Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,731)

Search Parameters:
Keywords = induced shocks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7055 KiB  
Article
Cardiopulmonary Bypass-Induced IL-17A Aggravates Caspase-12-Dependent Neuronal Apoptosis Through the Act1-IRE1-JNK1 Pathway
by Ruixue Zhao, Yajun Ma, Shujuan Li and Junfa Li
Biomolecules 2025, 15(8), 1134; https://doi.org/10.3390/biom15081134 - 6 Aug 2025
Abstract
Cardiopulmonary bypass (CPB) is associated with significant neurological complications, yet the mechanisms underlying brain injury remain unclear. This study investigated the role of interleukin-17A (IL-17A) in exacerbating CPB-induced neuronal apoptosis and identified vulnerable brain regions. Utilizing a rat CPB model and an oxygen–glucose [...] Read more.
Cardiopulmonary bypass (CPB) is associated with significant neurological complications, yet the mechanisms underlying brain injury remain unclear. This study investigated the role of interleukin-17A (IL-17A) in exacerbating CPB-induced neuronal apoptosis and identified vulnerable brain regions. Utilizing a rat CPB model and an oxygen–glucose deprivation/reoxygenation (OGD/R) cellular model, we demonstrated that IL-17A levels were markedly elevated in the hippocampus post-CPB, correlating with endoplasmic reticulum stress (ERS)-mediated apoptosis. Transcriptomic analysis revealed the enrichment of IL-17 signaling and apoptosis-related pathways. IL-17A-Neutralizing monoclonal antibody (mAb) and the ERS inhibitor 4-phenylbutyric acid (4-PBA) significantly attenuated neurological deficits and hippocampal neuronal damage. Mechanistically, IL-17A activated the Act1-IRE1-JNK1 axis, wherein heat shock protein 90 (Hsp90) competitively regulated Act1-IRE1 interactions. Co-immunoprecipitation confirmed the enhanced Hsp90-Act1 binding post-CPB, promoting IRE1 phosphorylation and downstream caspase-12 activation. In vitro, IL-17A exacerbated OGD/R-induced apoptosis via IRE1-JNK1 signaling, reversible by IRE1 inhibition. These findings identify the hippocampus as a key vulnerable region and delineate a novel IL-17A/Act1-IRE1-JNK1 pathway driving ERS-dependent apoptosis. Targeting IL-17A or Hsp90-mediated chaperone switching represents a promising therapeutic strategy for CPB-associated neuroprotection. This study provides critical insights into the molecular crosstalk between systemic inflammation and neuronal stress responses during cardiac surgery. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

20 pages, 4719 KiB  
Systematic Review
Levosimendan vs. Dobutamine in Patients with Septic Shock: A Systematic Review and Meta-Analysis with Trial Sequential Analysis
by Edith Elianna Rodríguez, German Alberto Devia Jaramillo, Lissa María Rivera Cuellar, Santiago Eduardo Pérez Herran, David René Rodríguez Lima and Antoine Herpain
J. Clin. Med. 2025, 14(15), 5496; https://doi.org/10.3390/jcm14155496 - 5 Aug 2025
Abstract
Introduction: Septic-induced cardiomyopathy (SICM) is a life-threatening condition in patients with septic shock. Persistent hypoperfusion despite adequate volume status and vasopressor use is associated with poor outcomes and is currently managed with inotropes. However, the superiority of available inotropic agents remains unclear. This [...] Read more.
Introduction: Septic-induced cardiomyopathy (SICM) is a life-threatening condition in patients with septic shock. Persistent hypoperfusion despite adequate volume status and vasopressor use is associated with poor outcomes and is currently managed with inotropes. However, the superiority of available inotropic agents remains unclear. This meta-analysis aims to determine which inotropic agent may be more effective in this clinical scenario. Methods: A systematic review and meta-analysis were conducted, including data from randomized clinical trials (RCTs) comparing levosimendan and dobutamine in patients with septic shock and persistent hypoperfusion. Summary effect estimates, including odds ratios (ORs), standardized mean differences (SMDs), and 95% confidence intervals (CIs), were calculated using a random-effects model. Trial sequential analysis (TSA) was also performed. Results: Of 244 studies screened, 11 RCTs were included. Levosimendan was associated with a reduction in in-hospital mortality (OR 0.64; 95% CI: 0.47; 0.88) and ICU length of stay (SMD 5.87; 95% CI: –8.37; 20.11) compared with dobutamine. Treatment with levosimendan also resulted in significant reductions in BNP (SMD –1.87; 95% CI: –2.45; −1.2) and serum lactate levels (SMD –1.63; 95% CI: –3.13; −0.12). However, TSA indicated that the current evidence is insufficient to definitively confirm or exclude effects on in-hospital and 28-day mortality. Conclusions: Levosimendan may improve hemodynamics, tissue perfusion, and biomarkers, and may reduce in-hospital mortality and ICU length of stay in patients with SICM compared with dobutamine. However, TSA highlights the need for further studies to inform clinical practice and optimize inotrope selection. Full article
(This article belongs to the Special Issue Sepsis: Current Updates and Perspectives)
Show Figures

