Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (731)

Search Parameters:
Keywords = in-vitro studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 140 KiB  
Correction
Correction: Mahnashi et al. In-Vitro, In-Vivo, Molecular Docking and ADMET Studies of 2-Substituted 3,7-Dihydroxy-4H-chromen-4-one for Oxidative Stress, Inflammation and Alzheimer’s Disease. Metabolites 2022, 12, 1055
by Mater H. Mahnashi, Mohammed Abdulrahman Alshahrani, Mohammed H. Nahari, Syed Shams ul Hassan, Muhammad Saeed Jan, Muhammad Ayaz, Farhat Ullah, Osama M. Alshehri, Mohammad Ali Alshehri, Umer Rashid and Abdul Sadiq
Metabolites 2025, 15(8), 532; https://doi.org/10.3390/metabo15080532 - 6 Aug 2025
Abstract
There was an error in the original publication [...] Full article
15 pages, 1743 KiB  
Article
Development of Bioresponsive Poloxamer-Based Self-Nanoemulsifying System for Enhanced Febuxostat Bioavailability: Solidification Strategy Using I-Optimal Approach
by Abdelrahman Y. Sherif and Ehab M. Elzayat
Pharmaceutics 2025, 17(8), 975; https://doi.org/10.3390/pharmaceutics17080975 - 28 Jul 2025
Viewed by 248
Abstract
Background/Objectives: The major limitations of self-nanoemulsifying systems include complex processing and expensive instrumentation required for solidification approaches. In this study, smart poloxamer-based solidification strategies were used to develop and optimize febuxostat-loaded formulations. Methods: A self-nanoemulsifying drug delivery system (SNEDDS) component was selected based [...] Read more.
Background/Objectives: The major limitations of self-nanoemulsifying systems include complex processing and expensive instrumentation required for solidification approaches. In this study, smart poloxamer-based solidification strategies were used to develop and optimize febuxostat-loaded formulations. Methods: A self-nanoemulsifying drug delivery system (SNEDDS) component was selected based on solubility and emulsification tests. The influence of poloxamer molecular weight (low or high) and its concentration (2–10% w/w) on formulation performance was assessed through the design of experiments. Finally, in-vitro melting assessment and a comparative dissolution test were performed on the optimized SNEDDS formulation. Results: Imwitor 988 and Tween 20 were selected to prepare the formulations. Increasing the molecular weight and concentration of the poloxamer significantly increased the temperature and time required for the melting of the SNEDDS formulation. The optimized SNEDDS formulation comprised 3.98% w/w poloxamer 188, which melts at 36 °C within 111 s. In-vitro melting showed that the formulation completely converted to a liquid state upon exposure to body temperature. Finally, the optimized SNEDDS formulation exhibited superior dissolution efficiency (96.66 ± 0.28%) compared to raw febuxostat (72.09 ± 4.33%) and marketed tablets (82.23 ± 3.10%). Conclusions: The poloxamer-based approach successfully addressed the limitations associated with conventional solidification while maintaining superior dissolution performance. Therefore, it emerges as a promising alternative approach for enhancing the bioavailability of poorly water-soluble drugs. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

24 pages, 3919 KiB  
Article
High Drug Loading of Amorphous Solid Dispersion by Hot Melt Extrusion: The Role of Magnesium Aluminometasilicate (Neusilin® US2)
by Nithin Vidiyala, Pavani Sunkishala, Prashanth Parupathi, Preethi Mandati, Srujan Kumar Mantena, Raghu Rami Reddy Kasu and Dinesh Nyavanandi
Sci. Pharm. 2025, 93(3), 30; https://doi.org/10.3390/scipharm93030030 - 16 Jul 2025
Viewed by 231
Abstract
The objective of the current research is to investigate the role of Neusilin US2 as a porous carrier for improving the drug loading and stability of Ezetimibe (EZB) by hot melt extrusion (HME). The amorphous solid dispersions (ASDs) were developed from 10–40% of [...] Read more.
The objective of the current research is to investigate the role of Neusilin US2 as a porous carrier for improving the drug loading and stability of Ezetimibe (EZB) by hot melt extrusion (HME). The amorphous solid dispersions (ASDs) were developed from 10–40% of drug loading using Kollidon VA 64 (Copovidone) as a polymer matrix and Neusilin US2 as a porous carrier. The solid-state characterization of EZB was studied using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). The formulation blends were characterized for flow properties, and CTC (compressibility, tabletability, compactibility) profile. The in-vitro drug release profiles were studied in 0.1 N HCl (pH 1.2). The incorporation of Neusilin US2 has facilitated the development of ASDs up to 40% of drug loading. The CTC profile has demonstrated excellent tabletability for the ternary (EZB, copovidone and Neusilin) dispersions over binary dispersion (EZB and copovidone) formulations. The tablet formulations with binary (20%) and ternary (30% and 40%) dispersions have demonstrated complete dissolution of the drug in 30 min in 0.1 N HCl (pH 1.2). The incorporation of copovidone has prevented the recrystallization of the drug in the solution state. Upon storage of formulations at accelerated conditions, the stability of ternary dispersion tablets was preserved attributing to the entrapment of the drug within Neusilin pores thereby inhibiting molecular mobility. Based on the observations, the current research concludes that it is feasible to incorporate Neusilin US2 to improve the drug loading and stability of ASD systems. Full article
Show Figures

