Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (868)

Search Parameters:
Keywords = increased biogas production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1149 KiB  
Article
Assessment of Biomethane Potential from Waste Activated Sludge in Swine Wastewater Treatment and Its Co-Digestion with Swine Slurry, Water Lily, and Lotus
by Sartika Indah Amalia Sudiarto, Hong Lim Choi, Anriansyah Renggaman and Arumuganainar Suresh
AgriEngineering 2025, 7(8), 254; https://doi.org/10.3390/agriengineering7080254 (registering DOI) - 7 Aug 2025
Abstract
Waste activated sludge (WAS), a byproduct of livestock wastewater treatment, poses significant disposal challenges due to its low biodegradability and potential environmental impact. Anaerobic digestion (AD) offers a sustainable approach for methane recovery and sludge stabilization. This study evaluates the biomethane potential (BMP) [...] Read more.
Waste activated sludge (WAS), a byproduct of livestock wastewater treatment, poses significant disposal challenges due to its low biodegradability and potential environmental impact. Anaerobic digestion (AD) offers a sustainable approach for methane recovery and sludge stabilization. This study evaluates the biomethane potential (BMP) of WAS and its co-digestion with swine slurry (SS), water lily (Nymphaea spp.), and lotus (Nelumbo nucifera) shoot biomass to enhance methane yield. Batch BMP assays were conducted at substrate-to-inoculum (S/I) ratios of 1.0 and 0.5, with methane production kinetics analyzed using the modified Gompertz model. Mono-digestion of WAS yielded 259.35–460.88 NmL CH4/g VSadded, while co-digestion with SS, water lily, and lotus increased yields by 14.89%, 10.97%, and 16.89%, respectively, surpassing 500 NmL CH4/g VSadded. All co-digestion combinations exhibited synergistic effects (α > 1), enhancing methane production beyond individual substrate contributions. Lower S/I ratios improved methane yields and biodegradability, highlighting the role of inoculum availability. Co-digestion reduced the lag phase limitations of WAS and plant biomass, improving process efficiency. These findings demonstrate that co-digesting WAS with nutrient-rich co-substrates optimizes biogas production, supporting sustainable sludge management and renewable energy recovery in livestock wastewater treatment systems. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
20 pages, 3741 KiB  
Article
Use of Amino Acids and Organic Waste Extracts to Improve the Quality of Liquid Nitrogen–Calcium–Magnesium Fertilizers
by Eglė Didžiulytė and Rasa Šlinkšienė
Sustainability 2025, 17(15), 7081; https://doi.org/10.3390/su17157081 - 5 Aug 2025
Viewed by 61
Abstract
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse [...] Read more.
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse gas emissions, water eutrophication, and soil degradation. To develop more sustainable solutions, the focus is on organic fertilizers, which are produced using waste and biostimulants such as amino acids. The aim of this study was to develop and characterize liquid nitrogen–calcium–magnesium fertilizers produced by decomposing dolomite with nitric acid followed by further processing and to enrich them with a powdered amino acid concentrate Naturamin-WSP and liquid extracts from digestate, a by-product of biogas production. Nutrient-rich extracts were obtained using water and potassium hydroxide solutions, with the latter proving more effective by yielding a higher organic carbon content (4495 ± 0.52 mg/L) and humic substances, which can improve soil structure. The produced fertilizers demonstrated favourable physical properties, including appropriate viscosity and density, as well as low crystallization temperatures (eutectic points from –3 to –34 °C), which are essential for storage and application in cold climates. These properties were achieved by adjusting the content of nitrogenous compounds and bioactive extracts. The results of the study show that liquid fertilizers enriched with organic matter can be an effective and more environmentally friendly alternative to mineral fertilizers, contributing to the development of the circular economy and sustainable agriculture. Full article
Show Figures