Figure 1

12 pages, 1010 KiB  
Article
The Effect of cdk1 Gene Knockout on Heat Shock-Induced Polyploidization in Loach (Misgurnus anguillicaudatus)
by Hanjun Jiang, Qi Lei, Wenhao Ma, Junru Wang, Jing Gong, Xusheng Guo and Xiaojuan Cao
Life 2025, 15(8), 1223; https://doi.org/10.3390/life15081223 - 2 Aug 2025
Viewed by 161
Abstract
(1) Background: Polyploid fish are highly important in increasing fish production, improving fish quality, and breeding new varieties. The loach (Misgurnus anguillicaudatus), as a naturally polyploid fish, serves as an ideal biological model for investigating the mechanisms of chromosome doubling; (2) [...] Read more.
(1) Background: Polyploid fish are highly important in increasing fish production, improving fish quality, and breeding new varieties. The loach (Misgurnus anguillicaudatus), as a naturally polyploid fish, serves as an ideal biological model for investigating the mechanisms of chromosome doubling; (2) Methods: In this study, tetraploidization in diploid loach was induced by heat shock treatment, and, for the first time, the role of the key cell cycle gene cdk1 (cyclin-dependent kinase 1) in chromosome doubling was investigated; (3) Results: The experimental results show that when eggs are fertilized for 20 min and then subjected to a 4 min heat shock treatment at 39–40 °C, this represents the optimal induction condition, resulting in a tetraploid rate of 44%. Meanwhile, the results of the cdk1 knockout model (2n cdk1−/−) constructed using CRISPR/Cas9 showed that the absence of cdk1 significantly increased the chromosome doubling efficiency of the loach. The qPCR analysis revealed that knockout of cdk1 significantly upregulated cyclin genes (ccnb3,ccnc, and ccne1), while inhibiting expression of the separase gene espl1 (p < 0.05); (4) Conclusions: During chromosome doubling in diploid loaches induced by heat shock, knocking out the cdk1 gene can increase the tetraploid induction rate. This effect may occur through downregulation of the espl1 gene. This study offers novel insights into optimizing the induced breeding technology of polyploid fish and deciphering its molecular mechanism, while highlighting the potential application of integrating gene editing with physical induction. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

