Dryland Fodder Radish Genotypes: Planting Date Effects on Nutritive Value and In-Vitro Dry Matter Degradability in Midlands of KwaZulu-Natal, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
- ▪
- ▪
- ▪
2.3. Determination of Chemical Composition
2.4. Estimated Feeding Value
2.5. Detection of Soluble Sugars
2.6. In-Vitro Dry Matter Degradability
2.7. Statistical Description
3. Results
3.1. Chemical Composition, Estimated Feeding Value and Soluble Sugars
3.2. In-Vitro Dry Matter Degradability
4. Discussion
4.1. Chemical Composition
4.2. Estimated Feeding Value
4.3. Soluble Sugars
4.4. In-Vitro Dry Matter Degradability
4.5. Practical Implications for Farmers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Archer, E.; Landman, W.; Malherbe, J.; Tadross, M.; Pretorius, S. South Africa’s winter rainfall region drought: A region in transition? Clim. Risk Manag. 2019, 25, 100188. [Google Scholar] [CrossRef]
- Engelbrecht, F.; Adegoke, J.; Bopape, M.J.; Naidoo, M.; Garland, R.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C.; et al. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 2022, 17, 024009. [Google Scholar] [CrossRef]
- Mapiye, C.; Chikwanha, O.C.; Chimonyo, M.; Dzama, K. Strategies for sustainable use of indigenous cattle genetic resources in Southern Africa. Diversity 2020, 11, 214. [Google Scholar] [CrossRef]
- Aliber, M.; Hall, R. Support for smallholder farmers in South Africa: Challenges of scale and strategy. Dev. S. Afr. 2012, 29, 548–563. [Google Scholar] [CrossRef]
- Müller, C.; Cramer, W.; Hare, W.L.; Lotze-Campen, H. Climate change risks for African agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 4313–4315. [Google Scholar] [CrossRef] [PubMed]
- Amole, T.A.; Zijlstra, M.; Descheemaeker, K.; Ayantunde, A.A.; Duncan, A.J. Assessment of lifetime performance of small ruminants under different feeding systems. Animal 2022, 11, 1024. [Google Scholar] [CrossRef]
- Pienaar, L.; Traub, L.N. Understanding the smallholder farmer in South Africa: Towards a sustainable livelihood’s classification. In Proceedings of the International Conference of Agricultural Economists, Milan, Italy, 9–14 August 2015. [Google Scholar] [CrossRef]
- Sinyolo, S.; Mudhara, M.; Wale, E. The impact of social grant dependency on smallholder maize producers’ market participation in South Africa: Application of the double-hurdle model. S. Afr. J. Econ. Manag. Sci. 2017, 20, 1–10. [Google Scholar] [CrossRef]
- Scholtz, M.M.; Van Ryssen, J.B.J.; Meissner, H.H.; Laker, M.C. A South African perspective on livestock production in relation to greenhouse gases and water usage. S. Afr. J. Anim. Sci. 2013, 43, 247–254. [Google Scholar] [CrossRef]
- Panchasara, H.; Samrat, N.H.; Islam, N. Greenhouse gas emissions trends and mitigation measures in Australian agriculture sector—A review. Agriculture 2021, 11, 85. [Google Scholar] [CrossRef]
- Rethman, N.F.G.; Heyns, G. Grazing of Raphanus sativus L. (Japanese radish). J. Grassl. Soc. S. Afr. 1987, 4, 154. [Google Scholar] [CrossRef]
- Altman, B.; Hayes, M.; Janes, S.; Forbes, R. Wildlife of westside grassland and chaparral habitats. In Wildlife-Habitat Relationships in Oregon and Washington; Johnson, D.H., O’Neil, T.A., Eds.; Oregon State University Press: Corvallis, OR, USA, 2001; pp. 261–291. [Google Scholar]
- Ammann, S.; Nash, D.; Goodenough, D. Fodder radish for autumn and winter: Technology. Dairy Mail 2009, 16, 70–71. [Google Scholar]
- Tsytsiura, Y.H. Evaluation of the efficiency of oil radish agrofitocenosis construction by the factor of reproductive effort. Bulg. J. Agric. Sci 2019, 25, 1161–1174. [Google Scholar]