Figure 1

10 pages, 2732 KiB  
Article
In-Vitro Assessment of Artificial Tooth Material Wear Behavior Using 3D Wear Analysis
by Sıla Yelekçi, Ayben Şentürk and Funda Akaltan
J. Funct. Biomater. 2025, 16(7), 264; https://doi.org/10.3390/jfb16070264 - 16 Jul 2025
Viewed by 456
Abstract
Background: Artificial tooth wear impacts prosthesis durability and function; understanding material–antagonist interactions guides clinical choices. Aim: This in-vitro study aimed to assess the wear behavior of isosit and nanohybrid composite resin artificial teeth when opposed to various antagonist materials using 3D volumetric wear [...] Read more.
Background: Artificial tooth wear impacts prosthesis durability and function; understanding material–antagonist interactions guides clinical choices. Aim: This in-vitro study aimed to assess the wear behavior of isosit and nanohybrid composite resin artificial teeth when opposed to various antagonist materials using 3D volumetric wear analysis. Materials and Methods: Sixty specimens (n = 10 per group) were prepared from two artificial tooth materials and assigned to six antagonist combinations: isosit–isosit, isosit–nanohybrid composite, isosit–porcelain, nanohybrid composite–isosit, nanohybrid composite–nanohybrid composite, and nanohybrid composite–porcelain. Specimens were scanned before and after 600,000 chewing cycles using a structured-light 3D scanner. Volumetric wear was calculated by superimposing pre- and post-test scans. Data were analyzed using two-way ANOVA and Tukey’s HSD test (α = 0.05). Results: Porcelain antagonists produced the highest wear values (p < 0.05). No significant difference was found between isosit and nanohybrid antagonists (p > 0.05). Identical material pairings showed less wear, though differences were not statistically significant. Conclusions: Porcelain as an antagonist increased wear risk. Using identical materials bilaterally, such as isosit–isosit or nanohybrid–nanohybrid, may help reduce artificial tooth wear in removable prostheses. Full article
(This article belongs to the Special Issue State of the Art: Biomaterials and Oral Implantology)
Show Figures

Figure 1

16 pages, 3597 KiB  
Article
Towards a Customized Oral Drug Therapy for Pediatric Applications: Chewable Propranolol Gel Tablets Printed by an Automated Extrusion-Based Material Deposition Method
by Kristiine Roostar, Andres Meos, Ivo Laidmäe, Jaan Aruväli, Heikki Räikkönen, Leena Peltonen, Sari Airaksinen, Niklas Sandler Topelius, Jyrki Heinämäki and Urve Paaver
Pharmaceutics 2025, 17(7), 881; https://doi.org/10.3390/pharmaceutics17070881 - 4 Jul 2025
Viewed by 445
Abstract
Background: Automated semi-solid extrusion (SSE) material deposition is a promising new technology for preparing personalized medicines for different patient groups and veterinary applications. The technology enables the preparation of custom-made oral elastic gel tablets of active pharmaceutical ingredient (API) by using a semi-solid [...] Read more.
Background: Automated semi-solid extrusion (SSE) material deposition is a promising new technology for preparing personalized medicines for different patient groups and veterinary applications. The technology enables the preparation of custom-made oral elastic gel tablets of active pharmaceutical ingredient (API) by using a semi-solid polymeric printing ink. Methods: An automated SSE material deposition method was used for generating chewable gel tablets loaded with propranolol hydrochloride (-HCl) at three different API content levels (3.0 mg, 4.0 mg, 5.0 mg). The physical appearance, surface morphology, dimensions, mass and mass variation, process-derived solid-state changes, mechanical properties, and in-vitro drug release of the gel tablets were studied. Results: The inclusion of API (1% w/w) in the semi-solid CuraBlendTM printing mixture decreased viscosity and increased fluidity, thus promoting the spreading of the mixture on the printed (material deposition) bed and the printing performance of the gel tablets. The printed gel tablets were elastic, soft, jelly-like, chewable preparations. The mechanical properties of the gel tablets were dependent on the printing ink composition (i.e., with or without propranolol HCl). The maximum load for the final deformation of the CuraBlend™-API (3.0 mg) gel tablets was very uniform, ranging from 73 N to 80 N. The in-vitro dissolution test showed that more than 85% of the drug load was released within 15–20 min, thus verifying the immediate-release behavior of these drug preparations. Conclusions: Automated SSE material deposition as a modified 3D printing method is a feasible technology for preparing customized oral chewable gel tablets of propranolol HCl. Full article
Show Figures