15 pages, 1899 KiB  
Article
Heterologous Watermelon HSP17.4 Expression Confers Improved Heat Tolerance to Arabidopsis thaliana
by Yajie Hong, Yurui Li, Jing Chen, Nailin Xing, Wona Ding, Lili Chen, Yunping Huang, Qiuping Li and Kaixing Lu
Curr. Issues Mol. Biol. 2025, 47(8), 606; https://doi.org/10.3390/cimb47080606 - 1 Aug 2025
Viewed by 132
Abstract
Members of the heat shock protein 20 (HSP20) family of proteins play an important role in responding to various forms of stress. Here, the expression of ClaHSP17.4 was induced by heat stress in watermelon. Then, a floral dipping approach was used to introduce [...] Read more.
Members of the heat shock protein 20 (HSP20) family of proteins play an important role in responding to various forms of stress. Here, the expression of ClaHSP17.4 was induced by heat stress in watermelon. Then, a floral dipping approach was used to introduce the pCAMBIA1391b-GFP overexpression vector encoding the heat tolerance-related gene ClaHSP17.4 from watermelon into Arabidopsis thaliana, and we obtained ClaHSP17.4-overexpressing Arabidopsis plants. Under normal conditions, the phenotypes of transgenic and wild-type (WT) Arabidopsis plants were largely similar. Following exposure to heat stress, however, the germination rates (96%) of transgenic Arabidopsis plants at the germination stages were significantly higher than those of wild-type idopsis (17%). Specifically, the malondialdehyde (MDA) content of transgenic Arabidopsis was half that of the control group, while the activities of peroxidase (POD) and superoxide dismutase (SOD) were 1.25 times those of the control group after exposure to high temperatures for 12 h at the seedling stages. The proline content in ClaHSP17.4-overexpressing transgenic Arabidopsis increased by 17% compared to WT plants (* p < 0.05), while the soluble sugar content rose by 37% (* p < 0.05). These results suggest that ClaHSP17.4 overexpression indirectly improves the antioxidant capacity and osmotic regulatory capacity of Arabidopsis seedlings, leading to improved survival and greater heat tolerance. Meanwhile, the results of this study provide a reference for further research on the function of the ClHSP17.4 gene and lay a foundation for breeding heat-tolerant watermelon varieties and advancing our understanding of plant adaptation to environmental stress. Full article
Show Figures

Figure 1

19 pages, 6718 KiB  
Article
Investigation of the Effect of Vortex Generators on Flow Separation in a Supersonic Compressor Cascade
by Xi Gao, Zhiyuan Cao, Qinpeng Gu and Bo Liu
Aerospace 2025, 12(8), 692; https://doi.org/10.3390/aerospace12080692 - 31 Jul 2025
Viewed by 166
Abstract
The interaction between a shock wave and a boundary layer promotes corner separation and prevents performance enhancement in a supersonic compressor cascade. Different vortex generator (VG) designs are presented to control corner separation in a supersonic compressor cascade, including endwall VGs (EVG), suction [...] Read more.
The interaction between a shock wave and a boundary layer promotes corner separation and prevents performance enhancement in a supersonic compressor cascade. Different vortex generator (VG) designs are presented to control corner separation in a supersonic compressor cascade, including endwall VGs (EVG), suction surface VGs (SVG), and combined endwall and suction surface VGs (E-SVGs). It is demonstrated that EVG and coupled E-SVGs reduce losses in the supersonic compressor cascade. For an optimal EVG, the total loss is reduced by 24.6% and the endwall loss is reduced by 33.6%. The coupled E-SVG better controls corner separation and reduces endwall losses by 56.9%. The suppression mechanism is that vortices alter the direction of the separated flow, allowing it to overcome the chordwise pressure gradient. Moreover, the VGs change the shock structure near the endwall. For the EVG, clockwise vortices are effective in controlling corner separation due to their minor effect on the shock structure near the endwall. However, anticlockwise vortices are not suitable for controlling corner separation in the supersonic compressor because they increase the shock strength induced by the VG. The control mechanism of the coupled E-SVG on corner separation is also discussed. Full article
(This article belongs to the Special Issue Instability and Transition of Compressible Flows)
Show Figures