Figure 1

36 pages, 4084 KiB  
Review
Exploring Activated Carbons for Sustainable Biogas Upgrading: A Comprehensive Review
by Deneb Peredo-Mancilla, Alfredo Bermúdez, Cécile Hort and David Bessières
Energies 2025, 18(15), 4010; https://doi.org/10.3390/en18154010 - 28 Jul 2025
Viewed by 460
Abstract
Global energy supply remains, to this day, mainly dominated by fossil fuels, aggravating climate change. To increase and diversify the share of renewable energy sources, there is an urgent need to expand the use of biofuels that could help in decarbonizing the energy [...] Read more.
Global energy supply remains, to this day, mainly dominated by fossil fuels, aggravating climate change. To increase and diversify the share of renewable energy sources, there is an urgent need to expand the use of biofuels that could help in decarbonizing the energy mix. Biomethane, obtained by upgrading biogas, simultaneously allows the local production of clean energy, waste valorization, and greenhouse gas emissions mitigation. Among various upgrading technologies, the use of activated carbons in adsorption-based separation systems has attracted significant attention due to their versatility, cost-effectiveness, and sustainability potential. The present review offers a comprehensive analysis of the factors that influence the efficiency of activated carbons on carbon dioxide adsorption and separation for biogas upgrading. The influence of activation methods, activation conditions, and precursors on the biogas adsorption performance of activated carbons is revised. Additionally, the role of adsorbent textural and chemical properties on gas adsorption behavior is highlighted. By synthesizing current knowledge and perspectives, this work provides guidance for future research that could help in developing more efficient, cost-effective, and sustainable adsorbents for biogas upgrading. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

25 pages, 3279 KiB  
Review
Current State of Development of Demand-Driven Biogas Plants in Poland
by Aleksandra Łukomska, Kamil Witaszek and Jacek Dach
Processes 2025, 13(8), 2369; https://doi.org/10.3390/pr13082369 - 25 Jul 2025
Viewed by 474
Abstract
Renewable energy sources (RES) are the foundation of the ongoing energy transition in Poland and worldwide. However, increased use of RES has brought several challenges, as most of these sources are dependent on weather conditions. The instability and lack of control over electricity [...] Read more.
Renewable energy sources (RES) are the foundation of the ongoing energy transition in Poland and worldwide. However, increased use of RES has brought several challenges, as most of these sources are dependent on weather conditions. The instability and lack of control over electricity production lead to both overloads and power shortages in transmission and distribution networks. A significant advantage of biogas plants over sources such as photovoltaics or wind turbines is their ability to control electricity generation and align it with actual demand. Biogas produced during fermentation can be temporarily stored in a biogas tank above the digester and later used in an enlarged CHP unit to generate electricity and heat during peak demand periods. While demand-driven biogas plants operate similarly to traditional installations, their development requires navigating regulatory and administrative procedures, particularly those related to the grid connection of the generated electricity. In Poland, it has only recently become possible to obtain grid connection conditions for such installations, following the adoption of the Act of 28 July 2023, which amended the Energy Law and certain other acts. However, the biogas sector still faces challenges, particularly the need for effective incentive mechanisms and the removal of regulatory and economic barriers, especially given its estimated potential of up to 7.4 GW. Full article
Show Figures

Figure 1

41 pages, 4318 KiB  
Review
A Review of Pretreatment Strategies for Anaerobic Digestion: Unlocking the Biogas Generation Potential of Wastes in Ghana
by James Darmey, Satyanarayana Narra, Osei-Wusu Achaw, Walter Stinner, Julius Cudjoe Ahiekpor, Herbert Fiifi Ansah, Berah Aurelie N’guessan, Theophilus Ofori Agyekum and Emmanuel Mawuli Koku Nutakor
Waste 2025, 3(3), 24; https://doi.org/10.3390/waste3030024 - 23 Jul 2025
Viewed by 377
Abstract
Anaerobic digestion (AD) is a sustainable method of treating organic waste to generate methane-rich biogas. However, the complex lignocellulosic nature of organic waste in most cases limits its biodegradability and methane potential. This review evaluates pretreatment technology to optimize AD performance, particularly in [...] Read more.
Anaerobic digestion (AD) is a sustainable method of treating organic waste to generate methane-rich biogas. However, the complex lignocellulosic nature of organic waste in most cases limits its biodegradability and methane potential. This review evaluates pretreatment technology to optimize AD performance, particularly in developing countries like Ghana, where organic waste remains underutilized. A narrative synthesis of the literature between 2010 and 2024 was conducted through ScienceDirect and Scopus, categorizing pretreatment types as mechanical, thermal, chemical, biological, enzymatic, and hybrid. A bibliometric examination using VOSviewer also demonstrated global trends in research and co-authorship networks. Mechanical and thermal pretreatments increased biogas production by rendering the substrate more available, while chemical treatment degraded lignin and hemicellulose, sometimes more than 100% in methane yield. Biological and enzymatic pretreatments were energy-consuming and effective, with certain enzymatic blends achieving 485% methane yield increases. The study highlights the synergistic benefits of hybrid approaches and growing global interest, as revealed by bibliometric analysis; hence, the need to explore their potential in Ghana. In Ghana, this study concludes that low-cost, biologically driven pretreatments are practical pathways for advancing anaerobic digestion systems toward sustainable waste management and energy goals, despite infrastructure and policy challenges. Full article
(This article belongs to the Special Issue New Trends in Liquid and Solid Effluent Treatment)
Show Figures