Figure 1

29 pages, 9043 KiB  
Article
Arginine-Mediated Liver Immune Regulation and Antioxidant Defense in Largemouth Bass (Micropterus salmoides): Multi-Omics Insights into Metabolic Remodeling During Nocardia seriolae Infection
by Yu-Long Sun, Shuai-Liang Zhang, Feng-Feng Zhou, Yuan-Xin Qian, Yang He, Run-Zhe Zhang, Fen Dong, Qiang Chen, Han-Ying Xu, Ji-Teng Wang, Yu-Ting Deng and Tao Han
Antioxidants 2025, 14(6), 681; https://doi.org/10.3390/antiox14060681 - 3 Jun 2025
Viewed by 707
Abstract
The liver of fish is an essential metabolic organ that also serves an immune regulatory role. In this study, we constructed a model of largemouth bass (Micropterus salmoides) infected with Nocardia seriolae by injection to explore the immune and antioxidant functions [...] Read more.
The liver of fish is an essential metabolic organ that also serves an immune regulatory role. In this study, we constructed a model of largemouth bass (Micropterus salmoides) infected with Nocardia seriolae by injection to explore the immune and antioxidant functions of the liver. The results showed that N. seriolae infection caused severe pathological changes in the liver, including cell necrosis, granuloma formation, and leukocyte infiltration. The level of mRNA expression of immune-related genes in the liver was significantly increased 2 days post-infection. Moreover, the combined analysis of transcriptome and metabolome showed that N. seriolae infection markedly affected liver metabolism, including glutathione metabolism, arginine and proline metabolism, arachidonic acid metabolism, as well as starch and sucrose metabolism. Additionally, multiple key biomarkers were identified as involved in regulating responses to N. seriolae infection, including arginine, glutathione, gpx, GST, PLA2G, GAA, and PYG. To further elucidate the regulatory effects of arginine on the immune and antioxidant processes in the liver, primary hepatocytes were isolated and cultured. The results demonstrated that arginine supplementation significantly reduced the expression of LPS-induced apoptosis-related genes (bax, cas3, cas8, and cas9) by up to 50% while increasing the expression of antioxidant genes (gpx, GST) by up to 700% at 24 h. Through the analysis of metabolic changes and immune responses in the liver following N. seriolae infection, combined with in-vitro experiments, this study elucidated the anti-apoptotic and antioxidant effects of arginine, revealing the immune response mechanisms in fish liver and laying the groundwork for using nutritional strategies to improve fish health. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Aquaculture)
Show Figures