Figure 1

13 pages, 935 KiB  
Article
The Physiological Response of the Fiddler Crab Austruca lactea to Anthropogenic Low-Frequency Substrate-Borne Vibrations
by Soobin Joo, Jaemin Cho and Taewon Kim
Biology 2025, 14(8), 962; https://doi.org/10.3390/biology14080962 (registering DOI) - 31 Jul 2025
Viewed by 140
Abstract
Anthropogenic vibrational disturbances in the marine environment can affect benthic organisms, but these effects on marine animals remain poorly understood. To examine whether anthropogenic substrate-borne vibrations induce physiological stress in the white-clawed fiddler crab (Austruca lactea), individuals were exposed to vibrations [...] Read more.
Anthropogenic vibrational disturbances in the marine environment can affect benthic organisms, but these effects on marine animals remain poorly understood. To examine whether anthropogenic substrate-borne vibrations induce physiological stress in the white-clawed fiddler crab (Austruca lactea), individuals were exposed to vibrations at 120 Hz and 250 Hz (~100 dB re 1 µm/s2), and physiological indicators were measured. Lactate and ATP concentrations in the leg muscle were measured, and heat shock protein 70 kDa (HSP70) gene expression in the hepatopancreas was analyzed using RT-PCR with newly designed primers. At 120 Hz, ATP and lactate levels in the leg muscle did not differ significantly between the exposure and control groups. However, at 250 Hz, ATP levels were lower and lactate levels were higher in the exposure group compared to the control. HSP70 gene expression in the hepatopancreas did not differ significantly between the exposure and control groups at either frequency, although one individual exposed to 250 Hz exhibited markedly elevated expression, inducing higher expression variability in the exposed group. These results suggest that anthropogenic vibrational pollution may induce physiological stress in A. lactea, and that such physiological indices could serve as biomarkers for assessing vibroacoustic pollution on marine animals. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

13 pages, 2073 KiB  
Article
Dynamic Nucleation in Zr-2.5Nb During Reduced-Gravity Electromagnetic Levitation Experiments
by Gwendolyn P. Bracker, Stephan Schneider, Sarah Nell, Mitja Beckers, Markus Mohr and Robert W. Hyers
Crystals 2025, 15(8), 703; https://doi.org/10.3390/cryst15080703 - 31 Jul 2025
Viewed by 99
Abstract
Levitation techniques reduce the available heterogeneous nucleation sites and provide stable access to deeply undercooled melts. However, some samples have repeatably demonstrated that, in the presence of strong stirring, solidification may be induced at moderate, sub-critical undercoolings. Dynamic nucleation is a mechanism by [...] Read more.
Levitation techniques reduce the available heterogeneous nucleation sites and provide stable access to deeply undercooled melts. However, some samples have repeatably demonstrated that, in the presence of strong stirring, solidification may be induced at moderate, sub-critical undercoolings. Dynamic nucleation is a mechanism by which solidification may be induced through flow effects within a sub-critically undercooled melt. In this mechanism, collapsing cavities within the melt produce very high-pressure shocks, which shift the local melting temperature. In these regions of locally shifted melt temperatures, thermodynamic conditions enable nuclei to grow and trigger solidification of the full sample. By deepening the local undercooling, dynamic nucleation enables solidification to occur in conditions where classical nucleation does not. Dynamic nucleation has been observed in several zirconium and zirconium-based samples in the Electromagnetic Levitator onboard the International Space Station (ISS-EML). The experiments presented here address conditions in which a zirconium sample alloyed with 2.5 atomic percent niobium spontaneously solidifies during electromagnetic levitation experiments with strong melt stirring. In these experimental conditions, classical nucleation predicts the sample to remain liquid. This solidification behavior is consistent with the solidification behavior observed in prior experiments on pure zirconium. Full article
Show Figures

