected to a weak grid is ∂Pe/∂ (−ird), changing from positive to negative. As ∂Pe/∂ (−ird) reaches zero, the system reaches its stability limit. Furthermore, by considering control loop dynamics and grid strength, the stability limit of the DFIG is investigated based on eigenvalue analysis with multiple physical scenarios. The results of root locus analysis show that, when the DFIG is connected to an extremely weak grid, reducing the bandwidth of the PLL or increasing the bandwidth of the AVC with equal damping can increase the stability limit. The aforesaid theoretical analysis is verified through both time domain simulation and physical experiments. Full article
Show Figures

Figure 1

20 pages, 7127 KB  
Article
Design Method of Array-Type Coupler for UAV Wireless Power Transmission System Based on the Deep Neural Network
by Mingyang Li, Jiacheng Li, Wei Xiao, Jingyi Li and Chenyue Zhou
Drones 2025, 9(8), 532; https://doi.org/10.3390/drones9080532 - 29 Jul 2025
Viewed by 598
Abstract
Unmanned aerial vehicles (UAVs) are commonly used in various fields and industries, but their limited battery life has become a key constraint for their development. Wireless Power Transmission (WPT) technology, with its convenience, durability, intelligence, and unmanned features, significantly enhances UAVs’ battery life [...] Read more.
Unmanned aerial vehicles (UAVs) are commonly used in various fields and industries, but their limited battery life has become a key constraint for their development. Wireless Power Transmission (WPT) technology, with its convenience, durability, intelligence, and unmanned features, significantly enhances UAVs’ battery life and operational range. However, the variety of UAV models and different sizes pose challenges for designing couplers in the WPT system. This paper presents a design method for an array-type coupler in a UAV WPT system that uses a deep neural network. By establishing an electromagnetic 3D structure of the array-type coupler using electromagnetic simulation software, the dimensions of the transmitting and receiving coils are modified to assess how changes in the aperture of the transmitting coil and the length of the receiving coil affect the mutual inductance of the coupler. Furthermore, deep learning methods are utilized to train a high-precision model using the calculated data as the training and testing sets. Finally, taking the FAIRSER-X model UAV as an example, the transmitting and receiving coils are wound, and the feasibility and accuracy of the proposed method are verified through an LCR meter, which notably enhances the design efficiency of UAV WPT systems. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

13 pages, 2217 KB  
Article
Enhancing Power Quality in Distributed Energy Resource Systems Through Permanent Magnet Retrofitting of Single-Phase Induction Motors
by Huan Wang, Fangxu Han, Renjie Fu and Bo Zhang
Energies 2025, 18(15), 3998; https://doi.org/10.3390/en18153998 - 27 Jul 2025
Viewed by 421
Abstract
Distributed energy resource systems offer improved energy utilization and reduced transmission losses by decentralizing power generation and load management. However, the power quality is often compromised by inefficient customer-side equipment, such as single-phase induction motors, which suffer from low efficiency and poor power [...] Read more.
Distributed energy resource systems offer improved energy utilization and reduced transmission losses by decentralizing power generation and load management. However, the power quality is often compromised by inefficient customer-side equipment, such as single-phase induction motors, which suffer from low efficiency and poor power factor. To address this issue, this paper proposes a permanent magnet retrofitting method for single-phase induction motors, which replaces the squirrel-cage rotor with a permanent magnet rotor while preserving the original stator and winding structure. The proposed method aims to enhance motor performance without significant structural changes. A single-phase induction motor was retrofitted using the proposed method, and its performance was evaluated through finite element simulations to verify the effectiveness of the design approach. This study also investigated the key factors influencing motor starting performance after the introduction of permanent magnets. This study presents a practical and effective method for the permanent magnet retrofitting of single-phase induction motors, which contributes to improving motor efficiency and enhancing power quality in distributed energy resource systems. Full article
(This article belongs to the Special Issue Linear/Planar Motors and Other Special Motors)
Show Figures