Figure 1

19 pages, 4374 KiB  
Article
Characterization of the Aqueous Phase from Pyrolysis of Açaí Seeds and Fibers (Euterpe oleracea Mart.)
by Erick Monteiro de Sousa, Kelly Christina Alves Bezerra, Renan Marcelo Pereira Silva, Gabriel Arthur da Costa Martins, Gabriel Xavier de Assis, Raise Brenda Pinheiro Ferreira, Lucas Pinto Bernar, Neyson Martins Mendonça, Carmen Gilda Barroso Tavares Dias, Douglas Alberto Rocha de Castro, Gabriel de Oliveira Rodrigues, Sergio Duvoisin Junior, Marta Chagas Monteiro and Nélio Teixeira Machado
Energies 2025, 18(14), 3820; https://doi.org/10.3390/en18143820 - 18 Jul 2025
Viewed by 346
Abstract
Açaí (Euterpe oleracea Mart.) is a native fruit of the Amazon, and its production chain is centered in the state of Pará. The processing of açaí fruits generates large amounts of solid waste, which can pose serious risks to the environment if not [...] Read more.
Açaí (Euterpe oleracea Mart.) is a native fruit of the Amazon, and its production chain is centered in the state of Pará. The processing of açaí fruits generates large amounts of solid waste, which can pose serious risks to the environment if not used and managed properly. The novelty of this research lies in the fact that until this moment, no research had been reported in the literature on the pyrolysis of açaí fibers and the chemical composition of the aqueous phase, making possible a broad set of applications including biogas production. The present research proposes a study of the pyrolysis of açaí seeds and fibers and the physicochemical and compositional characterization of the aqueous phase products. In this way, açaí processing residues were collected in the city of Belém, PA. The seeds and fibers were dried and impregnated with NaOH solutions, and subsequently subjected to pyrolysis on a laboratory scale. The liquid products from pyrolysis were characterized through acidity index analysis, FT-IR, and gas chromatography. The increase in the concentration of the impregnating agent led to an increase in bio-oil yield from both the seeds (ranging from 3.3% to 6.6%) and the fibers (ranging from 1.2% to 3.7%). The yield in the aqueous phase showed an inverse behavior, decreasing as the concentration of NaOH increased, both in the seeds (ranging from 41% to 37.5%) and the fibers (ranging from 33.7% to 21.2%). High acidity levels were found in the liquid products studied, which decreased as the concentration of the impregnating agent increased. The increase in the concentration of the impregnating agent (NaOH) influenced the chemical composition of the obtained liquid products, leading to a decrease in oxygenated compounds and an increase in nitrogenous compounds in both experimental matrices, which was also evidenced by the reduction in acidity. Full article
(This article belongs to the Special Issue Advanced Bioenergy, Biomass and Waste Conversion Technologies)
Show Figures

Figure 1

4 pages, 429 KiB  
Proceeding Paper
Overview of the Use of Anaerobic Digestion on Swine Farms and the Potential for Bioenergy Production in Minas Gerais, Brazil
by Marcela de Souza Silva, Sibele Augusta Ferreira Leite and Brenno Santos Leite
Proceedings 2025, 121(1), 5; https://doi.org/10.3390/proceedings2025121005 - 17 Jul 2025
Viewed by 225
Abstract
This study provides a comprehensive panorama of wastewater treatment on swine farms in Pará de Minas, MG, focusing on the performance of the anaerobic digester technologies adopted. Considering the economic and environmental importance of swine production, wastewater treatment is critical for mitigating environmental [...] Read more.
This study provides a comprehensive panorama of wastewater treatment on swine farms in Pará de Minas, MG, focusing on the performance of the anaerobic digester technologies adopted. Considering the economic and environmental importance of swine production, wastewater treatment is critical for mitigating environmental impacts while providing renewable energy opportunities. Data compilation from the Minas Gerais Institute of Agriculture (IMA), technical visits, and physicochemical analyses were conducted. Our results indicate that the region has significant potential to increase biogas production by expanding the number of plants and improving the efficiency of existing systems. Investments in scalable technological solutions tailored for small-scale operations are essential to enhance both wastewater treatment and biogas generation. This study demonstrates the potential for new business opportunities within the biogas value chain in Brazilian agribusiness. Full article
Show Figures

