Biorefining for Biofuel Production

A special issue of Fermentation (ISSN 2311-5637). This special issue belongs to the section "Industrial Fermentation".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 366

Special Issue Editor


E-Mail Website
Guest Editor
Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
Interests: fermentation; barley; value-added products; flax; toxicology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As the demand for biofuels continues to grow, there have been significant advances in biorefining technologies for biofuel production. This Special Issue will focus on innovative technologies and strategies that convert biomass into value-added biofuels and other co-products, supporting the transition to a circular economy. The main topics for this Special Issue include the following: (1) advanced fermentation methods, (2) enzymatic and thermochemical conversion techniques, (3) feedstock optimization, and (4) the integration of waste streams to improve economic and environmental viability. Emphasis will be placed on the development of novel microbial strains, omics-based approaches for pathway optimization, and emerging technologies such as precision fermentation and biocatalysis.

Altogether, this Special Issue will highlight the role of biorefineries in creating multi-product platforms, life cycle assessments (e.g., challenges in scalability), and policy frameworks to support the adoption of biofuels. Contributions that bridge the gaps between research, industry applications, and sustainability goals are particularly welcome. This Special Issue aims at accelerating the development of efficient and economically competitive biorefineries to produce sustainable biofuels, through cutting-edge research and technological advancements.

We look forward to receiving your contributions.

Dr. Timothy Tse
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biorefining
  • biofuels
  • microbial strains
  • biocatalysis
  • enzyme
  • fermentation
  • circular economy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3028 KiB  
Article
Exploiting 1,3-Propanediol Production by a Clostridium beijerinckii Strain: The Role of Glycerol and Ammonium Sulfate Concentrations
by Pedro Felipe Dassie Leonel de Castro, Rafael de Moraes Altafini, Jonatã Bortolucci, Jaques Florêncio, Maria Lucia Arruda Moura Campos and Valeria Reginatto
Fermentation 2025, 11(4), 187; https://doi.org/10.3390/fermentation11040187 - 2 Apr 2025
Viewed by 278
Abstract
In this study, we optimized the initial concentrations of glycerol and (NH4)2SO4 to enhance 1,3-propanediol (1,3-PDO) production by Clostridium beijerinckii strain Br21. A central composite rotational design (CCRD) was employed, varying glycerol concentrations between 158 and 441 mmol [...] Read more.
In this study, we optimized the initial concentrations of glycerol and (NH4)2SO4 to enhance 1,3-propanediol (1,3-PDO) production by Clostridium beijerinckii strain Br21. A central composite rotational design (CCRD) was employed, varying glycerol concentrations between 158 and 441 mmol L−1, and (NH4)2SO4 concentrations between 4.4 and 25.8 mmol L−1. The CCRD identified optimal conditions at 441.42 mmol L−1 for glycerol and 25.8 mmol L−1 for (NH4)2SO4. The optimized medium resulted in a 112% increase in 1,3-PDO production compared to the original medium. Analysis of NH4+ and SO42− ions under optimal conditions revealed a higher consumption of NH4+ than SO42−. Furthermore, a quantitative gene expression analysis revealed that while the expression of genes responsible for glycerol uptake and ATP sulfurylase remained unchanged, the expression of the dhaM gene, which encodes the oxidative phosphoenolpyruvate:dihydroxyacetone phosphotransferase, increased approximately 6-fold. In the reductive pathway, the expression of the dhaB1 gene, encoding glycerol dehydratase, and the dhaT gene, encoding 1,3-propanediol dehydrogenase, increased 2.5- and 5-fold, respectively. The upregulation of these genes supports the hypothesis that the optimal concentrations of glycerol and (NH4)2SO4 enhance the 1,3-PDO production by C. beijerinckii Br21. Full article
(This article belongs to the Special Issue Biorefining for Biofuel Production)
Show Figures

Figure 1

Back to TopTop