Figure 1

14 pages, 1523 KiB  
Article
Regulatory T Cell Function Is Not Affected by Antisense Peptide-Conjugated Phosphorodiamidate Morpholino Oligomer (PPMO)-Mediated TMPRSS2 Truncation
by Sandra Gunne, Fiona K. Sailer, Lucas Keutmann, Marie Schwerdtner, Hong M. Moulton, Eva Böttcher-Friebertshäuser and Susanne Schiffmann
Drugs Drug Candidates 2025, 4(2), 25; https://doi.org/10.3390/ddc4020025 - 27 May 2025
Viewed by 673
Abstract
Background: TMPRSS2 plays an important role in the viral entry mechanisms of influenza viruses and coronaviruses. Therefore, TMPRSS2 seems to be a suitable antiviral drug target. To exclude possible side effects of TMPRSS2 truncation in an early stage of drug in-vitro testing, this [...] Read more.
Background: TMPRSS2 plays an important role in the viral entry mechanisms of influenza viruses and coronaviruses. Therefore, TMPRSS2 seems to be a suitable antiviral drug target. To exclude possible side effects of TMPRSS2 truncation in an early stage of drug in-vitro testing, this study aims to analyze the impact of TMPRSS2 truncation via antisense peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) targeting immune cells, using the example of regulatory T cells (Treg). Methods: TMPRSS2 was truncated in human Tregs using a splice-modulating PPMO. Effects on Treg function were analyzed by evaluation of surface marker and transcription factor expression, cytokine secretion, and effector cell suppression capability. Results: PPMO treatment led to a slight concentration-dependent toxicity in Tregs. Tregs with truncated TMPRSS2 behave similarly to untreated and control PPMO-treated cells in the analyzed assays. Conclusions: Treg function is not altered after TMPRSS2 truncation and therefore, no unwanted side effects in regard of Tregs are expected when using TMPRSS2-truncating PPMO as an anti-viral drug. Full article
(This article belongs to the Special Issue Fighting SARS-CoV-2 and Related Viruses)
Show Figures

Figure 1

19 pages, 827 KiB  
Review
Omicron Variant Could Be an Antigenic Shift of SARS-CoV-2
by Anju Kaushal
COVID 2025, 5(5), 73; https://doi.org/10.3390/covid5050073 - 14 May 2025
Viewed by 1037
Abstract
In the past 5 years, the COVID-19 pandemic has experienced frequently changing variants contextualizing immune evasion. The emergence of Omicron with >30–50 mutations on the spike gene has shown a sharp divergence from its relative VOCs, such as WT, Alpha, Beta, Gamma, and [...] Read more.
In the past 5 years, the COVID-19 pandemic has experienced frequently changing variants contextualizing immune evasion. The emergence of Omicron with >30–50 mutations on the spike gene has shown a sharp divergence from its relative VOCs, such as WT, Alpha, Beta, Gamma, and Delta. The requisition of prime boosting was essential within 3–6 months to improve the Nab response that had been not lasted for longer. Omicron subvariant BA.1.1 was less transmissible, but with an extra nine mutations in next variant BA.2 made it more transmissible. This remarkable heterogeneity was reported in ORF1ab or TRS sites, ORF7a, and 10 regions in the genomic sequences of Omicron BA.2 and its evolving subvariants BA.4.6, BF.7, BQ.2, BF. 7, BA.2.75.2, and BA.5 (BQ.1 and BQ.1.1). The mutational stability of subvariants XBB, XBB 1, XBB 1.5, and XBB 1.6 conferred a similar affinity towards ACE-2. This phenomenon has been reported in breakthrough infections and after booster vaccinations producing hybrid immunity. The reduced pathogenic nature of Omicron has implicated its adaptation either through immunocompromised individuals or other animal hosts. The binding capacity of RBD and ACE-2, including the proteolytic priming via TMPRSS2, reveals its (in-vitro) transmissibility behavior. RBD mutations signify transmissibility, S1/S2 enhances virulence, while S2 infers the effective immunogenic response. Initial mutations D614G, E484A, N501Y, Q493K, K417N, S477N, Y505H, and G496S were found to increase the Ab escape. Some mutations such as, R346K, L452R, and F486Vwere seen delivering immune pressure. HR2 region (S2) displayed mutations R436S, K444T, F486S, and D1199N with altered spike positions. Later on, the booster dose or breakthrough infections contributed to elevating the immune profile. Several other mutations in BA.1.1-N460K, R346T, K444T, and BA.2.75.2-F486S have also conferred the neutralization resistance. The least studied T-cell response in SARS-CoV-2 affects HLA- TCR interactions, thus, it plays a role in limiting the virus clearance. Antigenic cartographic analysis has also shown Omicron’s drift from its predecessor variants. The rapidly evolving SARS-CoV-2 variants and subvariants have driven the population-based immunity escape in fully immunized individuals within short period. This could be an indication that Omicron is heading towards endemicity and may evolve in future with subvariants could lead to outbreaks, which requires regular surveillance. Full article
(This article belongs to the Section Human or Animal Coronaviruses)
Show Figures