Figure 1

14 pages, 6123 KiB  
Article
Effects of Near-Infrared Diode Laser Irradiation on Pain Relief and Neuropeptide Markers During Experimental Tooth Movement in the Periodontal Ligament Tissues of Rats: A Pilot Study
by Kanako Okazaki, Ayaka Nakatani, Ryo Kunimatsu, Isamu Kado, Shuzo Sakata, Hirotaka Kiridoshi and Kotaro Tanimoto
Int. J. Mol. Sci. 2025, 26(15), 7404; https://doi.org/10.3390/ijms26157404 - 31 Jul 2025
Viewed by 158
Abstract
Pain following orthodontic treatment is the chief complaint of patients undergoing this form of treatment. Although the use of diode lasers has been suggested for pain reduction, the mechanism of laser-induced analgesic effects remains unclear. Neuropeptides, such as substance P (SP) and calcitonin [...] Read more.
Pain following orthodontic treatment is the chief complaint of patients undergoing this form of treatment. Although the use of diode lasers has been suggested for pain reduction, the mechanism of laser-induced analgesic effects remains unclear. Neuropeptides, such as substance P (SP) and calcitonin gene-related peptide (CGRP), contribute to the transmission and maintenance of inflammatory pain. Heat shock protein (HSP) 70 plays a protective role against various stresses, including orthodontic forces. This study aimed to examine the effects of diode laser irradiation on neuropeptides and HSP 70 expression in periodontal tissues induced by experimental tooth movement (ETM). For inducing ETM for 24 h, 50 g of orthodontic force was applied using a nickel–titanium closed-coil spring to the upper left first molar and the incisors of 20 male Sprague Dawley rats (7 weeks old). The right side without ETM treatment was considered the untreated control group. In 10 rats, diode laser irradiation was performed on the buccal and palatal sides of the first molar for 90 s with a total energy of 100.8 J/cm2. A near-infrared (NIR) laser with a 808 nm wavelength, 7 W peak power, 560 W average power, and 20 ms pulse width was used for the experiment. We measured the number of facial groomings and vacuous chewing movements (VCMs) in the ETM and ETM + laser groups. Immunohistochemical staining of the periodontal tissue with SP, CGRP, and HSP 70 was performed. The number of facial grooming and VCM periods significantly decreased in the ETM + laser group compared to the ETM group. Moreover, the ETM + laser group demonstrated significant suppression of SP, CGRP, and HSP 70 expression. These results suggest that the diode laser demonstrated analgesic effects on ETM-induced pain by inhibiting SP and CGRP expression, and decreased HSP 70 expression shows alleviation of cell damage. Thus, although further validation is warranted for human applications, an NIR diode laser can be used for reducing pain and neuropeptide markers during orthodontic tooth movement. Full article
(This article belongs to the Special Issue Advances in Photobiomodulation Therapy)
Show Figures

Figure 1

9 pages, 1714 KiB  
Communication
Supramolecular Detoxification Approach of Endotoxin Through Host–Guest Complexation by a Giant Macrocycle
by Junyi Chen, Xiang Yu, Shujie Lin, Zihan Fang, Shenghui Li, Liguo Xie, Zhibing Zheng and Qingbin Meng
Molecules 2025, 30(15), 3188; https://doi.org/10.3390/molecules30153188 - 30 Jul 2025
Viewed by 174
Abstract
In Gram-negative bacteria, lipopolysaccharides (LPSs, also known as endotoxin) can induce extensive immune responses that will enable victims to produce severe septic shock syndrome. Because of the high mortality of sepsis in the face of standard treatment, advance detoxification schemes are urgently needed [...] Read more.
In Gram-negative bacteria, lipopolysaccharides (LPSs, also known as endotoxin) can induce extensive immune responses that will enable victims to produce severe septic shock syndrome. Because of the high mortality of sepsis in the face of standard treatment, advance detoxification schemes are urgently needed in clinics. Herein, we described a supramolecular detoxification approach via direct host–guest complexation by a giant macrocycle. Cationic pentaphen[3]arene (CPP3) bearing multiple quaternary ammonium groups was screened as a candidate antidote. CPP3 exhibited robust binding affinity toward LPS with an association constant of (4.79 ± 0.29) × 108 M−1. Co-dosing with an equivalent amount of CPP3 has been demonstrated to decrease LPS-induced cytotoxicity on a cellular level through inhibiting ROS generation and proinflammatory cytokine expression. In vivo experiments have further proved that post-treatment by CPP3 could significantly improve the survival rate of LPS-poisoned mice from 0 to 100% over a period of 3 days, and inflammatory abnormalities and tissue damage were also alleviated. Full article
Show Figures