- Mbambalala, L.; Rani, Z.T.; Mpanza, T.D.E.; Mthana, M.S.; Ncisana, L.; Mkhize, N.R. Fodder radish as a potential alternative feed source for livestock in South Africa. Agriculture 2023, 13, 1625. [Google Scholar] [CrossRef]
- Ncisana, L.; Mabhaudhi, T.; Mkhize, N.R.; Ravhuhali, K.; Tjelele, T.J.; Nyathi, M.K.; Mbambalala, L.; Msiza, N.H.; Nzeru, M.S.; Modi, A.T. Water regimes in selected fodder radish (Raphanus sativus) genotypes: Effects on nutritional value and in vitro ruminal dry matter degradability. Heliyon 2024, 10, e29203. [Google Scholar] [CrossRef]
- Tsytsiura, Y.H. Modular-vitality and ideotypical approach in evaluating the efficiency of construction of oilseed radish agrophytocenosises (Raphanus sativus var. oleifera Pers.). Agraarteadus 2020, 31, 219–243. [Google Scholar]
- Mutengwa, C.S.; Mnkeni, P.; Kondwakwenda, A. Climate-smart agriculture and food security in Southern Africa: A review of the vulnerability of smallholder agriculture and food security to climate change. Sustainability 2023, 15, 2882. [Google Scholar] [CrossRef]
- Rakau, P. New fodder radish varieties can boost dairy production. In Food for Thought; Johns Hopkins University Press: Baltimore, MD, USA, 2021. [Google Scholar]
- Jahanzad, E.; Jorat, M.; Moghadam, H.; Sadeghpour, A.; Chaichi, M.R.; Dashtaki, M. Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density. Agric. Water Manag. 2013, 117, 62–69. [Google Scholar] [CrossRef]
- Abbas, G.; Younis, H.; Naz, S.; Fatima, Z.; Hussain, S.; Ahmed, M.; Ahmad, S. Effect of planting dates on agronomic crop production. In Agronomic Crops: Volume 1: Production Technologies; Hasanuzzaman, M., Ed.; Springer: Singapore, 2019; pp. 131–147. [Google Scholar]
- Chand, S.; Indu; Singhal, R.K.; Govindasamy, P. Agronomical and breeding approaches to improve the nutritional status of forage crops for better livestock productivity. Grass Forage Sci. 2022, 77, 11–32. [Google Scholar] [CrossRef]
- Melo, C.D.; Maduro Dias, C.S.; Wallon, S.; Borba, A.E.; Madruga, J.; Borges, P.A.; Ferreira, M.T.; Elias, R.B. Influence of climate variability and soil fertility on the forage quality and productivity in Azorean pastures. Agriculture 2022, 12, 358. [Google Scholar] [CrossRef]
- Verschoor, A.; Rethman, N.F.G. Forage potential of Japanese radish (Raphanus sativus) as influenced by planting date and cultivar choice. J. Grassl. Soc. S. Afr. 1992, 9, 176–177. [Google Scholar] [CrossRef]
- Bussmann, A.; Elagib, N.A.; Fayyad, M.; Ribbe, L. Sowing date determinants for Sahelian rainfed agriculture in the context of agricultural policies and water management. Land Use Policy 2016, 52, 316–328. [Google Scholar] [CrossRef]
- Stewart, A.V.; Moorhead, A.J. The development of a fodder radish suitable for multiple grazing. Agron. N. Z. 2004, 34, 1–7. [Google Scholar]
- Omokanye, A.; Hernandez, G.; Lardner, H.A.; Al-Maqtari, B.; Gill, K.S.; Lee, A. Alternative forage feeds for beef cattle in Northwestern Alberta, Canada: Forage yield and nutritive value of forage brassicas and forbs. J. Appl. Anim. Res. 2021, 49, 203–210. [Google Scholar] [CrossRef]
- Bell, L.W.; Watt, L.J.; Stutz, R.S. Forage brassicas have the potential for wider use in drier, mixed crop-livestock farming systems across Australia. Crop Pasture Sci. 2020, 71, 924–943. [Google Scholar] [CrossRef]
- Nordheim-Viken, H.; Volden, H.; Jørgensen, M. Effects of maturity stage, temperature and photoperiod on growth and nutritive value of timothy (Phleum pratense L.). Anim. Feed Sci. Technol. 2009, 152, 204–218. [Google Scholar] [CrossRef]
- Stitt, M.; Schulze, E.D. Plant growth, storage, and resource allocation: From flux control in a metabolic chain to the whole plant level. In Flux Control in Biological Systems; Schulze, E.D., Ed.; Academic Press: San Diego, CA, USA, 1994; pp. 57–118. [Google Scholar]