Figure 1

19 pages, 3400 KiB  
Article
Preparation of Carrier-Free Inhalable Dry Powder of Rivaroxaban Using Two-Step Milling for Lung-Targeted Delivery
by Young-Jin Kim, Jaewoon Son, Chang-Soo Han and Chun-Woong Park
Pharmaceutics 2025, 17(5), 634; https://doi.org/10.3390/pharmaceutics17050634 - 9 May 2025
Viewed by 662
Abstract
Background/Objectives: This study aimed to develop a dry powder inhalation (DPI) formulation of rivaroxaban (RVX) using a combination of bead milling (BM) and jet milling (JM) to enhance lung-targeted delivery for the effective treatment of pulmonary embolism while minimizing systemic exposure. Methods [...] Read more.
Background/Objectives: This study aimed to develop a dry powder inhalation (DPI) formulation of rivaroxaban (RVX) using a combination of bead milling (BM) and jet milling (JM) to enhance lung-targeted delivery for the effective treatment of pulmonary embolism while minimizing systemic exposure. Methods: A carrier-free DPI formulation of RVX was developed using sequential BM and JM, with L-leucine incorporated at various concentrations (1%, 5%, and 10%) as a force control agent. The formulations were characterized for particle morphology, size distribution, crystallinity, and thermal properties. The in-vitro aerodynamic performance was evaluated using a next-generation impactor, while ex-vivo studies assessed anticoagulant activity. Pharmacokinetic and tissue distribution studies were carried out in Sprague Dawley rats following intratracheal administration, and the effects of inhaled RVX were compared with those of oral administration. Results: The optimized BM-JM-5L formulation achieved a Dv50 of 2.58 ± 0.01 µm and a fine particle fraction of 72.10 ± 2.46%, indicating suitability for pulmonary delivery. The two-step milling effectively reduced particle size and enhanced dispersibility without altering RVX’s physicochemical properties. Ex-vivo anticoagulation tests confirmed maintained or improved activity. In-vivo studies showed that pulmonary administration (5 mg/kg) led to a 493-fold increase in lung drug concentration and 2.56-fold higher relative bioavailability vs. oral dosing, with minimal heart tissue accumulation, confirming targeted lung delivery. Conclusions: The two-step milled RVX DPI formulations, particularly BM-JM-5L with 5% leucine, demonstrated significant potential for pulmonary administration by achieving high local drug concentrations, rapid onset, and improved bioavailability at lower doses. These findings highlight the feasibility of RVX as a DPI formulation for pulmonary delivery in treating pulmonary embolism. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

22 pages, 6932 KiB  
Article
Antiviral Activity of Rhamnolipids Nano-Micelles Against Rhinoviruses—In Silico Docking, Molecular Dynamic Analysis and In-Vitro Studies
by Lila Touabi, Nasser S. M. Ismail, Marwa R. Bakkar, Gary R. McLean and Yasmin Abo-zeid
Curr. Issues Mol. Biol. 2025, 47(5), 333; https://doi.org/10.3390/cimb47050333 - 6 May 2025
Viewed by 1518
Abstract
Hospital-acquired infections (HAIs) previously focused mainly on multidrug-resistant (MDR) bacteria, with less attention on viruses. The COVID-19 pandemic highlighted the importance of controlling viral infections. Human rhinoviruses (HRVs) are among the viruses responsible for HAIs. HRVs are non-enveloped viruses that infect the upper [...] Read more.
Hospital-acquired infections (HAIs) previously focused mainly on multidrug-resistant (MDR) bacteria, with less attention on viruses. The COVID-19 pandemic highlighted the importance of controlling viral infections. Human rhinoviruses (HRVs) are among the viruses responsible for HAIs. HRVs are non-enveloped viruses that infect the upper airways after airborne or direct transmission. Due to their lack of a membrane envelope, HRVs exhibit moderate resistance to commonly applied alcoholic disinfectants. Therefore, there is a significant need to develop alternative disinfection and hand sanitation strategies to control HRV infections in healthcare settings without posing a risk to human health. The antimicrobial activity and safety of rhamnolipids and rhamnolipids nano-micelles (RMN) against MDR-bacteria and several viruses, including SARS-CoV-2, were confirmed recently. Also, we previously demonstrated the superior antimicrobial activity of RMN over rhamnolipids. In the current study, molecular docking demonstrated the weak interactions of rhamnolipids with HRV-1A (minor group) compared to HRV-14 (major group), suggesting a superior antiviral activity of rhamnolipids towards major group rhinoviruses. To biologically validate these data, RMN was prepared and characterized, and then antiviral activity against HRV-16 (major group) and HRV-1B (minor group) infection of HeLa cells was assessed. RMN showed a complete inhibition of HRV-16 infection with recovery of 100% of HeLa cell viability. In contrast, only partial inhibition of HRV-1B infection with approximately 50% protection against infection was observed. Therefore, RMN might be recommended as a disinfectant and/or a hand sanitizer component to control the spread of RVs in hospital care settings or elsewhere to reduce the incidence of respiratory infections. Full article
Show Figures