Figure 1

12 pages, 1515 KiB  
Article
Expression of Heat Shock Protein 90 Genes Induced by High Temperature Mediated Sensitivity of Aphis glycines Matsumura (Hemiptera: Aphididae) to Insecticides
by Xue Han, Yulong Jia, Changchun Dai, Xiaoyun Wang, Jian Liu and Zhenqi Tian
Insects 2025, 16(8), 772; https://doi.org/10.3390/insects16080772 - 28 Jul 2025
Viewed by 352
Abstract
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean fields. While high-temperature stress induced by global warming can initially suppress aphid populations, these pests may eventually adapt, leading to more severe infestations and crop damage. Heat shock proteins (HSPs), [...] Read more.
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean fields. While high-temperature stress induced by global warming can initially suppress aphid populations, these pests may eventually adapt, leading to more severe infestations and crop damage. Heat shock proteins (HSPs), which are upregulated in response to heat stress to protect aphid development, also confer tolerance to other abiotic stressors, including insecticides. To investigate the role of HSPs in insecticide resistance in A. glycines, we analyzed the expression profiles of three AgHsp90 genes (AgHsp75, AgHsp83, and AgGrp94) following exposure to high temperatures and insecticides. Functional validation was performed using RNA interference (RNAi) to silence AgHsp90 genes. Our results demonstrated that AgHsp90 genes were significantly upregulated under both heat and insecticide stress conditions. Furthermore, after feeding on dsRNA of AgHsp90 genes, mortality rates of A. glycines significantly increased when exposed to imidacloprid and lambda-cyhalothrin. This study provides evidence that AgHsp90 genes play a crucial role in mediating thermal tolerance and insecticide resistance in A. glycines. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

13 pages, 643 KiB  
Review
Heat Shock Protein 70 in Cold-Stressed Farm Animals: Implications for Viral Disease Seasonality
by Fanzhi Kong, Xinyue Zhang, Qi Xiao, Huilin Jia and Tengfei Jiang
Microorganisms 2025, 13(8), 1755; https://doi.org/10.3390/microorganisms13081755 - 27 Jul 2025
Viewed by 368
Abstract
The seasonal patterns of viral diseases in farm animals present significant challenges to global livestock productivity, with cold stress emerging as a potential modulator of host–pathogen interactions. This review synthesizes current knowledge on the expression dynamics of heat shock protein 70 (HSP70) in [...] Read more.
The seasonal patterns of viral diseases in farm animals present significant challenges to global livestock productivity, with cold stress emerging as a potential modulator of host–pathogen interactions. This review synthesizes current knowledge on the expression dynamics of heat shock protein 70 (HSP70) in farm animals under cold-stress conditions and its potential roles as (1) a viral replication facilitator and (2) an immune response regulator. This review highlights cold-induced HSP70 overexpression in essential organs, as well as its effects on significant virus life cycles, such as porcine epidemic diarrhea virus (PEDV), porcine reproductive and respiratory syndrome virus (PRRSV), and bovine viral diarrhea virus (BVDV), through processes like viral protein chaperoning, replication complex stabilization, and host defense modulation. By integrating insights from thermophysiology, virology, and immunology, we suggest that HSP70 serves as a crucial link between environmental stress and viral disease seasonality. We also discuss translational opportunities targeting HSP70 pathways to break the cycle of seasonal outbreaks, while addressing key knowledge gaps requiring further investigation. This article provides a framework for understanding climate-driven disease patterns and developing seasonally adjusted intervention strategies. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