- Brazel, A.J.; Ó’Maoiléidigh, D.S. Photosynthetic activity of reproductive organs. J. Exp. Bot. 2019, 70, 1737–1754. [Google Scholar] [CrossRef] [PubMed]
- Lucas, W.J.; Groover, A.; Lichtenberger, R.; Furuta, K.; Yadav, S.R.; Helariutta, Y.; He, X.Q.; Fukuda, H.; Kang, J.; Brady, S.M.; et al. The plant vascular system: Evolution, development and functions. J. Integr. Plant Biol. 2013, 55, 294–388. [Google Scholar] [CrossRef]
- Mekonnen, T.W.; van Biljon, A.; Ceronio, G.; Labuschagne, M. Effects of planting date, environments and their interaction on grain yield and quality traits of maize hybrids. Heliyon 2023, 9, e21660. [Google Scholar] [CrossRef] [PubMed]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Kumar, P.; Abubakar, A.A.; Verma, A.K.; Umaraw, P.; Ahmed, M.A.; Mehta, N.; Hayat, M.N.; Kaka, U.; Sazili, A.Q. New insights in improving sustainability in meat production: Opportunities and challenges. Crit. Rev. Food Sci. Nutr. 2023, 63, 11830–11858. [Google Scholar] [CrossRef]
- Tibesigwa, B.; Visser, M. Assessing gender inequality in food security among small-holder farm households in urban and rural South Africa. World Dev. 2016, 88, 33–49. [Google Scholar] [CrossRef]
- Soil Classification Working Group. Soil Classification: A Taxonomic System for South Africa; Department of Agricultural Devel-opment: Pretoria, South Africa, 1991; Volume 15. [Google Scholar]
- Manson, A.D.; Roberts, V.G. Analytical Methods Used by the Soil Fertility and Analytical Services Section; KwaZulu-Natal Agri-Report; Republic of South Africa: Pietermaritzburg, South Africa, 2000; N/A/2001/04; pp. 1–6. [Google Scholar]
- Hunter, A. New techniques and equipment for routine soil/plant analytical procedures. In Soil Management in Tropical America; Borremiza, E., Alvarado, A., Eds.; North Carolina State University: Raleigh, NC, USA, 1975. [Google Scholar]
- Zierer, W.; Rüscher, D.; Sonnewald, U.; Sonnewald, S. Tuber and tuberous root development. Annu. Rev. Plant Biol. 2021, 72, 551–580. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Javier-Astete, R.; Jimenez-Davalos, J.; Zolla, G. Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. PLoS ONE 2021, 16, e0256559. [Google Scholar] [CrossRef]
- Marais, J.P.; De Figueiredo, M.; Goodenough, D.C.W. Dry matter and non-structural carbohydrate content as quality parameters in a Lolium multiflorum breeding programme. Afr. J. Range Forage Sci. 1993, 10, 118–124. [Google Scholar] [CrossRef]
- Jeranyama, P.; Garcia, A.D. Understanding Relative Feed Value (RFV) and Relative Forage Quality (RFQ). Ext. Extra 2004, 352, 1–4. [Google Scholar]
- Fonnesbeck, P.V.; Clark, D.H.; Garret, W.N.; Speth, C.F. Predicting energy utilization from alfalfa hay from the Western Region. In Proceedings of the Cornell Nutrition Conference for Feed Manufacture, Ithaca, NY, USA, 19–20 August 2002; Cornell University: Ithaca, NY, USA, 2002. [Google Scholar]
- National Research Council. Nutrient Requirements of Dairy Cattle, Seventh Revised Edition; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples; National Renewable Energy Laboratory: Golden, CO, USA, 2006. [Google Scholar]
- ANKOM Technology. In-Vitro True Digestibility Using the Daisy II Incubator; ANKOM Technology: Macedon, NY, USA, 2005. [Google Scholar]
- Payne, R.W.; Murray, D.A.; Harding, S.A. GenStat for Windows, 23rd ed.; VSN International: Hemel Hempstead, UK, 2017. [Google Scholar]
- Nair, J.; Beattie, A.D.; Christensen, D.; Yu, P.; McAllister, T.; Damiran, D.; McKinnon, J.J. Effect of variety and stage of maturity at harvest on nutrient and neutral detergent fiber digestibility of forage barley grown in western Canada. Can. J. Anim. Sci. 2018, 98, 299–310. [Google Scholar] [CrossRef]