Figure 1

19 pages, 1165 KiB  
Article
Expansion of Mechanical Biological Residual Treatment Plant with Fermentation Stage for Press Water from Organic Fractions Involving a Screw Press
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Recycling 2025, 10(4), 141; https://doi.org/10.3390/recycling10040141 - 16 Jul 2025
Viewed by 285
Abstract
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the [...] Read more.
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the employed screw press, such as pressure, liquid-to-MSFF, feeding quantity per hour, and press basket mesh size, to enhance volatile solids and biogas recovery in the generated press water for anaerobic digestion. Experiments were performed at the full-scale facility to evaluate the efficiency of screw press extraction with other pretreatment methods, like press extrusion, wet pulping, and hydrothermal treatment. The results indicated that hydrolysis of the organic fractions in MSFF was the most important factor for improving organic extraction from the MSFF to press water for fermentation. Optimal hydrolysis efficiency was achieved with a digestate and process water-to-MSFF of approximately 1000 L/ton, with a feeding rate between 8.8 and 14 tons per hour. Increasing pressure from 2.5 to 4.0 bar had minimal impact on press water properties or biogas production, regardless of the press basket size. The highest volatile solids (29%) and biogas (50%) recovery occurred at 4.0 bar pressure with a 1000 L/ton liquid-to-MSFF. Further improvements could be achieved with longer mixing times before pressing. These findings demonstrate the technical feasibility of the pressing system for preparing an appropriate substrate for the fermentation process, underscoring the potential for optimizing the system. However, further research is required to assess the cost–benefit balance. Full article
Show Figures

Figure 1

21 pages, 1897 KiB  
Article
Simulation of Conventional WWTPs Acting as Mediators in H2/CO2 Conversion into Methane
by Rubén González and Xiomar Gómez
Environments 2025, 12(7), 245; https://doi.org/10.3390/environments12070245 - 16 Jul 2025
Viewed by 509
Abstract
CO2-biomethanation was studied in the present manuscript by considering the direct injection of hydrogen into a conventional anaerobic digester treating sewage sludge within a simulated wastewater treatment plant (WWTP). The plant was simulated using the Python 3.12.4 software, and a Monte [...] Read more.
CO2-biomethanation was studied in the present manuscript by considering the direct injection of hydrogen into a conventional anaerobic digester treating sewage sludge within a simulated wastewater treatment plant (WWTP). The plant was simulated using the Python 3.12.4 software, and a Monte Carlo simulation was conducted to account for the high variability in the organic content of the wastewater and the methane potential of the sludge. Two modes of operation were studied. The first mode involves the use of an anaerobic digester to upgrade biogas, and the second mode considers using the digester as a CO2 utilization unit, transforming captured CO2. Upgrading biogas and utilizing the extra methane to generate electricity within the same plant leads to a negative economic balance (first scenario). A hydrogen injection of 1 L of H2/Lr d (volumetric H2 injection per liter of reactor per day) was required to transform the CO2 present in the biogas into methane. The benefits associated with this approach resulted in lower savings regarding heat recovery from the electrolyzer, increased electricity production, and an additional oxygen supply for the waste-activated sludge treatment system. Increasing the injection rate to values of 5 and 30 L of H2/Lr d was also studied by considering the operation of the digester under thermophilic conditions. The latter assumptions benefited from the better economy of scale associated with larger installations. They allowed for enough savings to be obtained in terms of the fuel demand for sludge drying, in addition to the previous categories analyzed in the biogas upgrading case. However, the current electricity price makes the proposal unfeasible unless a lower price is set for hydrogen generation. A standard electricity price of 7.6 c€/kWh was assumed for the analysis, but the specific operation of producing hydrogen required a price below 3.0 c€/kWh to achieve profitability. Full article
Show Figures