Graphical abstract

20 pages, 1009 KiB  
Article
Dryland Fodder Radish Genotypes: Planting Date Effects on Nutritive Value and In-Vitro Dry Matter Degradability in Midlands of KwaZulu-Natal, South Africa
by Lwando Mbambalala, Thamsanqa Doctor Empire Mpanza, Tlou Julius Tjelele, Lusanda Ncisana, Sphesihle Mkhungo, Lucky Sithole, Mpho Siennah Nzeru, Patrick Ngwako Rakau, Zikhona Theodora Rani-Kamwendo and Ntuthuko Raphael Mkhize
Grasses 2025, 4(2), 17; https://doi.org/10.3390/grasses4020017 - 1 May 2025
Cited by 1 | Viewed by 751
Abstract
Erratic rainfall and extended dry periods challenge forage production and livestock feed sustainability in dryland agriculture regions. This study investigated the effects of planting dates and genotype selection on the nutritive value and in-vitro dry matter degradability (IVDMD) of fodder radish genotypes in [...] Read more.
Erratic rainfall and extended dry periods challenge forage production and livestock feed sustainability in dryland agriculture regions. This study investigated the effects of planting dates and genotype selection on the nutritive value and in-vitro dry matter degradability (IVDMD) of fodder radish genotypes in Midlands of KwaZulu-Natal, South Africa. The experiment followed a completely randomised design with three fodder radish genotypes (Endurance, Line 2, and Nooitgedacht) and five planting dates (December, January, February, March and May). After three months of growth in each planting date, crops were harvested, prepared and analysed for various nutritional parameters including crude protein, fibre content, and IVDMD. Results revealed that December had the highest crude protein (28–31%) across genotypes, while March plantings optimised total non-structural carbohydrates (13.31%) and metabolisable energy (6.64 MJ/kg). The Nooitgedacht genotype demonstrated improved performance, achieving higher IVDMD of 85.54% for leaves in December plantings and 77.51% for tubers in February plantings. Significant interactions between planting dates and genotypes were observed for ash, crude protein, and cellulose in leaves. In conclusion, these findings highlight the crucial role of planting date selection and genotype choice in optimising fodder radish production under dryland conditions, offering valuable insights for enhancing livestock productivity and supporting sustainable rural livelihoods. Full article
Show Figures

Figure 1

15 pages, 2921 KiB  
Article
Application of Inertial Microfluidics for Isolation and Removal of Round Spermatids from a Spermatogenic Cell Sample to Assist In-Vitro Human Spermatogenesis
by Sabin Nepal, Joey Casalini, Alex Jafek and Bruce Gale
Micromachines 2025, 16(5), 500; https://doi.org/10.3390/mi16050500 - 25 Apr 2025
Viewed by 585
Abstract
In-vitro spermatogenesis holds great potential in addressing male infertility, yet one of the main challenges is separating round spermatids from other germ cells in spermatogonial stem cell cultures. STA-PUT, a method based on velocity sedimentation, has been extensively tested for this application. Though [...] Read more.
In-vitro spermatogenesis holds great potential in addressing male infertility, yet one of the main challenges is separating round spermatids from other germ cells in spermatogonial stem cell cultures. STA-PUT, a method based on velocity sedimentation, has been extensively tested for this application. Though somewhat effective, it requires bulky, expensive equipment and significant time. In contrast, the method of inertial microfluidics offers a compact, cost-effective, and faster alternative. In this study, we designed, fabricated, and tested a microfluidic spiral channel for isolating round spermatids and purifying spermatogenic cells. A commercially available spiral device close to the calculated specifications was tested for rapid prototyping, achieving 79% purity for non-spermatid cells in a single pass, with ability to achieve higher purity through repeated passes. However, the commercial device’s narrow outlets caused clogging, prompting the fabrication of a custom polydimethylsiloxane device matching the calculated specifications. This custom device demonstrated significant improvements, achieving 86% purity in a single pass compared to STA-PUT’s 38%, and that without any clogging issues. Further purification could be attained by repeated passes, as shown in earlier studies. This work underscores the efficacy of inertial microfluidics for efficient, high-purity cell separation, with the potential to revolutionize workflows in in-vitro spermatogenesis research. Full article
(This article belongs to the Special Issue Application of Microfluidic Technology in Biology)
Show Figures