- Rakszegi, M.; Darkó, É.; Lovegrove, A.; Molnár, I.; Láng, L.; Bedő, Z.; Molnár-Láng, M.; Shewry, P. Drought stress affects the protein and dietary fiber content of wholemeal wheat flour in wheat/Aegilops addition lines. PLoS ONE 2019, 14, e0211892. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Xu, C.; Li, X.; Ferguson, I.; Chen, K. Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biol. Technol. 2006, 40, 163–169. [Google Scholar] [CrossRef]
- Moyo, M.; Nsahlai, I. Consequences of increases in ambient temperature and effect of climate type on digestibility of forages by ruminants: A meta-analysis in relation to global warming. Animals 2021, 11, 172. [Google Scholar] [CrossRef]
- Norton, B.W.; Moran, J.B.; Nolan, J.V. Nutrient requirements of domesticated ruminants in tropical regions. Aust. J. Agric. Res. 2009, 60, 214–228. [Google Scholar]
- Yari, M.; Valizadeh, R.; Naserian, A.A.; Jonker, A.; Yu, P. Modeling nutrient availability of alfalfa hay harvested at three stages of maturity and in the afternoon and morning in dairy cows. Anim. Feed Sci. Technol. 2012, 178, 12–19. [Google Scholar] [CrossRef]
- Goyeneche, R.; Roura, S.; Ponce, A.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Uribe, E.; Di Scala, K. Chemical characterization and antioxidant capacity of red radish (Raphanus sativus L.) leaves and roots. J. Funct. Foods 2015, 16, 256–264. [Google Scholar] [CrossRef]
- Keogh, B.; McGrath, T.; Grant, J. The effect of sowing date and nitrogen on the dry-matter yield and nitrogen content of forage rape (Brassica napus L.) and stubble turnips (Brassica rapa L.) in Ireland. Grass Forage Sci. 2012, 67, 2–12. [Google Scholar] [CrossRef]
- Barry, T.N. The feeding value of forage brassica plants for grazing ruminant livestock: A review. Anim. Feed Sci. Technol. 2013, 181, 15–25. [Google Scholar] [CrossRef]
- Villalobos, L.A.; Brummer, J.E. Forage brassicas stockpiled for fall grazing: Yield and nutritive value. Crop Forage Turfgrass Manag. 2015, 1, 1–6. [Google Scholar] [CrossRef]
- Feng, Y.; Shi, Y.; Zhao, M.; Shen, H.; Xu, L.; Luo, Y.; Liu, Y.; Xing, A.; Kang, J.; Jing, H.; et al. Yield and quality properties of alfalfa (Medicago sativa L.) and their influencing factors in China. Eur. J. Agron. 2022, 141, 126637. [Google Scholar] [CrossRef]
- Palmer, C.D.; Keller, W.; Singh, J.; Datla, R. Brassica crop species: Improving water use efficiency: Challenges and opportunities. In Improving Crop Resistance to Abiotic Stress; Tuteja, N., Gill, S.S., Eds.; Wiley-VCH: Weinheim, Germany, 2022; pp. 1301–1314. [Google Scholar] [CrossRef]
- Watt, L.J.; Bell, L.W.; Pembleton, K.G. A forage brassica simulation model using APSIM: Model calibration and validation across multiple environments. Eur. J. Agron. 2022, 137, 126517. [Google Scholar] [CrossRef]
- Mertens, D.R. Regulation of forage intake. In Forage Quality, Evaluation, and Utilization; Fahey, G.C., Jr., Ed.; American Society of Agronomy: Madison, WI, USA, 1994; pp. 450–493. [Google Scholar]
- Oba, M.; Allen, M.S. Evaluation of the importance of the digestibility of neutral detergent fiber from forage: Effects on dry matter intake and milk yield of dairy cows. J. Dairy Sci. 1999, 82, 589–596. [Google Scholar] [CrossRef]
- Vazquez, O.P.; Smith, T.R. Factors affecting pasture intake and total dry matter intake in grazing dairy cows. J. Dairy Sci. 2000, 83, 2301–2309. [Google Scholar] [CrossRef]
- Dong, L.F.; Peng, J.I.A.; Li, B.C.; Wang, B.; Yang, C.L.; Liu, Z.H.; Diao, Q.Y. Quantification and prediction of enteric methane emissions from Chinese lactating Holstein dairy cows fed diets with different dietary neutral detergent fiber/non-fibrous carbohydrate (NDF/NFC) ratios. J. Integr. Agric. 2022, 21, 797–811. [Google Scholar] [CrossRef]