Figure 1

38 pages, 2675 KiB  
Review
Factors Influencing the Impact of Anaerobic Digestates on Soil Properties
by Péter Ragályi, Orsolya Szécsy, Nikolett Uzinger, Marianna Magyar, Anita Szabó and Márk Rékási
Soil Syst. 2025, 9(3), 78; https://doi.org/10.3390/soilsystems9030078 - 14 Jul 2025
Viewed by 432
Abstract
Green energy is expected to play an increasingly important role in the energy sector, so the volume of biogas production and the formation of anaerobic digestates is likely to increase in the future. A wide range of biodegradable organic materials are used in [...] Read more.
Green energy is expected to play an increasingly important role in the energy sector, so the volume of biogas production and the formation of anaerobic digestates is likely to increase in the future. A wide range of biodegradable organic materials are used in anaerobic digesters to produce biogas. This review focuses on the properties of anaerobic digestates and their effects on physical, chemical and biological soil parameters discussing the benefits, limitations and potential risks. Due to the variety of technologies and raw materials used, anaerobic digestates have diverse properties. Therefore, their impact on specific soil parameters, such as bulk density, aggregate stability, pH, electrical conductivity (EC), soil organic matter (SOM) or microbial activity can vary in magnitude and direction. These effects are also influenced by the variety of soils. Although digestates usually have a significant macro- and micronutrient content, their potentially toxic components or high salt content may limit their use. Despite the limitations, the application of anaerobic digestates generally has more advantages than disadvantages. The use of good-quality anaerobic digestates can improve the physical and chemical properties of the soil, increase soil nutrient and SOM content, as well as soil microbial activity. Full article
Show Figures

Figure 1

17 pages, 2432 KiB  
Article
Fertilization Effects of Solid Digestate Treatments on Earthworm Community Parameters and Selected Soil Attributes
by Anna Mazur-Pączka, Kevin R. Butt, Marcin Jaromin, Edmund Hajduk, Mariola Garczyńska, Joanna Kostecka and Grzegorz Pączka
Agriculture 2025, 15(14), 1511; https://doi.org/10.3390/agriculture15141511 - 13 Jul 2025
Viewed by 824
Abstract
An increasing number of soils, including those in EU countries, are affected by organic matter deficiency and the deterioration of nutrients, and using mineral fertilizers is often associated with negative environmental impacts. One of the basic recommendations for sustainable agriculture is to increase [...] Read more.
An increasing number of soils, including those in EU countries, are affected by organic matter deficiency and the deterioration of nutrients, and using mineral fertilizers is often associated with negative environmental impacts. One of the basic recommendations for sustainable agriculture is to increase the proportion of organic fertilizers in crop production and preserve soil biodiversity. An increasingly common organic fertilizer is biogas plant digestate, the physical and chemical properties of which depend primarily on the waste material used in biogas production. However, the fertilizer value of this additive and its effects on the soil environment, including beneficial organisms, remain insufficiently studied. Soil macrofauna, particularly earthworms, play a crucial role in soil ecosystems, because they significantly impact the presence of plant nutrients, actively participate in forming soil structures, and strongly influence organic matter dynamics. The present study was undertaken to determine the effects of fertilizing a silt loam soil with the solid fraction of digestate in monoculture crop production on earthworm community characteristics and the resulting changes in selected soil physicochemical properties. The research was conducted at a single site, so the original soil characteristics across the experimental plots were identical. Plots were treated annually (for 3 years; 2021–2023) with different levels of digestate: DG100 (100% of the recommended rate; 30 t ha−1), DG75 (75% of the recommended rate; 22.5 t ha−1), DG50 (15 t ha−1), DG25 (7.5 t ha−1), and CL (a control plot without fertilizer). An electrical method was used to extract earthworms. Those found at the study site belonged to seven species representing three ecological groups: Dendrodrilus rubidus (Sav.), Lumbricus rubellus (Hoff.), and Dendrobaena octaedra (Sav.) (epigeics); Aporrectodea caliginosa (Sav.), Aporrectodea rosea (Sav.), and Octolasion lacteum (Örley) (endogeics); and Lumbricus terrestris (L.) (anecics). Significant differences in the abundance and biomass of earthworms were found between the higher level treatments (DG100, DG75, and DG50), and the lowest level of fertilization and the control plot (DG25 and CL). The DG25 and CL plots showed an average of 24.7% lower earthworm abundance and 22.8% lower biomass than the other plots. There were no significant differences in the earthworm metrics between the plots within each of the two groups (DG100, DG75, and DG50; and DG25 and CL). The most significant influence on the average abundance and average biomass of Lumbricidae was probably exerted by soil moisture and the annual dosage of digestate. A significant increase in the abundance and biomass of Lumbricidae was shown at plots DG100, DG75, and DG50 in the three successive years of the experiment. The different fertilizer treatments were found to have different effects on selected soil parameters. No significant differences were found among the values of the analyzed soil traits within each plot in the successive years of the study. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