16 pages, 3054 KiB  
Article
Naringenin Inhibits Enterotoxigenic Escherichia coli-Induced Ferroptosis via Targeting HSP90 in IPEC-J2 Cells
by Pengxin Jiang, Kangping Liu, Yanan Cui, Puyu Liu, Xutao Wang, Zijuan Hou, Jiamei Cui, Ning Chen, Jinghui Fan, Jianguo Li, Yuzhu Zuo and Yan Li
Antioxidants 2025, 14(8), 914; https://doi.org/10.3390/antiox14080914 - 25 Jul 2025
Viewed by 331
Abstract
Enterotoxigenic Escherichia coli (ETEC) leads to severe diarrhea in piglets. Naringenin (Nar), a natural flavonoid compound, is known for its antibacterial and anti-antioxidant properties. However, the protective effects of Nar against ETEC-induced diarrhea have not been reported yet. This study investigated the protective [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) leads to severe diarrhea in piglets. Naringenin (Nar), a natural flavonoid compound, is known for its antibacterial and anti-antioxidant properties. However, the protective effects of Nar against ETEC-induced diarrhea have not been reported yet. This study investigated the protective mechanisms of Nar against ETEC infection in porcine intestinal epithelial cells (IPEC-J2). ETEC infection induced oxidative stress and ferroptosis in IPEC-J2 cells by elevating intracellular iron content and ROS accumulation, increasing MDA levels, downregulating SOD activity and GPX4 expression, and upregulating the transcription of CHAC1 and SLC7A11. In contrast, Nar suppressed ETEC-induced ferroptosis of IPEC-J2 cells by inhibiting the SLC7A11/GPX4 pathway. Specifically, Nar mitigated mitochondrial damage, reduced intracellular iron levels and ROS accumulation, and ultimately reversed the oxidative stress. Network pharmacology and molecular docking identified heat-shock protein 90 (HSP90) as a potential target of Nar. Overexpression and knockdown experiments revealed that ETEC-induced ferroptosis was mediated by upregulation of HSP90, while the protective effects of Nar against ETEC-induced ferroptosis were dependent on the downregulation of HSP90. In conclusion, Nar targets host HSP90 to protect IPEC-J2 cells from ferroptosis caused by ETEC infection. This study demonstrates that Nar is a potent antioxidant natural compound with potential for preventing ETEC-induced intestinal damage. Full article
(This article belongs to the Special Issue Oxidative Stress in Livestock and Poultry—3rd Edition)
Show Figures

Figure 1

13 pages, 1895 KiB  
Article
Class-Dependent Solar Flare Effects on Mars’ Upper Atmosphere: MAVEN NGIMS Observations of X8.2 and M6.0 from September 2017
by Junaid Haleem and Shican Qiu
Universe 2025, 11(8), 245; https://doi.org/10.3390/universe11080245 - 25 Jul 2025
Viewed by 238
Abstract
Transient increments of X-ray radiation and extreme ultraviolet (EUV) during solar flares are strong drivers of thermospheric dynamics on Mars, yet their class-dependent impacts remain poorly measured. This work provides the first direct, side-by-side study of Martian thermospheric reactions to flares X8.2 on [...] Read more.
Transient increments of X-ray radiation and extreme ultraviolet (EUV) during solar flares are strong drivers of thermospheric dynamics on Mars, yet their class-dependent impacts remain poorly measured. This work provides the first direct, side-by-side study of Martian thermospheric reactions to flares X8.2 on 10 September 2017 and M6.0 on 17 September 2017. This study shows nonlinear, class-dependent effects, compositional changes, and recovery processes not recorded in previous investigations. Species-specific responses deviated significantly from irradiance proportionality, even though the soft X-ray flux in the X8.2 flare was 13 times greater. Argon (Ar) concentrations rose 3.28× (compared to 1.13× for M6.0), and radiative cooling led CO2 heating to approach a halt at ΔT = +40 K (X8.2) against +19 K (M6.0) at exobase altitudes (196–259 km). N2 showed the largest class difference, where temperatures rose by +126 K (X8.2) instead of +19 K (M6.0), therefore displaying flare-magnitude dependent thermal sensitivity. The 1.95× increase in O concentrations during X8.2 and the subsequent decrease following M6.0 (−39 K cooling) illustrate the contradiction between photochemical production and radiative loss. The O/CO2 ratio at 225 km dropped 46% during X8.2, revealing compositional gradients boosted by flares. Recovery timeframes varied by class; CO2 quickly re-equilibrated because of effective cooling, whereas inert species (Ar, N2) stabilized within 1–2 orbits after M6.0 but needed >10 orbits of the MAVEN satellite after the X8.2 flare. The observations of the X8.2 flare came from the western limb of the Sun, but the M6.0 flare happened on the far side. The CME shock was the primary driver of Mars’ EUV reaction. These findings provide additional information on atmospheric loss and planetary habitability by indicating that Mars’ thermosphere has a saturation threshold where strong flares induce nonlinear energy partitioning that encourages the departure of lighter species. Full article
Show Figures