- Pereira, M.C.S.; Yang, W.Z.; Beauchemin, K.A.; McAllister, T.A.; Wood, K.M.; Penner, G.B. Effect of forage types differing in undigested neutral detergent fiber concentration and forage inclusion rate on reticulo-ruminal motility and fermentation, total tract barrier function, and blood metabolites of finishing beef heifers. J. Anim. Sci. 2023, 101, skad043. [Google Scholar] [CrossRef] [PubMed]
- Francisco, M.; Velasco, P.; Lema, M.; Cartea, M.E. Genotypic and environmental effects on agronomic and nutritional value of Brassica rapa. Agron. J. 2011, 103, 735–742. [Google Scholar] [CrossRef]
- Eryilmaz, O. Revalorization of cellulosic fibre extracted from the waste stem of Brassica oleracea var. botrytis L. (cauliflower) by characterizing for potential composite applications. Int. J. Biol. Macromol. 2024, 266, 131086. [Google Scholar] [CrossRef]
- McCartney, D.; Fraser, J.; Ohama, A. Potential of warm-season annual forages and Brassica crops for grazing: A Canadian Review. Can. J. Anim. Sci. 2009, 89, 431–440. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Cohu, C.M.; Muller, O.; Adams, W.W. Modulation of photosynthetic energy conversion efficiency in nature: From seconds to seasons. Photosynth. Res. 2012, 113, 75–88. [Google Scholar] [CrossRef]
- Pelletier, S.; Tremblay, G.F.; Bertrand, A.; Bélanger, G.; Castonguay, Y.; Michaud, R. Drying procedures affect non-structural carbohydrates and other nutritive value attributes in forage samples. Anim. Feed Sci. Technol. 2010, 157, 139–150. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Jones, E.L.; Moorby, J.M.; Humphreys, M.O.; Theodorou, M.K.; Scollan, N.D. Production responses from lambs grazed on Lolium perenne selected for an elevated water-soluble carbohydrate concentration. Anim. Res. 2002, 51, 441–449. [Google Scholar] [CrossRef]
- Miller, L.A.; Moorby, J.M.; Davies, D.R.; Humphreys, M.O.; Scollan, N.D.; MacRae, J.C.; Theodorou, M.K. Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.): Milk production from late-lactation dairy cows. Grass Forage Sci. 2001, 56, 383–394. [Google Scholar] [CrossRef]
- Edwards, G.R.; Parsons, A.J.; Rasmussen, S.; Bryant, R.H. High sugar ryegrasses for livestock systems in New Zealand. Proc. N. Z. Grassl. Assoc. 2007, 69, 161–171. [Google Scholar] [CrossRef]
- Leng, R.A. Factors affecting the utilization of ‘poor-quality’ forages by ruminants, particularly under tropical conditions. Nutr. Res. Rev. 1990, 3, 277–303. [Google Scholar] [CrossRef] [PubMed]
- Krehbiel, C.R. Invited Review: Applied nutrition of ruminants: Fermentation and digestive physiology. Prof. Anim. Sci. 2014, 30, 129–139. [Google Scholar] [CrossRef]
- Moore, J. Relative forage quality: An alternative to relative feed value and quality index. In Proceedings of the 13th Annual Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 10 January 2002; University of Florida: Gainesville, FL, USA, 2002. [Google Scholar]
- Casler, M.D.; Vogel, K.P. Accomplishments and impact from breeding for increased forage nutritional value. Crop Sci. 1999, 39, 12–20. [Google Scholar] [CrossRef]
- Goel, G.; Makkar, H.P.S. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod. 2012, 44, 729–739. [Google Scholar] [CrossRef]
- Combs, D.K. TTNDFD: A new approach to evaluate forages. In Proceedings of the Western States Alfalfa and Forage Symposium, Reno, NV, USA, 2–4 December 2015; University of California: Davis, CA, USA, 2015; pp. 113–118. [Google Scholar]
- Barrett, B.A.; Faville, M.J.; Nichols, S.N.; Simpson, W.R.; Bryan, G.T.; Conner, A.J. Breaking through the feed barrier: Options for improving forage genetics. Anim. Prod. Sci. 2015, 55, 883–892. [Google Scholar] [CrossRef]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Animal Nutrition, 7th ed.; Pearson Education Limited: London, UK, 2011. [Google Scholar]