16 pages, 2079 KiB  
Article
Biogas Production from Agave durangensis Mezcal Bagasse Pretreated Using Chemical Processes
by Refugio Hernández-López, Iván Moreno-Andrade, Blanca E. Barragán-Huerta, Edson B. Estrada-Arriaga and Marco A. Garzón-Zúñiga
Fermentation 2025, 11(7), 399; https://doi.org/10.3390/fermentation11070399 - 12 Jul 2025
Viewed by 483
Abstract
This study evaluated the viability of using the solid residues (bagasse) of the mezcal industry produced with Agave durangensis as a substrate for biogas production, using two chemical pretreatments, acid (HCl) and alkaline (KOH + Ca(OH)2), to enhance its biodegradability and [...] Read more.
This study evaluated the viability of using the solid residues (bagasse) of the mezcal industry produced with Agave durangensis as a substrate for biogas production, using two chemical pretreatments, acid (HCl) and alkaline (KOH + Ca(OH)2), to enhance its biodegradability and improve the anaerobic digestion (AD) process. The chemical composition of bagasse was analyzed before and after the chemical pretreatments and then AD experiments were conducted in anaerobic sequential batch reactors (A-SBR) to analyze the effect of pretreatments on biogas production performance. The results showed that acid pretreatment increased cellulose content to 0.606 g, which represented an increase of 34%, and significantly reduced hemicellulose. In contrast, alkaline pretreatment did not show significant changes in cellulose composition, although it caused a swelling of the Agave durangensis mezcal bagasse (Ad-MB) fibers. In terms of biogas production, Ad-MB pretreated with acid (Ad-MB-acid) increased cumulative production by 76% compared to the Agave durangensis mezcal bagasse that was not pretreated (Ad-MB-not pretreated) and by 135% compared to Agave durangensis mezcal bagasse pretreated with an alkaline solution (Ad-MB-alkaline). These results confirmed that Agave durangensis solid waste from the mezcal industry that receives acidic chemical pretreatment has the potential to generate biogas as a sustainable biofuel that can be used to reduce the ecological footprint of this industry. Full article
(This article belongs to the Special Issue Biofuels Production and Processing Technology, 3rd Edition)
Show Figures

Figure 1

23 pages, 3015 KiB  
Review
Sustainable Fuels for Gas Turbines—A Review
by István Péter Kondor
Sustainability 2025, 17(13), 6166; https://doi.org/10.3390/su17136166 - 4 Jul 2025
Viewed by 567
Abstract
The increasing global demand for sustainable energy solutions has intensified the need to replace fossil fuels in gas turbines, particularly in aviation and power generation where alternatives to gas turbines are currently limited. This review explores the feasibility of utilizing sustainable liquid and [...] Read more.
The increasing global demand for sustainable energy solutions has intensified the need to replace fossil fuels in gas turbines, particularly in aviation and power generation where alternatives to gas turbines are currently limited. This review explores the feasibility of utilizing sustainable liquid and gaseous fuels in gas turbines by evaluating their environmental impacts, performance characteristics, and technical integration potential. The study examines a broad range of alternatives, including biofuels, hydrogen, alcohols, ethers, synthetic fuels, and biogas, focusing on their production methods, combustion behavior, and compatibility with existing turbine technology. Key findings indicate that several bio-derived and synthetic fuels can serve as viable drop-in replacements for conventional jet fuels, especially under ASTM D7566 standards. Hydrogen and other gaseous alternatives show promise for industrial applications but require significant combustion system adaptations. The study concludes that a transition to sustainable fuels in gas turbines is achievable through coordinated advancements in combustion technology, fuel infrastructure, and regulatory support, thus enabling meaningful reductions in greenhouse gas emissions and advancing global decarbonization efforts. Full article
Show Figures