Figure 1

18 pages, 4172 KiB  
Article
Transient Dynamic Analysis of Composite Vertical Tail Structures Under Transportation-Induced Vibration Loads
by Wei Zheng, Wubing Yang, Sen Li, Dawei Wang, Weidong Yu, Zhuang Xing, Lan Pang, Zhenkun Lei and Yingming Wang
Symmetry 2025, 17(8), 1182; https://doi.org/10.3390/sym17081182 - 24 Jul 2025
Viewed by 298
Abstract
The potential damage to aviation products caused by vibration and shock during road transportation has long been overlooked, despite structural failure under dynamic loading emerging as a critical technical challenge affecting product reliability. For aviation components, both stress and vibration analysis are essential [...] Read more.
The potential damage to aviation products caused by vibration and shock during road transportation has long been overlooked, despite structural failure under dynamic loading emerging as a critical technical challenge affecting product reliability. For aviation components, both stress and vibration analysis are essential prerequisites prior to formal assembly. This study investigates a symmetric vertical tail, a common aviation structure, employing an innovative model group analysis method to characterize its dynamic stress and strain distributions under real transportation conditions. Experimental measurements of vibration acceleration and impact loads during transport served as input data for constructing a numerical model based on stress and vibration theory. The model elucidates the mechanical responses of the tail in both modal and vibrational states, enabling effectively evaluation of dynamic vibrations on the tail and its critical subcomponents during road transport. The findings provide actionable insights for optimizing aviation component packaging design, mitigating vibration-induced damage, and enhancing transportation safety. Full article
(This article belongs to the Special Issue Symmetry in Impact Mechanics of Materials and Structures)
Show Figures

Figure 1

17 pages, 2181 KiB  
Article
Sustainability Analysis of the Global Hydrogen Trade Network from a Resilience Perspective: A Risk Propagation Model Based on Complex Networks
by Sai Chen and Yuxi Tian
Energies 2025, 18(15), 3944; https://doi.org/10.3390/en18153944 - 24 Jul 2025
Viewed by 218
Abstract
Hydrogen is being increasingly integrated into the international trade system as a clean and flexible energy carrier, motivated by the global energy transition and carbon neutrality objectives. The rapid expansion of the global hydrogen trade network has simultaneously exposed several sustainability challenges, including [...] Read more.
Hydrogen is being increasingly integrated into the international trade system as a clean and flexible energy carrier, motivated by the global energy transition and carbon neutrality objectives. The rapid expansion of the global hydrogen trade network has simultaneously exposed several sustainability challenges, including a centralized structure, overdependence on key countries, and limited resilience to external disruptions. Based on this, we develop a risk propagation model that incorporates the absorption capacity of nodes to simulate the propagation of supply shortage risks within the global hydrogen trade network. Furthermore, we propose a composite sustainability index constructed from structural, economic, and environmental resilience indicators, enabling a systematic assessment of the network’s sustainable development capacity under external shock scenarios. Findings indicate the following: (1) The global hydrogen trade network is undergoing a structural shift from a Western Europe-dominated unipolar configuration to a more polycentric pattern. Countries such as China and Singapore are emerging as key hubs linking Eurasian regions, with trade relationships among nations becoming increasingly dense and diversified. (2) Although supply shortage shocks trigger structural disturbances, economic losses, and risks of carbon rebound, their impacts are largely concentrated in a limited number of hub countries, with relatively limited disruption to the overall sustainability of the system. (3) Countries exhibit significant heterogeneity in structural, economic, and environmental resilience. Risk propagation demonstrates an uneven pattern characterized by hub-induced disruptions, chain-like transmission, and localized clustering. Accordingly, policy recommendations are proposed, including the establishment of a polycentric coordination mechanism, the enhancement of regional emergency coordination mechanisms, and the advancement of differentiated capacity-building efforts. Full article
Show Figures

Figure 1

Back to TopTop