- Ben Salem, H.; Smith, T. Feeding strategies to increase small ruminant production in dry environments. Small Rumin. Res. 2008, 77, 174–194. [Google Scholar] [CrossRef]
- Karsli, M.; Russell, J.R. Effects of some dietary factors on ruminal microbial protein synthesis. Turk. J. Vet. Anim. Sci. 2001, 25, 681–686. [Google Scholar]
- Chen, P.; Li, Y.; Shen, Y.; Cao, Y.; Li, Q.; Wang, M.; Liu, M.; Wang, Z.; Huo, Z.; Ren, S.; et al. Effect of dietary rumen-degradable starch to rumen-degradable protein ratio on in vitro rumen fermentation characteristics and microbial protein synthesis. Animals 2022, 12, 2633. [Google Scholar] [CrossRef]
- Hajihashemi, S.; Noedoost, F.; Geuns, J.M.; Djalovic, I.; Siddique, K.H. Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudiana. Front. Plant Sci. 2018, 9, 1430. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Choi, C.S.; Rhee, J.; Jo, J.S.; Shin, Y.K.; Song, J.W.; Lee, J.G. Seasonal variation in agronomic characteristics and sugar content of cabbage genotypes. Chil. J. Agric. Res. 2021, 81, 80–91. [Google Scholar] [CrossRef]
- Ghafoor, A.; Karim, H.; Asghar, M.A.; Raza, A.; Hussain, M.I.; Javed, H.H.; Shafiq, I.; Xiao, P.; Yue, H.; Ahmad, B.; et al. Carbohydrates accumulation, oil quality and yield of rapeseed genotypes at different nitrogen rates. Plant Prod. Sci. 2021, 25, 50–69. [Google Scholar] [CrossRef]
- Saidi, R.; Ziadi, M.; Bouazizi, S.; Bouallagui, H.; Hamdi, M. Biohydrogen and volatile fatty acids production from prickly pear cladodes (Opuntia ficus indica) as renewable feedstock. Euro-Mediterr. J. Environ. Integr. 2025, 10, 1–12. [Google Scholar] [CrossRef]
- Fletcher, A.L.; Sinton, S.M.; Gillespie, R.N.; Maley, S.; Sim, R.E.; de Ruiter, J.M.; Meenken, E.D. Drought response and water use efficiency of forage brassica crops. Agron. N. Z. 2010, 40, 105–117. [Google Scholar]
- Shao, H.B.; Chu, L.Y.; Jaleel, C.A.; Zhao, C.X. Water-deficit stress-induced anatomical changes in higher plants. C. R. Biol. 2008, 331, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.A.; Pandey, I.K. Metabolites and Abiotic Stress Tolerance in Plants. In Advancements in Developing Abiotic Stress-Resilient Plants; CRC Press: Boca Raton, FL, USA, 2022; pp. 287–304. [Google Scholar]
- Zain, M.; Tanuwiria, U.H.; Syamsu, J.A.; Yunilas, Y.; Pazla, R.; Putri, E.M.; Makmur, M.; Amanah, U.; Shafura, P.O.; Bagaskara, B. Nutrient digestibility, characteristics of rumen fermentation, and microbial protein synthesis from Pesisir cattle diet containing non-fiber carbohydrate to rumen degradable protein ratio and sulfur supplement. Vet. World 2024, 17, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Saddhe, A.A.; Manuka, R.; Penna, S. Plant sugars: Homeostasis and transport under abiotic stress in plants. Physiol. Plant. 2021, 171, 739–755. [Google Scholar] [CrossRef]
- Huang, J.; Hammerbacher, A.; Forkelová, L.; Hartmann, H. Release of resource constraints allows greater carbon allocation to secondary metabolites and storage in winter wheat. Plant Cell Environ. 2017, 40, 672–685. [Google Scholar] [CrossRef]
- Raffrenato, E.; Fievisohn, R.; Cotanch, K.W.; Grant, R.J.; Chase, L.E.; Van Amburgh, M.E. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. J. Dairy Sci. 2017, 100, 8119–8131. [Google Scholar] [CrossRef]
Month | Tx | Tn | RHx | RHn | Rs | ET0 | TR |
---|---|---|---|---|---|---|---|
December | 25.49 | 14.72 | 93.55 | 52.29 | 15.59 | 99.41 | 209.80 |
January | 27.83 | 16.49 | 93.49 | 52.50 | 20.22 | 346.52 | 241.55 |
February | 27.84 | 17.17 | 93.40 | 54.79 | 17.73 | 101.88 | 79.51 |
March | 27.17 | 15.44 | 92.37 | 48.83 | 15.90 | 100.69 | 107.19 |