Figure 1

15 pages, 2591 KiB  
Article
Anaerobic Co-Digestion of Dairy Manure and Cucumber Residues: Methane Production Efficiency and Microbial Community Characteristics
by Yanqin Wang, Yan Li, Yumeng Qi, Longyun Fu, Guangjie Li, Zhaodong Liu, Luji Bo and Yongping Jing
Agronomy 2025, 15(7), 1610; https://doi.org/10.3390/agronomy15071610 - 1 Jul 2025
Viewed by 335
Abstract
Anaerobic digestion for biogas production represents a crucial approach to achieving the high-value utilization of agricultural solid waste. The adoption of multi-material co-digestion offers a viable solution to overcome the inherent constraints associated with single-substrate digestion, thereby significantly enhancing the efficiency of resource [...] Read more.
Anaerobic digestion for biogas production represents a crucial approach to achieving the high-value utilization of agricultural solid waste. The adoption of multi-material co-digestion offers a viable solution to overcome the inherent constraints associated with single-substrate digestion, thereby significantly enhancing the efficiency of resource utilization. This study explored a co-digestion system using dairy manure and cucumber vines as substrates, uncovering how total solids (TS) influence the methane yield and microbial community characteristics. All treatments exhibited swift methane fermentation, with daily production initially increasing before declining. Cumulative methane production increased with the increasing TS contents. These results may be linked to pH value and the concentration of volatile fatty acids (VFAs). Except for the 6% TS treatment, digesters across different TS levels maintained a favorable final pH of 7.4–8.4, while VFA concentrations exhibited a downward trend as TS contents increased. The treatment with the highest TS concentration (25%) demonstrated superior performance, achieving the maximum volumetric methane yield. This yield was 1.6 to 9.1 times higher than those obtained at low (6–10%) and medium (12–18%) TS concentrations. Microbial community analysis revealed that during the peak methane production phase, Firmicutes and Methanoculleus were the predominant bacterial and archaeal phyla, respectively. The microbial community structure changed with different TS levels. This study offers valuable scientific insights for enhancing biogas production efficiency in co-digestion systems. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

16 pages, 1769 KiB  
Article
Anaerobic Co-Digestion of Cattle Manure and Sewage Sludge Using Different Inoculum Proportions
by Caroline Carvalho Pinto, Juliana Lobo Paes, Alexia de Sousa Gomes, Daiane Cecchin, Igor Ferreira Oliva, Romulo Cardoso Valadão and Vânia Reis de Souza Sant’Anna
Fermentation 2025, 11(7), 373; https://doi.org/10.3390/fermentation11070373 - 28 Jun 2025
Viewed by 616
Abstract
Anaerobic digestion (AD) is a sustainable strategy for converting hazardous wastes into renewable energy while supporting Sustainable Development Goals (SDGs). This study aimed to evaluate the effect of inoculum on optimizing biogas production from sewage sludge (SS) and cattle manure (CM). Bench-scale digesters [...] Read more.
Anaerobic digestion (AD) is a sustainable strategy for converting hazardous wastes into renewable energy while supporting Sustainable Development Goals (SDGs). This study aimed to evaluate the effect of inoculum on optimizing biogas production from sewage sludge (SS) and cattle manure (CM). Bench-scale digesters were fed with 0, 20, and 40% inoculum prepared at a 1:3 SS:CM ratio. Substrate and digestate were analyzed for physicochemical properties, and biogas production data were fitted using nonlinear models. Kinetic parameters ranged from 0.0770 to 0.4691 L·kg−1 for Ymax, from 1.0263 to 2.1343 L·kg−1·week−1 for μmax, and from 0.8168 to 8.0114 weeks for λ, depending on the ratio. The 1:3 SS:CM with 40% inoculum significantly improved biogas production by reducing the lag phase and increasing weekly yield, with the Gompertz model showing the best fit to the digestion kinetics. This was particularly evident due to the favorable conditions for microbial adaptation and efficient substrate degradation. The results reinforce the concept of optimization as defined in this study, wherein the application of inoculum enhances the performance of AD by improving the physicochemical conditions of the substrate and accelerating microbial activity, thereby resulting in increased methane (CH4) generation and overall biogas yield. Full article
(This article belongs to the Special Issue Biorefining for Biofuel Production)
Show Figures

Figure 1

Back to TopTop