Figure 1

24 pages, 7713 KiB  
Article
Resveratrol’s Pro-Apoptotic Effects in Cancer Are Mediated Through the Interaction and Oligomerization of the Mitochondrial VDAC1
by Tal Raviv, Anna Shteinfer-Kuzmine, Meital M. Moyal and Varda Shoshan-Barmatz
Int. J. Mol. Sci. 2025, 26(9), 3963; https://doi.org/10.3390/ijms26093963 - 22 Apr 2025
Viewed by 976
Abstract
Resveratrol is a naturally occurring phenolic compound found in various foods such as red wine, chocolate, peanuts, and blueberries. Both in-vitro and in-vivo studies have shown that it has a broad spectrum of pharmacological effects such as providing cellular protection and promoting longevity. [...] Read more.
Resveratrol is a naturally occurring phenolic compound found in various foods such as red wine, chocolate, peanuts, and blueberries. Both in-vitro and in-vivo studies have shown that it has a broad spectrum of pharmacological effects such as providing cellular protection and promoting longevity. These effects include antioxidant, anti-inflammatory, neuroprotective, and anti-viral properties, as well as improvements in cardio-metabolic health and anti-aging benefits. Additionally, resveratrol has demonstrated the ability to induce cell death and inhibit tumor growth across different types and stages of cancer. However, the dual effects of resveratrol—acting to support cell survival in some contexts, while inducing cell death in others—is still not fully understood. In this study, we identify a novel target for resveratrol: the voltage-dependent anion channel 1 (VDAC1), a multi-functional outer mitochondrial membrane protein that plays a key role in regulating both cell survival and death. Our findings show that resveratrol increased VDAC1 expression levels and promoted its oligomerization, leading to apoptotic cell death. Additionally, resveratrol elevated intracellular Ca2+ levels and enhanced the production of reactive oxygen species (ROS). Resveratrol also induced the detachment of hexokinase I from VDAC1, a key enzyme in metabolism, and regulating apoptosis. When VDAC1 expression was silenced using specific siRNA, resveratrol-induced cell death was significantly reduced, indicating that VDAC1 is essential for its pro-apoptotic effects. Additionally, both resveratrol and its analog, trans-2,3,5,4′-tetrahydroxystilbene-2-O-glucoside (TSG), directly interacted with purified VDAC1, as revealed by microscale thermophoresis, with similar binding affinities. However, unlike resveratrol, TSG did not induce VDAC1 overexpression or apoptosis. These results demonstrate that resveratrol-induced apoptosis is linked to increased VDAC1 expression and its oligomerization. This positions resveratrol not only as a protective agent, but also as a pro-apoptotic compound. Consequently, resveratrol offers a promising therapeutic approach for cancer, with potentially fewer side effects compared to conventional treatments, due to its natural origins in plants and food products. Full article
(This article belongs to the Collection Feature Papers in Molecular Oncology)
Show Figures