April | 22.77 | 11.64 | 92.41 | 51.49 | 10.84 | 65.06 | 189.48 |
May | 23.38 | 8.27 | 92.28 | 37.79 | 12.81 | 73.29 | 117.35 |
June | 21.49 | 3.69 | 89.36 | 30.28 | 11.75 | 62.01 | 3.05 |
July | 22.80 | 5.47 | 88.39 | 27.06 | 12.11 | 71.87 | 22.10 |
August | 22.65 | 5.61 | 90.60 | 32.20 | 14.29 | 82.14 | 17.27 |
Genotype | Planting Date | Ash (%) | CP (%) | Cel (%) | TNC (%) | Fructose (mg/g) |
---|---|---|---|---|---|---|
Endurance | December | 12.65 ± 0.07 e | 28.33 ± 1.26 ab | 15.41 ± 0.50 abc | 5.50 ± 0.45 bcdef | 7.79 ± 1.66 b |
January | 17.50 ± 0.59 abcd | 28.09 ± 0.76 ab | 14.57 ± 0.61 abc | 3.12 ± 0.02 def | 0.74 ± 0.15 e | |
February | 17.79 ± 0.21 abcd | 24.27 ± 0.66 bc | 11.43 ± 0.67 bc | 2.10 ± 0.31 ef | 1.75 ± 0.26 de | |
March | 14.60 ± 0.80 cde | 21.25 ± 1.30 c | 10.41 ± 0.78 bc | 9.02 ± 1.17 ab | 1.59 ± 0.36 de | |
May | 18.46 ± 1.63 ab | 26.56 ± 0.47 abc | 16.22 ± 2.43 abc | 8.45 ± 0.30 abc | 0.22 ± 0.22 e | |
Line 2 | December | 13.92 ± 0.63 de | 26.48 ± 1.90 abc | 15.88 ± 1.14 abc | 8.45 ± 1.80 abc | 13.50 ± 1.47 a |
January | 14.96 ± 0.46 bcde | 27.60 ± 1.36 ab | 17.37 ± 0.57 ab | 3.56 ± 0.15 cdef | 0.56 ± 0.05 e | |
February | 16.33 ± 0.85 abcde | 24.38 ± 1.74 bc | 12.25 ± 0.31 abc | 1.81 ± 0.48 f | 6.27 ± 0.03 bc | |
March | 14.14 ± 0.36 de | 26.58 ± 1.59 abc | 9.75 ± 1.53 c | 13.31 ± 2.36 a | 1.64 ± 0.17 e | |
May | 17.81 ± 0.44 abcd | 28.56 ± 1.03 ab | 11.88 ± 1.37 abc | 8.28 ± 1.45 bc | 1.64 ± 0.24 de | |
Nooitgedacht | December | 19.46 ± 0.29 a | 31.23 ± 0.40 a | 15.95 ± 1.93 abc | 7.89 ± 0.17 bcd | 4.97 ± 1.36 bcd |
January | 16.39 ± 0.13 abcde | 28.68 ± 0.53 ab | 11.92 ± 2.68 abc | 2.76 ± 0.01 ef | 0.25 ± 0.02 e | |
February | 14.34 ± 1.32 cde | 24.12 ± 1.50 bc | 15.38 ± 1.15 abc | 7.08 ± 0.83 bcde | 2.63 ± 1.21 cde | |
March | 17.90 ± 1.14 abc | 22.79 ± 0.96 bc | 10.62 ± 1.78 bc | 9.67 ± 0.38 ab | 2.30 ± 0.09 cde | |
May | 16.18 ± 0.41 abcde | 26.15 ± 0.88 abc | 19.16 ± 1.52 a | 10.09 ± 0.27 ab | 0.72 ± 0.72 e | |
p-value | P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
G | 0.021 | 0.362 | 0.391 | 0.012 | <0.001 | |
P × G | 0.006 | 0.038 | 0.018 | 0.006 | <0.001 |
Genotype | Planting Date | Ash (%) | ADL (%) | Glucose (mg/g) |
---|---|---|---|---|
Endurance | December | 18.76 ± 1.04 c | 6.41 ± 0.00 ab | 9.79 ± 1.37 ab |
January | 27.18 ± 1.73 a | 10.30 ± 1.04 ab | 3.87 ± 1.16 abcd | |
February | 18.49 ± 0.51 c | 11.84 ± 0.70 ab | 6.34 ± 1.42 abc | |
March | 8.12 ± 1.09 e | 8.33 ± 1.06 ab | 2.53 ± 0.18 cd | |
May | 11.92 ± 0.54 de | 13.28 ± 1.96 a | 0.67 ± 0.49 cd | |
Line 2 | December | 17.91 ± 0.23 c | 7.10 ± 0.27 ab | 10.07 ± 1.61 a |
January | 26.56 ± 1.43 ab | 10.08 ± 0.81 ab | 5.62 ± 1.24 abcd | |
February | 17.17 ± 0.31 cd | 11.55 ± 3.49 ab | 4.89 ± 2.69 abcd | |
March | 8.82 ± 0.00 e | 5.30 ± 0.71 b | ND | |
May | 11.73 ± 1.15 de | 13.36 ± 2.62 a | ND | |
Nooitgedacht | December | 21.40 ± 0.78 bc | 7.39 ± 0.50 ab | 3.89 ± 0.65 abcd |
January | 26.18 ± 1.32 ab | 7.16 ± 0.19 ab | 3.60 ± 1.80 bcd | |
February | 20.03 ± 0.29 c | 6.69 ± 0.29 ab | 1.05 ± 1.05 cd | |
March | 9.32 ± 0.25 e | 8.39 ± 0.30 ab | 4.20 ± 0.67 abcd | |
May | 7.37 ± 2.20 e | 13.03 ± 1.00 a | ND | |
p-value | P | <0.001 | <0.001 | <0.001 |
G | 0.753 | 0.234 | 0.028 | |
P × G | 0.021 | 0.033 | 0.008 |
Parameters | December | January | February | March | May | p-Value |
---|---|---|---|---|---|---|
DM (%) | 91.58 ± 0.49 a | 89.19 ± 0.62 ab | 87.61 ± 1.20 b | 87.29 ± 0.81 b | 92.03 ± 0.235 a | <0.001 |
EE (%) | 0.04 ± 0.00 | 0.33 ± 0.00 | 0.04 ± 0.02 | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.561 |
NDF (%) | 32.64 ± 0.96 bc | 37.97 ± 0.97 ab | 28.15 ± 0.85 c | 29.45 ± 2.05 c | 40.28 ± 2.71 a | <0.001 |
ADF (%) | 23.47 ± 1.17 bc | 27.84 ± 0.80 a | 21.12 ± 0.51 c | 17.15 ± 0.82 d | 25.22 ± 0.84 ab | <0.001 |