Figure 1

15 pages, 3227 KB  
Article
A Symmetrical Cross Double-D Coil with Improved Misalignment Tolerance for WPT Systems
by Ashwini Rathod, Satish M. Mahajan and Taiye Owu
World Electr. Veh. J. 2025, 16(7), 405; https://doi.org/10.3390/wevj16070405 - 18 Jul 2025
Cited by 1 | Viewed by 890
Abstract
Inductive Wireless Power Transfer (WPT) technologies are advancing significantly in the electric vehicle (EV) charging applications. Misalignment between transmitting and receiving coils can considerably affect power transmission efficiency in WPT systems. Prior research involved power electronics as well as electromagnetic couplers. This work [...] Read more.
Inductive Wireless Power Transfer (WPT) technologies are advancing significantly in the electric vehicle (EV) charging applications. Misalignment between transmitting and receiving coils can considerably affect power transmission efficiency in WPT systems. Prior research involved power electronics as well as electromagnetic couplers. This work focuses on the coil design aspect of electromagnetic couplers. A relatively new concept of Symmetrical Cross Double-D (SCDD) type of the coil design is introduced specifically to maximize tolerance to misalignment while sustaining significant amount of power transferred. Mutual inductance was determined for the perfect alignment and misalignment positions of the SCDD coils. Mutual inductance obtained from the simulation was validated from the experimental measurements. The SCDD electromagnetic coupler demonstrated almost 2.5 times superior tolerance to misalignment of coils compared to the conventional circular coupler while maintaining at least 78% of maximum power transfer even at a lateral misalignment of 40 mm. Full article
(This article belongs to the Special Issue Wireless Power Transfer Technology for Electric Vehicles)
Show Figures

Figure 1

21 pages, 6897 KB  
Article
Performance Analysis of HVDC Operational Control Strategies for Supplying Offshore Oil Platforms
by Alex Reis, José Carlos Oliveira, Carlos Alberto Villegas Guerrero, Johnny Orozco Nivelo, Lúcio José da Motta, Marcos Rogério de Paula Júnior, José Maria de Carvalho Filho, Vinicius Zimmermann Silva, Carlos Andre Carreiro Cavaliere and José Mauro Teixeira Marinho
Energies 2025, 18(14), 3733; https://doi.org/10.3390/en18143733 - 15 Jul 2025
Viewed by 365
Abstract
Driven by the environmental benefits associated with reduced greenhouse gas emissions, oil companies have intensified research efforts into reassessing the strategies used to meet the electrical demands of offshore production platforms. Among the various alternatives available, the deployment of onshore–offshore interconnections via High-Voltage [...] Read more.
Driven by the environmental benefits associated with reduced greenhouse gas emissions, oil companies have intensified research efforts into reassessing the strategies used to meet the electrical demands of offshore production platforms. Among the various alternatives available, the deployment of onshore–offshore interconnections via High-Voltage Direct Current (HVDC) transmission systems has emerged as a promising solution, offering both economic and operational advantages. In addition to reliably meeting the electrical demand of offshore facilities, this approach enables enhanced operational flexibility due to the advanced control and regulation capabilities inherent to HVDC converter stations. Based on the use of interconnection through an HVDC link, aiming to evaluate the operation of the electrical system as a whole, this study focuses on evaluating dynamic events using the PSCAD software version 5.0.2 to analyze the direct online starting of a large induction motor and the sudden loss of a local synchronous generating unit. The simulation results are then analyzed to assess the effectiveness of both Grid-Following (GFL) and Grid-Forming (GFM) control strategies for the converters, while the synchronous generators are evaluated under both voltage regulation and constant power factor control operation, with a particular focus on system stability and restoration of normal operating conditions in the sequence of events. Full article
(This article belongs to the Special Issue Advanced Electric Power Systems, 2nd Edition)
Show Figures

Figure 1

Back to TopTop