Figure 1

24 pages, 2745 KiB  
Systematic Review
A Meta-Analysis on the In Vitro Antagonistic Effects of Lactic Acid Bacteria from Dairy Products on Foodborne Pathogens
by Yara Loforte, Nathália Fernandes, André Martinho de Almeida, Vasco Cadavez and Ursula Gonzales-Barron
Foods 2025, 14(6), 907; https://doi.org/10.3390/foods14060907 - 7 Mar 2025
Viewed by 1350
Abstract
Raw milk and traditional fermented foods such as artisanal cheese represent a natural source of lactic acid bacteria (LAB). They can produce antimicrobial compounds, such as bacteriocins and lactic acid, which may be exploited in dairy biopreservation. This study aimed to conduct a [...] Read more.
Raw milk and traditional fermented foods such as artisanal cheese represent a natural source of lactic acid bacteria (LAB). They can produce antimicrobial compounds, such as bacteriocins and lactic acid, which may be exploited in dairy biopreservation. This study aimed to conduct a systematic review and meta-analysis to synthesize the inhibition diameter (ID) of LAB against L. monocytogenes, S. aureus, and Salmonella spp. Literature electronic searches were performed on PubMed, Scopus, and Web of Science, to identify articles that reported data on in-vitro antimicrobial activity by LAB isolated from dairy foods. A total of 1665 papers were retrieved, and 20 primary studies were selected according to the selection criteria, of which 397 observations were extracted. Random-effects meta-regression models were employed to describe the effects of LAB genus, pathogen concentration, susceptibility method, incubation time, inoculation volume, agar type and pH on the IDs for L. monocytogens, S. aureus, and Salmonella spp. L. monocytogens was the most susceptible pathogen (p < 0.05) to the LAB effects, followed by S. aureus and Salmonella spp. As a whole, LAB from the Lacticaseibacillus genus were the most effective (p < 0.05) in inhibiting L. monocytogens (21.49 ± 2.654 mm), followed by S. aureus (21.06 ± 2.056 mm). Salmonella spp. presented higher (p < 0.05) susceptibility to Lactobacillus genus (19.93 ± 2.456 mm). From the results, a general trend could be observed for the well-diffusion method to produce higher (p < 0.05) ID estimates than the spot and disk methods (30.73 ± 2.530 mm vs. 21.98 ± 1.309 mm vs. 13.39 ± 1.403 mm for L. monocytogenes; 22.37 ± 1.073 mm vs. 14.91 ± 2.312 mm vs. 20.30 ± 2.319 mm for Salmonella spp.), respectively. Among the tested moderators, the pathogen’s inoculum concentration, the in vitro susceptibility assay itself, incubation time and inoculation volume on agar are determinant parameters to be looked at when designing a robust and reproducible experimental plan. The in vitro results reinforced that LAB can be useful in controlling the development of pathogenic bacteria frequently found in the dairy industry. Full article
Show Figures

Figure 1

23 pages, 5773 KiB  
Article
An Investigation into the Effect of Maltitol, Sorbitol, and Xylitol on the Formation of Carbamazepine Solid Dispersions Through Thermal Processing
by Madan Sai Poka, Marnus Milne, Anita Wessels and Marique Aucamp
Pharmaceutics 2025, 17(3), 321; https://doi.org/10.3390/pharmaceutics17030321 - 2 Mar 2025
Viewed by 896
Abstract
Background: Carbamazepine (CBZ) is a Biopharmaceutical Classification System (BCS) class II drug, that is practically insoluble in water, influencing the oral bioavailability. Polyols are highly hydrophilic crystalline carriers studied for their success in developing solid dispersions (SDs) for improved solubility and dissolution rate. [...] Read more.
Background: Carbamazepine (CBZ) is a Biopharmaceutical Classification System (BCS) class II drug, that is practically insoluble in water, influencing the oral bioavailability. Polyols are highly hydrophilic crystalline carriers studied for their success in developing solid dispersions (SDs) for improved solubility and dissolution rate. Polyols are generally regarded as safe (GRAS) and maltitol (MAL), xylitol (XYL) and sorbitol (SOR) are among the approved polyols for market use. While xylitol (XYL) and sorbitol, have shown promise in improving the solubility and dissolution rates of poorly soluble drugs, their full potential in the context of improving the solubility of carbamazepine have not been thoroughly investigated. To the best of our knowledge, maltitol (MAL) was not studied previously as a carrier for preparing SDs. Hence, the purpose of this study was to investigate their use in the preparation of CBZ SDs by the fusion method. Methods: CBZ-polyol SDs were prepared in varying molar ratios (2:1, 1:1 and 1:2) and characterised for solid-state nature, solubility and in-vitro dissolution rate. Results: Solid-state characterisation of the CBZ-polyol SDs revealed the existence of the SDs as continuous glass suspensions with fine CBZ crystallites suspended in the amorphous polyol carriers. Among the polyols studied, XYL exhibited good miscibility with CBZ and showed significant improvement in the solubility and dissolution rate. The prepared SDs showed a 2 to 6-folds increase in CBZ solubility and 1.4 to 1.9-folds increase in dissolution rate in comparison with pure CBZ. Conclusions: The study explains the possible use of polyols (XYL and SOR) based SDs of BCS Class II drugs with good glass forming ability for enhanced solubility and dissolution. Full article
Show Figures

Figure 1

Back to TopTop