ADL (%) | 9.47 ± 0.76 ab | 8.80 ± 0.88 b | 8.10 ± 0.55 b | 6.89 ± 0.59 b | 12.49 ± 0.90 a | <0.001 |
Hem (%) | 9.17 ± 0.62 b | 10.08 ± 0.93 ab | 7.02 ± 0.45 b | 12.30 ± 1.67 ab | 15.06 ± 2.91 a | 0.011 |
TDN (%) | 47.28 ± 2.12 a | 48.52 ± 1.10 c | 61.45 ± 0.88 a | 62.65 ± 1.83 a | 54.83 ± 1.10 b | <0.001 |
RFV | 42.93 ± 0.90 ab | 41.00 ± 0.44 b | 41.17 ± 0.24 b | 43.77 ± 0.88 a | 41.83 ± 0.42 ab | 0.016 |
ME (MJ/kg) | 6.09 ± 0.06 cd | 5.91 ± 0.55 d | 6.37 ± 0.04 b | 6.64 ± 0.06 a | 6.21 ± 0.08 bc | <0.001 |
DE (Mcal/kg) | 21.66 ± 0.21 cd | 21.02 ± 0.19 d | 22.66 ± 0.12 b | 23.63 ± 0.20 a | 22.09 ± 0.28 bc | <0.001 |
Glucose (mg/g) | 6.74 ± 2.21 a | 1.19 ± 0.50 bc | 2.85 ± 0.57 b | 1.03 ± 0.34 bc | 0.22 ± 0.27 c | <0.001 |
Sucrose (mg/g) | 6.16 ± 2.21 a | 2.97 ± 0.50 ab | 2.24 ± 9.58 ab | 1.39 ± 0.34 b | 0.72 ± 0.28 b | 0.009 |
Parameters | December | January | February | March | May | p-Value |
---|---|---|---|---|---|---|
DM (%) | 89.40 ± 1.02 | 90.72± 0.46 | 91.18 ± 0.20 | 91.04 ± 0.83 | 90.77 ± 0.49 | 0.354 |
EE (%) | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | <0.001 |
CP (%) | 20.53 ± 0.48 a | 21.03 ± 0.50 a | 18.32 ± 0.77 b | 14.16 ± 0.39 c | 17.09 ± 0.48 b | <0.001 |
NDF (%) | 37.31 ± 1.52 a | 39.64 ± 0.79 a | 36.98 ± 1.38 a | 27.78 ± 1.01 b | 40.05 ± 1.95 a | <0.001 |
ADF (%) | 27.96 ± 1.03 a | 27.08 ± 1.64 a | 28.06 ± 1.06 a | 18.67 ± 0.62 b | 30.42 ± 1.83 a | <0.001 |
Hem (%) | 9.63 ± 2.59 | 12.57 ± 1.29 | 8.91 ± 0.64 | 9.12 ± 0.62 | 9.63 ± 0.77 | 0.343 |
TDN (%) | 53.31 ± 1.84 c | 54.33 ± 1.22 bc | 58.41 ± 1.65 bc | 72.18 ± 1.18 a | 59.38 ± 1.06 b | <0.001 |
RFV | 39.91 ± 1.17 | 41.97 ± 0.87 | 40.51 ± 0.30 | 42.41 ± 0.36 | 40.67 ± 0.33 | 0.080 |
ME (MJ/kg) | 5.73 ± 0.13 b | 5.96 ± 0.11 b | 5.89 ± 0.73 b | 6.54 ± 0.04 a | 5.90 ± 0.07 b | <0.001 |
DE (Mcal/kg) | 20.40 ± 0.45 b | 21.21 ± 0.40 b | 20.97 ± 0.26 b | 23.26 ± 0.15 a | 21.00 ± 0.25 b | <0.001 |
Fructose (mg/g) | 7.30 ± 1.77 a | 3.03 ± 0.47 ab | 6.51 ± 1.53 a | 1.06 ± 0.40 b | 0.58 ± 0.36 b | <0.001 |
Sucrose (mg/g) | 5.69 ± 1.18 | 1.63 ± 0.33 | 2.60 ± 0.70 | 1.08 ± 0.32 | 0.92 ± 0.45 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbambalala, L.; Mpanza, T.D.E.; Tjelele, T.J.; Ncisana, L.; Mkhungo, S.; Sithole, L.; Nzeru, M.S.; Rakau, P.N.; Rani-Kamwendo, Z.T.; Mkhize, N.R. Dryland Fodder Radish Genotypes: Planting Date Effects on Nutritive Value and In-Vitro Dry Matter Degradability in Midlands of KwaZulu-Natal, South Africa. Grasses 2025, 4, 17. https://doi.org/10.3390/grasses4020017
Mbambalala L, Mpanza TDE, Tjelele TJ, Ncisana L, Mkhungo S, Sithole L, Nzeru MS, Rakau PN, Rani-Kamwendo ZT, Mkhize NR. Dryland Fodder Radish Genotypes: Planting Date Effects on Nutritive Value and In-Vitro Dry Matter Degradability in Midlands of KwaZulu-Natal, South Africa. Grasses. 2025; 4(2):17. https://doi.org/10.3390/grasses4020017
Chicago/Turabian StyleMbambalala, Lwando, Thamsanqa Doctor Empire Mpanza, Tlou Julius Tjelele, Lusanda Ncisana, Sphesihle Mkhungo, Lucky Sithole, Mpho Siennah Nzeru, Patrick Ngwako Rakau, Zikhona Theodora Rani-Kamwendo, and Ntuthuko Raphael Mkhize. 2025. "Dryland Fodder Radish Genotypes: Planting Date Effects on Nutritive Value and In-Vitro Dry Matter Degradability in Midlands of KwaZulu-Natal, South Africa" Grasses 4, no. 2: 17. https://doi.org/10.3390/grasses4020017
APA StyleMbambalala, L., Mpanza, T. D. E., Tjelele, T. J., Ncisana, L., Mkhungo, S., Sithole, L., Nzeru, M. S., Rakau, P. N., Rani-Kamwendo, Z. T., & Mkhize, N. R. (2025). Dryland Fodder Radish Genotypes: Planting Date Effects on Nutritive Value and In-Vitro Dry Matter Degradability in Midlands of KwaZulu-Natal, South Africa. Grasses, 4(2), 17. https://doi.org/10.3390/grasses4020017